導航:首頁 > 網路安全 > 如何從零開始神經網路

如何從零開始神經網路

發布時間:2023-11-24 16:00:13

如何訓練神經網路

1、先別著急寫代碼

訓練神經網路前,別管代碼,先從預處理數據集開始。我們先花幾個小時的時間,了解數據的分布並找出其中的規律。

Andrej有一次在整理數據時發現了重復的樣本,還有一次發現了圖像和標簽中的錯誤。所以先看一眼數據能避免我們走很多彎路。

由於神經網路實際上是數據集的壓縮版本,因此您將能夠查看網路(錯誤)預測並了解它們的來源。如果你的網路給你的預測看起來與你在數據中看到的內容不一致,那麼就會有所收獲。

一旦從數據中發現規律,可以編寫一些代碼對他們進行搜索、過濾、排序。把數據可視化能幫助我們發現異常值,而異常值總能揭示數據的質量或預處理中的一些錯誤。

2、設置端到端的訓練評估框架

處理完數據集,接下來就能開始訓練模型了嗎?並不能!下一步是建立一個完整的訓練+評估框架。

在這個階段,我們選擇一個簡單又不至於搞砸的模型,比如線性分類器、CNN,可視化損失。獲得准確度等衡量模型的標准,用模型進行預測。

這個階段的技巧有:

· 固定隨機種子

使用固定的隨機種子,來保證運行代碼兩次都獲得相同的結果,消除差異因素。

· 簡單化

在此階段不要有任何幻想,不要擴增數據。擴增數據後面會用到,但是在這里不要使用,現在引入只會導致錯誤。

· 在評估中添加有效數字

在繪制測試集損失時,對整個測試集進行評估,不要只繪制批次測試損失圖像,然後用Tensorboard對它們進行平滑處理。

· 在初始階段驗證損失函數

驗證函數是否從正確的損失值開始。例如,如果正確初始化最後一層,則應在softmax初始化時測量-log(1/n_classes)。

· 初始化

正確初始化最後一層的權重。如果回歸一些平均值為50的值,則將最終偏差初始化為50。如果有一個比例為1:10的不平衡數據集,請設置對數的偏差,使網路預測概率在初始化時為0.1。正確設置這些可以加速模型的收斂。

· 人類基線

監控除人為可解釋和可檢查的損失之外的指標。盡可能評估人的准確性並與之進行比較。或者對測試數據進行兩次注釋,並且對於每個示例,將一個注釋視為預測,將第二個注釋視為事實。

· 設置一個獨立於輸入的基線

最簡單的方法是將所有輸入設置為零,看看模型是否學會從輸入中提取任何信息。

· 過擬合一個batch

增加了模型的容量並驗證我們可以達到的最低損失。

· 驗證減少訓練損失

嘗試稍微增加數據容量。

② 人工神經網路是怎麼學習的呢

1、神經網路的結構(例如2輸入3隱節點1輸出)建好後,一般就要求神經網路里的權值和閾值。現在一般求解權值和閾值,都是採用梯度下降之類的搜索演算法(梯度下降法、牛頓法、列文伯格-馬跨特法、狗腿法等等)。 2、這些演算法會先初始化一個解,在這個解的基礎上,確定一個搜索方向和一個移動步長(各種法算確定方向和步長的方法不同,也就使各種演算法適用於解決不同的問題),使初始解根據這個方向和步長移動後,能使目標函數的輸出(在神經網路中就是預測誤差)下降。 3、然後將它更新為新的解,再繼續尋找下一步的移動方向的步長,這樣不斷的迭代下去,目標函數(神經網路中的預測誤差)也不斷下降,最終就能找到一個解,使得目標函數(預測誤差)比較小。 4、而在尋解過程中,步長太大,就會搜索得不仔細,可能跨過了優秀的解,而步長太小,又會使尋解過程進行得太慢。因此,步長設置適當非常重要。 5、學習率對原步長(在梯度下降法中就是梯度的長度)作調整,如果學習率lr = 0.1,那麼梯度下降法中每次調整的步長就是0.1*梯度, 6、而在matlab神經網路工具箱里的lr,代表的是初始學習率。因為matlab工具箱為了在尋解不同階段更智能的選擇合適的步長,使用的是可變學習率,它會根據上一次解的調整對目標函數帶來的效果來對學習率作調整,再根據學習率決定步長。

