❶ 神經網路參數如何確定
神經網路各個網路參數設定原則:
①、網路節點 網路輸入層神經元節點數就是系統的特徵因子(自變數)個數,輸出層神經元節點數就是系統目標個數。隱層節點選按經驗選取,一般設為輸入層節點數的75%。如果輸入層有7個節點,輸出層1個節點,那麼隱含層可暫設為5個節點,即構成一個7-5-1 BP神經網路模型。在系統訓練時,實際還要對不同的隱層節點數4、5、6個分別進行比較,最後確定出最合理的網路結構。
②、初始權值的確定 初始權值是不應完全相等的一組值。已經證明,即便確定 存在一組互不相等的使系統誤差更小的權值,如果所設Wji的的初始值彼此相等,它們將在學習過程中始終保持相等。故而,在程序中,我們設計了一個隨機發生器程序,產生一組一0.5~+0.5的隨機數,作為網路的初始權值。
③、最小訓練速率 在經典的BP演算法中,訓練速率是由經驗確定,訓練速率越大,權重變化越大,收斂越快;但訓練速率過大,會引起系統的振盪,因此,訓練速率在不導致振盪前提下,越大越好。因此,在DPS中,訓練速率會自動調整,並盡可能取大一些的值,但用戶可規定一個最小訓練速率。該值一般取0.9。
④、動態參數 動態系數的選擇也是經驗性的,一般取0.6 ~0.8。
⑤、允許誤差 一般取0.001~0.00001,當2次迭代結果的誤差小於該值時,系統結束迭代計算,給出結果。
⑥、迭代次數 一般取1000次。由於神經網路計算並不能保證在各種參數配置下迭代結果收斂,當迭代結果不收斂時,允許最大的迭代次數。
⑦、Sigmoid參數 該參數調整神經元激勵函數形式,一般取0.9~1.0之間。
⑧、數據轉換。在DPS系統中,允許對輸入層各個節點的數據進行轉換,提供轉換的方法有取對數、平方根轉換和數據標准化轉換。
(1)bp神經網路學習速率如何確定擴展閱讀:
神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。主要的研究工作集中在以下幾個方面:
1.生物原型
從生理學、心理學、解剖學、腦科學、病理學等方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。
2.建立模型
根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。
3.演算法
在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機模擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。
神經網路用到的演算法就是向量乘法,並且廣泛採用符號函數及其各種逼近。並行、容錯、可以硬體實現以及自我學習特性,是神經網路的幾個基本優點,也是神經網路計算方法與傳統方法的區別所在。
❷ bp神經網路中學習速率的大小如何確定
一般大家都用的是變速率的演算法,直接確定需要很豐富的經驗的,或者用其他演算法先無縫搜索,再用bp精確搜索
❸ 有哪位大神知道BP神經網路變學習率學習演算法在Matlab中怎麼實現啊
額。。。
一種啟發式的改進就是,為學習速率選用自適應值,它依賴於連續迭代步驟中的誤差函數值。
自適應調整學習速率的梯度下降演算法,在訓練的過程中,力圖使演算法穩定,同時又使學習的步長盡量地大,學習速率則是根據局部誤差曲面作出相應的調整。當誤差以減小的方式趨於目標時,說明修正方向正確,於是步長(學習速率)增加,因此學習速率乘以增量因子Ir_inc,使學習速率增加;而當誤差增加超過設定的值C倍時,說明修正過頭,應減小步長,因此學習速率乘以減量因子Ir_dec,使學習速率減少.其他情況學習速率則不變。
Matlab 里有對應的變學習速率的函數。
bpnet=newff(x,[60,4],{'logsig','logsig'},'traingda'); %'traingda'表示自適應學習速率調整方法
bpnet.trainParam.show=50;
bpnet.trainParam.lr=0.01; %預設值的學習速率
bpnet.trainParam.epochs=3000;
bpnet.trainParam.goal=0.247;
bpnet.trainParam.Ir_inc=1.05; %增加的學習速率倍數,默認為1.05
bpnet.trainParam.Ir_dec=0.7; %減少的學習速率倍數,默認為0.7
bpnet.trainParam.max_perf_inc=1.04; %誤差函數增加為迭代前的1.04時,減少學習速率。默認為1.04
[bpnet]=train(bpnet,p,t);
save bpnet;
%%%%%%%%%%%%%%%%%%%%
❹ BP神經網路方法