③ 神經網路初始化

初始化會對深斗旅度神經網路模型的訓練時間和收斂性產生重大影響。簡單的初始化方法可以加速訓練,但使用這些方法需要注意小心常見的陷阱。本文做銷伏將解釋如何有效地對神經網路參數進行初始化。

要構建機器學習演算法,通常要定義一個體系結構(例如邏輯回歸、支持向量機、神經網路)並對其進行訓練學習參數。

在優化循環的每次迭代(前向,成本,後向,更新)中,觀察到當從輸出層向輸入層移動時,反向傳播的梯度要麼被放大,要麼被最小化。

假設所有的激活參數都是線性的(恆等函數)。則輸出激活為:

假設 ,那麼輸出預測為:

總而言之,使用大小不合適的值對權重進行將導致神經網路的發散或訓練速度下降。 雖然我們用的是簡單的對稱權重矩陣來說明梯度爆炸/消失的問題,但這一現象可以推廣到任何不合適的初始化值。

經驗原則

在上述兩個經驗原則下,反向傳播的梯度信號不應該在任何層中乘以太小或太大的值。梯度應該可以移動到輸入層,而不會爆炸或消失。
更具體地說,對於層l,其前向傳播是:

想要下式成立

確保均值為零,並保持每層輸入方差值不變,可以保證信號不會爆炸或消失。該方法既適用於前向傳播(用於激活),也適用於向後傳播(用於關於激活的成本梯度)。這里建議使用Xavier初始化(或其派生初始化方法),對於每個層l,有:

層l中的所有權重均自正態分布中隨機挑選,其中均值 ,方差 ,其中 是第 層網路中的神經元數量。偏差已初始化為零。

使用 簡化為

將在方差之外提取求和

將乘積的方純攜差轉換為方差的乘積並使用 and

帶入假設

第一個假設導致

第二個假設導致

同樣的想法

整合上述,得到

希望方差不變( )需要

根據我們如何初始化權重,我們的輸出和輸入的方差之間的關系會有很大的不同。 請注意以下三種情況。

在實踐中,使用Xavier初始化的機器學習工程師會將權重初始化為 或 ,其中後一個分布的方差是 和 的調和平均。

Xavier初始化可以與tanh激活一起使用。此外,還有大量其他初始化方法。 例如,如果你正在使用ReLU,則通常的初始化是 He初始化 ,其初始化權重通過乘以Xavier初始化的方差2來初始化。 雖然這種初始化證明稍微復雜一些,但其思路與tanh是相同的。

④ 無需深度學習框架,如何從零開始用Python構建神

搭建由一個輸入層,一個隱藏層,一個輸出層組成的三層神經網路。輸入層中的節點數由數據的維度來決定,也就是2個。相應的,輸出層的節點數則是由類的數量來決定,也是2個。(因為我們只有一個預測0和1的輸出節點,所以我們只有兩類輸出,實際中,兩個輸出節點將更易於在後期進行擴展從而獲得更多類別的輸出)。以x,y坐標作為輸入,輸出的則是兩種概率,一種是0(代表女),另一種是1(代表男)。

⑤ 從零開始用Python構建神經網路

從零開始用Python構建神經網路
動機:為了更加深入的理解深度學習,我們將使用 python 語言從頭搭建一個神經網路,而不是使用像 Tensorflow 那樣的封裝好的框架。我認為理解神經網路的內部工作原理,對數據科學家來說至關重要。
這篇文章的內容是我的所學,希望也能對你有所幫助。
神經網路是什麼?
介紹神經網路的文章大多數都會將它和大腦進行類比。如果你沒有深入研究過大腦與神經網路的類比,那麼將神經網路解釋為一種將給定輸入映射為期望輸出的數學關系會更容易理解。
神經網路包括以下組成部分
? 一個輸入層,x
? 任意數量的隱藏層
? 一個輸出層,?
? 每層之間有一組權值和偏置,W and b
? 為隱藏層選擇一種激活函數,σ。在教程中我們使用 Sigmoid 激活函數
下圖展示了 2 層神經網路的結構(注意:我們在計算網路層數時通常排除輸入層)

2 層神經網路的結構
用 Python 可以很容易的構建神經網路類

訓練神經網路
這個網路的輸出 ? 為:

你可能會注意到,在上面的等式中,輸出 ? 是 W 和 b 函數。
因此 W 和 b 的值影響預測的准確率. 所以根據輸入數據對 W 和 b 調優的過程就被成為訓練神經網路。
每步訓練迭代包含以下兩個部分:
? 計算預測結果 ?,這一步稱為前向傳播
? 更新 W 和 b,,這一步成為反向傳播
下面的順序圖展示了這個過程:

前向傳播
正如我們在上圖中看到的,前向傳播只是簡單的計算。對於一個基本的 2 層網路來說,它的輸出是這樣的:

我們在 NeuralNetwork 類中增加一個計算前向傳播的函數。為了簡單起見我們假設偏置 b 為0:

但是我們還需要一個方法來評估預測結果的好壞(即預測值和真實值的誤差)。這就要用到損失函數。
損失函數
常用的損失函數有很多種,根據模型的需求來選擇。在本教程中,我們使用誤差平方和作為損失函數。
誤差平方和是求每個預測值和真實值之間的誤差再求和,這個誤差是他們的差值求平方以便我們觀察誤差的絕對值。
訓練的目標是找到一組 W 和 b,使得損失函數最好小,也即預測值和真實值之間的距離最小。
反向傳播
我們已經度量出了預測的誤差(損失),現在需要找到一種方法來傳播誤差,並以此更新權值和偏置。
為了知道如何適當的調整權值和偏置,我們需要知道損失函數對權值 W 和偏置 b 的導數。
回想微積分中的概念,函數的導數就是函數的斜率。

梯度下降法
如果我們已經求出了導數,我們就可以通過增加或減少導數值來更新權值 W 和偏置 b(參考上圖)。這種方式被稱為梯度下降法。
但是我們不能直接計算損失函數對權值和偏置的導數,因為在損失函數的等式中並沒有顯式的包含他們。因此,我們需要運用鏈式求導發在來幫助計算導數。

鏈式法則用於計算損失函數對 W 和 b 的導數。注意,為了簡單起見。我們只展示了假設網路只有 1 層的偏導數。
這雖然很簡陋,但是我們依然能得到想要的結果—損失函數對權值 W 的導數(斜率),因此我們可以相應的調整權值。
現在我們將反向傳播演算法的函數添加到 Python 代碼中

為了更深入的理解微積分原理和反向傳播中的鏈式求導法則,我強烈推薦 3Blue1Brown 的如下教程:
Youtube:https://youtu.be/tIeHLnjs5U8
整合並完成一個實例
既然我們已經有了包括前向傳播和反向傳播的完整 Python 代碼,那麼就將其應用到一個例子上看看它是如何工作的吧。

神經網路可以通過學習得到函數的權重。而我們僅靠觀察是不太可能得到函數的權重的。
讓我們訓練神經網路進行 1500 次迭代,看看會發生什麼。 注意觀察下面每次迭代的損失函數,我們可以清楚地看到損失函數單調遞減到最小值。這與我們之前介紹的梯度下降法一致。

讓我們看看經過 1500 次迭代後的神經網路的最終預測結果:

經過 1500 次迭代訓練後的預測結果
我們成功了!我們應用前向和方向傳播演算法成功的訓練了神經網路並且預測結果收斂於真實值。
注意預測值和真實值之間存在細微的誤差是允許的。這樣可以防止模型過擬合並且使得神經網路對於未知數據有著更強的泛化能力。
下一步是什麼?
幸運的是我們的學習之旅還沒有結束,仍然有很多關於神經網路和深度學習的內容需要學習。例如:
? 除了 Sigmoid 以外,還可以用哪些激活函數
? 在訓練網路的時候應用學習率
? 在面對圖像分類任務的時候使用卷積神經網路
我很快會寫更多關於這個主題的內容,敬請期待!
最後的想法
我自己也從零開始寫了很多神經網路的代碼
雖然可以使用諸如 Tensorflow 和 Keras 這樣的深度學習框架方便的搭建深層網路而不需要完全理解其內部工作原理。但是我覺得對於有追求的數據科學家來說,理解內部原理是非常有益的。
這種練習對我自己來說已成成為重要的時間投入,希望也能對你有所幫助

⑥ 入門 | 一文簡述循環神經網路

入門 | 一文簡述循環神經網路

本文簡要介紹了什麼是循環神經網路及其運行原理,並給出了一個 RNN 實現示例。

什麼是循環神經網路(RNN)?它們如何運行?可以用在哪裡呢?本文試圖回答上述這些問題,還展示了一個 RNN 實現 demo,你可以根據自己的需要進行擴展。

循環神經網路架構

基礎知識。Python、CNN 知識是必備的。了解 CNN 的相關知識,是為了與 RNN 進行對比:RNN 為什麼以及在哪些地方比 CNN 更好。

我們首先從「循環」(Recurrent)這個詞說起。為什麼將其稱為循環?循環的意思是:

經常或重復出現

將這類神經網路稱為循環神經網路是因為它對一組序列輸入重復進行同樣的操作。本文後續部分將討論這種操作的意義。

我們為什麼需要 RNN?