人工神經網路是近幾年來發展起來的新興學科,它是一種大規模並行分布處理的非線性系統,適用解決難以用數學模型描述的系統,逼近任何非線性的特性,具有很強的自適應、自學習、聯想記憶、高度容錯和並行處理能力,使得神經網路理論的應用已經滲透到了各個領域。近年來,人工神經網路在水質分析和評價中的應用越來越廣泛,並取得良好效果。在這些應用中,縱觀應用於模式識別的神經網路,BP網路是最有效、最活躍的方法之一。
BP網路是多層前向網路的權值學習採用誤差逆傳播學習的一種演算法(Error Back Propagation,簡稱BP)。在具體應用該網路時分為網路訓練及網路工作兩個階段。在網路訓練階段,根據給定的訓練模式,按照「模式的順傳播」→「誤差逆傳播」→「記憶訓練」→「學習收斂」4個過程進行網路權值的訓練。在網路的工作階段,根據訓練好的網路權值及給定的輸入向量,按照「模式順傳播」方式求得與輸入向量相對應的輸出向量的解答(閻平凡,2000)。
BP演算法是一種比較成熟的有指導的訓練方法,是一個單向傳播的多層前饋網路。它包含輸入層、隱含層、輸出層,如圖4-4所示。
圖4-4 地下水質量評價的BP神經網路模型
圖4-4給出了4層地下水水質評價的BP神經網路模型。同層節點之間不連接。輸入信號從輸入層節點,依次傳過各隱含層節點,然後傳到輸出層節點,如果在輸出層得不到期望輸出,則轉入反向傳播,將誤差信號沿原來通路返回,通過學習來修改各層神經元的權值,使誤差信號最小。每一層節點的輸出隻影響下一層節點的輸入。每個節點都對應著一個作用函數(f)和閾值(a),BP網路的基本處理單元量為非線性輸入-輸出的關系,輸入層節點閾值為0,且f(x)=x;而隱含層和輸出層的作用函數為非線性的Sigmoid型(它是連續可微的)函數,其表達式為
f(x)=1/(1+e-x) (4-55)
設有L個學習樣本(Xk,Ok)(k=1,2,…,l),其中Xk為輸入,Ok為期望輸出,Xk經網路傳播後得到的實際輸出為Yk,則Yk與要求的期望輸出Ok之間的均方誤差為
區域地下水功能可持續性評價理論與方法研究
式中:M為輸出層單元數;Yk,p為第k樣本對第p特性分量的實際輸出;Ok,p為第k樣本對第p特性分量的期望輸出。
樣本的總誤差為
區域地下水功能可持續性評價理論與方法研究
由梯度下降法修改網路的權值,使得E取得最小值,學習樣本對Wij的修正為
區域地下水功能可持續性評價理論與方法研究
式中:η為學習速率,可取0到1間的數值。
所有學習樣本對權值Wij的修正為
區域地下水功能可持續性評價理論與方法研究
通常為增加學習過程的穩定性,用下式對Wij再進行修正:
區域地下水功能可持續性評價理論與方法研究
式中:β為充量常量;Wij(t)為BP網路第t次迭代循環訓練後的連接權值;Wij(t-1)為BP網路第t-1次迭代循環訓練後的連接權值。
在BP網路學習的過程中,先調整輸出層與隱含層之間的連接權值,然後調整中間隱含層間的連接權值,最後調整隱含層與輸入層之間的連接權值。實現BP網路訓練學習程序流程,如圖4-5所示(倪深海等,2000)。
圖4-5 BP神經網路模型程序框圖
若將水質評價中的評價標准作為樣本輸入,評價級別作為網路輸出,BP網路通過不斷學習,歸納出評價標准與評價級別間復雜的內在對應關系,即可進行水質綜合評價。
BP網路對地下水質量綜合評價,其評價方法不需要過多的數理統計知識,也不需要對水質量監測數據進行復雜的預處理,操作簡便易行,評價結果切合實際。由於人工神經網路方法具有高度民主的非線性函數映射功能,使得地下水水質評價結果較准確(袁曾任,1999)。
BP網路可以任意逼近任何連續函數,但是它主要存在如下缺點:①從數學上看,它可歸結為一非線性的梯度優化問題,因此不可避免地存在局部極小問題;②學習演算法的收斂速度慢,通常需要上千次或更多。
神經網路具有學習、聯想和容錯功能,是地下水水質評價工作方法的改進,如何在現行的神經網路中進一步吸取模糊和灰色理論的某些優點,建立更適合水質評價的神經網路模型,使該模型既具有方法的先進性又具有現實的可行性,將是我們今後研究和探討的問題。
❺ 神經網路BP演算法中,如何選擇網路學習效率及閾值調整效率
學習效率一般取0~1之間的數如:0.1,0.4,網路初始化閾值賦值(0,1)區間內隨機數,之後通過神經網路訓練不斷調整。樓主只用調整學習效率就行了
❻ 關於matlab的BP神經網路
1、數據歸一化,輸入的數據通常為P,輸出數據通常為T,數據格式為,每列對應一個樣本,歸一化常用函數,是歸一化後的數據,是歸一化的結構體,在後面反歸一化預測值;
2、建立網路並設定參數,中括弧裡面的是輸入層數,隱槐察兄含神經元數,輸出層數,設定節點傳遞函數的參數,訓練的次數,訓練的誤差目標沒純值,學習速率,通常在0到1之間;
3、預測並分析,根據之前歸一化的標准,對預測結果進行反歸一化,得到結果,對誤差進行輸出,也可以作圖,看預測值和真實值能否吻合,還鉛襲可以在神經網路訓練完成後的對話框中看MSE和R方。