也許你現在想的是,已經有像卷積網路這樣表現非常出色的網路了,為什麼還需要其他類型的網路呢?有一個需要用到 RNN 的特殊例子。為了解釋 RNN,你首先需要了解序列的相關知識,我們先來講一下序列。

序列是相互依賴的(有限或無限)數據流,比如時間序列數據、信息性的字元串、對話等。在對話中,一個句子可能有一個意思,但是整體的對話可能又是完全不同的意思。股市數據這樣的時間序列數據也是,單個數據表示當前價格,但是全天的數據會有不一樣的變化,促使我們作出買進或賣出的決定。

當輸入數據具有依賴性且是序列模式時,CNN 的結果一般都不太好。CNN 的前一個輸入和下一個輸入之間沒有任何關聯。所以所有的輸出都是獨立的。CNN 接受輸入,然後基於訓練好的模型輸出。如果你運行了 100 個不同的輸入,它們中的任何一個輸出都不會受之前輸出的影響。但想一下如果是文本生成或文本翻譯呢?所有生成的單詞與之前生成的單詞都是獨立的(有些情況下與之後的單詞也是獨立的,這里暫不討論)。所以你需要有一些基於之前輸出的偏向。這就是需要 RNN 的地方。RNN 對之前發生在數據序列中的事是有一定記憶的。這有助於系統獲取上下文。理論上講,RNN 有無限的記憶,這意味著它們有無限回顧的能力。通過回顧可以了解所有之前的輸入。但從實際操作中看,它只能回顧最後幾步。

本文僅為了與人類大體相關聯,而不會做任何決定。本文只是基於之前關於該項目的知識做出了自己的判斷(我甚至尚未理解人類大腦的 0.1%)。

何時使用 RNN?

RNN 可用於許多不同的地方。下面是 RNN 應用最多的領域。

1. 語言建模和文本生成

給出一個詞語序列,試著預測下一個詞語的可能性。這在翻譯任務中是很有用的,因為最有可能的句子將是可能性最高的單片語成的句子。

2. 機器翻譯

將文本內容從一種語言翻譯成其他語言使用了一種或幾種形式的 RNN。所有日常使用的實用系統都用了某種高級版本的 RNN。

3. 語音識別

基於輸入的聲波預測語音片段,從而確定詞語。

4. 生成圖像描述

RNN 一個非常廣泛的應用是理解圖像中發生了什麼,從而做出合理的描述。這是 CNN 和 RNN 相結合的作用。CNN 做圖像分割,RNN 用分割後的數據重建描述。這種應用雖然基本,但可能性是無窮的。

5. 視頻標記

可以通過一幀一幀地標記視頻進行視頻搜索。

深入挖掘

本文按照以下主題進行。每一部分都是基於之前的部分進行的,所以不要跳著讀。

前饋網路循環網路循環神經元基於時間的反向傳播(BPTT)RNN 實現

前饋網路入門

前饋網路通過在網路的每個節點上做出的一系列操作傳遞信息。前饋網路每次通過每個層直接向後傳遞信息。這與其他循環神經網路不同。一般而言,前饋網路接受一個輸入並據此產生輸出,這也是大多數監督學習的步驟,輸出結果可能是一個分類結果。它的行為與 CNN 類似。輸出可以是以貓狗等作為標簽的類別。

前饋網路是基於一系列預先標注過的數據訓練的。訓練階段的目的是減少前饋網路猜類別時的誤差。一旦訓練完成,我們就可以用訓練後的權重對新批次的數據進行分類。

一個典型的前饋網路架構

還有一件事要注意。在前饋網路中,無論在測試階段展示給分類器的圖像是什麼,都不會改變權重,所以也不會影響第二個決策。這是前饋網路和循環網路之間一個非常大的不同。

與循環網路不同,前饋網路在測試時不會記得之前的輸入數據。它們始終是取決於時間點的。它們只會在訓練階段記得歷史輸入數據。

循環網路

也就是說,循環網路不僅將當前的輸入樣例作為網路輸入,還將它們之前感知到的一並作為輸入。

我們試著建立了一個多層感知器。從簡單的角度講,它有一個輸入層、一個具備特定激活函數的隱藏層,最終可以得到輸出。

多層感知器架構示例

如果在上述示例中的層數增加了,輸入層也接收輸入。那麼第一個隱藏層將激活傳遞到下一個隱藏層上,依此類推。最後到達輸出層。每一個隱藏層都有自己的權重和偏置項。現在問題變成了我們可以輸入到隱藏層嗎?

每一層都有自己的權重(W)、偏置項(B)和激活函數(F)。這些層的行為不同,合並它們從技術層面上講也極具挑戰性。為了合並它們,我們將所有層的權重和偏置項替換成相同的值。如下圖所示:

現在我們就可以將所有層合並在一起了。所有的隱藏層都可以結合在一個循環層中。所以看起來就像下圖:

我們在每一步都會向隱藏層提供輸入。現在一個循環神經元存儲了所有之前步的輸入,並將這些信息和當前步的輸入合並。因此,它還捕獲到一些當前數據步和之前步的相關性信息。t-1 步的決策影響到第 t 步做的決策。這很像人類在生活中做決策的方式。我們將當前數據和近期數據結合起來,幫助解決手頭的特定問題。這個例子很簡單,但從原則上講這與人類的決策能力是一致的。這讓我非常想知道我們作為人類是否真的很智能,或者說我們是否有非常高級的神經網路模型。我們做出的決策只是對生活中收集到的數據進行訓練。那麼一旦有了能夠在合理時間段內存儲和計算數據的先進模型和系統時,是否可以數字化大腦呢?所以當我們有了比大腦更好更快的模型(基於數百萬人的數據訓練出的)時,會發生什麼?

另一篇文章(https://deeplearning4j.org/lstm.html)的有趣觀點:人總是被自己的行為所困擾。

我們用一個例子來闡述上面的解釋,這個例子是預測一系列字母後的下一個字母。想像一個有 8 個字母的單詞 namaskar。

namaskar(合十禮):印度表示尊重的傳統問候或姿勢,將手掌合起置於面前或胸前鞠躬。

如果我們在向網路輸入 7 個字母後試著找出第 8 個字母,會發生什麼呢?隱藏層會經歷 8 次迭代。如果展開網路的話就是一個 8 層的網路,每一層對應一個字母。所以你可以想像一個普通的神經網路被重復了多次。展開的次數與它記得多久之前的數據是直接相關的。

循環神經網路的運作原理

循環神經元

這里我們將更深入地了解負責決策的實際神經元。以之前提到的 namaskar 為例,在給出前 7 個字母後,試著找出第 8 個字母。輸入數據的完整詞彙表是 {n,a,m,s,k,r}。在真實世界中單詞或句子都會更復雜。為了簡化問題,我們用的是下面這個簡單的詞彙表。

在上圖中,隱藏層或 RNN 塊在當前輸入和之前的狀態中應用了公式。在本例中,namaste 的字母 n 前面什麼都沒有。所以我們直接使用當前信息推斷,並移動到下一個字母 a。在推斷字母 a 的過程中,隱藏層應用了上述公式結合當前推斷 a 的信息與前面推斷 n 的信息。輸入在網路中傳遞的每一個狀態都是一個時間步或一步,所以時間步 t 的輸入是 a,時間步 t-1 的輸入就是 n。將公式同時應用於 n 和 a 後,就得到了一個新狀態。

用於當前狀態的公式如下所示:

h_t 是新狀態,h_t-1 是前一個狀態。x_t 是時間 t 時的輸入。在對之前的時間步應用了相同的公式後,我們已經能感知到之前的輸入了。我們將檢查 7 個這樣的輸入,它們在每一步的權重和函數都是相同的。

現在試著以簡單的方式定義 f()。我們使用 tanh 激活函數。通過矩陣 W_hh 定義權重,通過矩陣 W_xh 定義輸入。公式如下所示:

上例只將最後一步作為記憶,因此只與最後一步的數據合並。為了提升網路的記憶能力,並在記憶中保留較長的序列,我們必須在方程中添加更多的狀態,如 h_t-2、h_t-3 等。最後輸出可以按測試階段的計算方式進行計算:

其中,y_t 是輸出。對輸出與實際輸出進行對比,然後計算出誤差值。網路通過反向傳播誤差來更新權重,進行學習。本文後續部分會對反向傳播進行討論。

基於時間的反向傳播演算法(BPTT)

本節默認你已經了解了反向傳播概念。如果需要對反向傳播進行深入了解,請參閱鏈接:?http://cs231n.github.io/optimization-2/?。

現在我們了解了 RNN 是如何實際運作的,但是在實際工作中如何訓練 RNN 呢?該如何決定每個連接的權重呢?如何初始化這些隱藏單元的權重呢?循環網路的目的是要准確地對序列輸入進行分類。這要靠誤差值的反向傳播和梯度下降來實現。但是前饋網路中使用的標准反向傳播無法在此應用。

與有向無環的前饋網路不同,RNN 是循環圖,這也是問題所在。在前饋網路中可以計算出之前層的誤差導數。但 RNN 的層級排列與前饋網路並不相同。

答案就在之前討論過的內容中。我們需要展開網路。展開網路使其看起來像前饋網路就可以了。

展開 RNN

在每個時間步取出 RNN 的隱藏單元並復制。時間步中的每一次復制就像前饋網路中的一層。在時間步 t+1 中每個時間步 t 層與所有可能的層連接。因此我們對權重進行隨機初始化,展開網路,然後在隱藏層中通過反向傳播優化權重。通過向最低層傳遞參數完成初始化。這些參數作為反向傳播的一部分也得到了優化。

展開網路的結果是,現在每一層的權重都不同,因此最終會得到不同程度的優化。無法保證基於權重計算出的誤差是相等的。所以每一次運行結束時每一層的權重都不同。這是我們絕對不希望看到的。最簡單的解決辦法是以某種方式將所有層的誤差合並到一起。可以對誤差值取平均或者求和。通過這種方式,我們可以在所有時間步中使用一層來保持相同的權重。

RNN 實現

本文試著用 Keras 模型實現 RNN。我們試著根據給定的文本預測下一個序列。

代碼地址:?https://gist.github.com/.git?

該模型是 Yash Katariya 建的。我對該模型做了一些細微的改動以適合本文的要求。

⑦ 如何建立神經網路模型

人工神經網路有很多種,我只會最常用的BP神經網路。不同的網路有不同的結構和不同的學習演算法。
簡單點說,人工神經網路就是一個函數。只是這個函數有別於一般的函數。它比普通的函數多了一個學習的過程。
在學習的過程中,它根據正確結果不停地校正自己的網路結構,最後達到一個滿意的精度。這時,它才開始真正的工作階段。
學習人工神經網路最好先安裝MathWords公司出的MatLab軟體。利用該軟體,你可以在一周之內就學會建立你自己的人工神經網路解題模型。
如果你想自己編程實現人工神經網路,那就需要找一本有關的書籍,專門看神經網路學習演算法的那部分內容。因為「學習演算法」是人工神經網路的核心。最常用的BP人工神經網路,使用的就是BP學習演算法。

閱讀全文

與如何從零開始神經網路相關的資料

熱點內容
網路數據類型有哪些 瀏覽:939
網路平台需要哪些費用 瀏覽:745
網路安全的知識的內容手抄報 瀏覽:898
Y66網路咋設置自動 瀏覽:28
安卓軟體顯示沒網路 瀏覽:241
無線網路4沒有有效ip 瀏覽:829
騰訊顯示網路連接失敗 瀏覽:568
s6edge網路設置 瀏覽:101
平板手機移動網路卡 瀏覽:988
網路硬體異常連不上網 瀏覽:430
吃雞國際服突然網路異常封號 瀏覽:507
怎麼關閉5g網路用4g網路 瀏覽:302
網路一直轉手機連不上 瀏覽:21
辦公室網路安全講座 瀏覽:489
怎麼設置網路驗證兼容 瀏覽:855
熵網路安全 瀏覽:289
凱立德網路無法連接 瀏覽:848
客戶端軟體未響應和網路有關系嗎 瀏覽:176
圖們市什麼網路信號好 瀏覽:146
無網路無信號打緊急電話 瀏覽:544

友情鏈接