導航:首頁 > 網路安全 > 神經網路偏置b如何訓練

神經網路偏置b如何訓練

發布時間:2023-07-23 14:45:34

A. 深度神經網路是如何訓練的

Coursera的Ng機器學習,UFLDL都看過。沒記錯的話Ng的機器學習里是直接給出公式了,雖然你可能知道如何求解,但是即使不知道完成作業也不是問題,只要照著公式寫就行。反正我當時看的時候心裡並沒能比較清楚的明白。我覺得想了解深度學習UFLDL教程 - Ufldl是不錯的。有習題,做完的話確實會對深度學習有更加深刻的理解,但是總還不是很清晰。後來看了Li FeiFei的Stanford University CS231n: Convolutional Neural Networks for Visual Recognition,我的感覺是對CNN的理解有了很大的提升。沉下心來推推公式,多思考,明白了反向傳播本質上是鏈式法則(雖然之前也知道,但是當時還是理解的迷迷糊糊的)。所有的梯度其實都是對最終的loss進行求導得到的,也就是標量對矩陣or向量的求導。當然同時也學到了許多其他的關於cnn的。並且建議你不僅要完成練習,最好能自己也寫一個cnn,這個過程可能會讓你學習到許多更加細節和可能忽略的東西。這樣的網路可以使用中間層構建出多層的抽象,正如我們在布爾線路中做的那樣。例如,如果我們在進行視覺模式識別,那麼在第一層的神經元可能學會識別邊,在第二層的神經元可以在邊的基礎上學會識別出更加復雜的形狀,例如三角形或者矩形。第三層將能夠識別更加復雜的形狀。依此類推。這些多層的抽象看起來能夠賦予深度網路一種學習解決復雜模式識別問題的能力。然後,正如線路的示例中看到的那樣,存在著理論上的研究結果告訴我們深度網路在本質上比淺層網路更加強大。

B. 從零開始用Python構建神經網路

從零開始用Python構建神經網路
動機:為了更加深入的理解深度學習,我們將使用 python 語言從頭搭建一個神經網路,而不是使用像 Tensorflow 那樣的封裝好的框架。我認為理解神經網路的內部工作原理,對數據科學家來說至關重要。
這篇文章的內容是我的所學,希望也能對你有所幫助。
神經網路是什麼?
介紹神經網路的文章大多數都會將它和大腦進行類比。如果你沒有深入研究過大腦與神經網路的類比,那麼將神經網路解釋為一種將給定輸入映射為期望輸出的數學關系會更容易理解。
神經網路包括以下組成部分
? 一個輸入層,x
? 任意數量的隱藏層
? 一個輸出層,?
? 每層之間有一組權值和偏置,W and b
? 為隱藏層選擇一種激活函數,σ。在教程中我們使用 Sigmoid 激活函數
下圖展示了 2 層神經網路的結構(注意:我們在計算網路層數時通常排除輸入層)

2 層神經網路的結構
用 Python 可以很容易的構建神經網路類

訓練神經網路
這個網路的輸出 ? 為:

你可能會注意到,在上面的等式中,輸出 ? 是 W 和 b 函數。
因此 W 和 b 的值影響預測的准確率. 所以根據輸入數據對 W 和 b 調優的過程就被成為訓練神經網路。
每步訓練迭代包含以下兩個部分:
? 計算預測結果 ?,這一步稱為前向傳播
? 更新 W 和 b,,這一步成為反向傳播
下面的順序圖展示了這個過程:

前向傳播
正如我們在上圖中看到的,前向傳播只是簡單的計算。對於一個基本的 2 層網路來說,它的輸出是這樣的:

我們在 NeuralNetwork 類中增加一個計算前向傳播的函數。為了簡單起見我們假設偏置 b 為0:

但是我們還需要一個方法來評估預測結果的好壞(即預測值和真實值的誤差)。這就要用到損失函數。
損失函數
常用的損失函數有很多種,根據模型的需求來選擇。在本教程中,我們使用誤差平方和作為損失函數。
誤差平方和是求每個預測值和真實值之間的誤差再求和,這個誤差是他們的差值求平方以便我們觀察誤差的絕對值。
訓練的目標是找到一組 W 和 b,使得損失函數最好小,也即預測值和真實值之間的距離最小。
反向傳播
我們已經度量出了預測的誤差(損失),現在需要找到一種方法來傳播誤差,並以此更新權值和偏置。
為了知道如何適當的調整權值和偏置,我們需要知道損失函數對權值 W 和偏置 b 的導數。
回想微積分中的概念,函數的導數就是函數的斜率。

梯度下降法
如果我們已經求出了導數,我們就可以通過增加或減少導數值來更新權值 W 和偏置 b(參考上圖)。這種方式被稱為梯度下降法。
但是我們不能直接計算損失函數對權值和偏置的導數,因為在損失函數的等式中並沒有顯式的包含他們。因此,我們需要運用鏈式求導發在來幫助計算導數。

鏈式法則用於計算損失函數對 W 和 b 的導數。注意,為了簡單起見。我們只展示了假設網路只有 1 層的偏導數。
這雖然很簡陋,但是我們依然能得到想要的結果—損失函數對權值 W 的導數(斜率),因此我們可以相應的調整權值。
現在我們將反向傳播演算法的函數添加到 Python 代碼中

為了更深入的理解微積分原理和反向傳播中的鏈式求導法則,我強烈推薦 3Blue1Brown 的如下教程:
Youtube:https://youtu.be/tIeHLnjs5U8
整合並完成一個實例
既然我們已經有了包括前向傳播和反向傳播的完整 Python 代碼,那麼就將其應用到一個例子上看看它是如何工作的吧。

神經網路可以通過學習得到函數的權重。而我們僅靠觀察是不太可能得到函數的權重的。
讓我們訓練神經網路進行 1500 次迭代,看看會發生什麼。 注意觀察下面每次迭代的損失函數,我們可以清楚地看到損失函數單調遞減到最小值。這與我們之前介紹的梯度下降法一致。

讓我們看看經過 1500 次迭代後的神經網路的最終預測結果:

經過 1500 次迭代訓練後的預測結果
我們成功了!我們應用前向和方向傳播演算法成功的訓練了神經網路並且預測結果收斂於真實值。
注意預測值和真實值之間存在細微的誤差是允許的。這樣可以防止模型過擬合並且使得神經網路對於未知數據有著更強的泛化能力。
下一步是什麼?
幸運的是我們的學習之旅還沒有結束,仍然有很多關於神經網路和深度學習的內容需要學習。例如:
? 除了 Sigmoid 以外,還可以用哪些激活函數
? 在訓練網路的時候應用學習率
? 在面對圖像分類任務的時候使用卷積神經網路
我很快會寫更多關於這個主題的內容,敬請期待!
最後的想法
我自己也從零開始寫了很多神經網路的代碼
雖然可以使用諸如 Tensorflow 和 Keras 這樣的深度學習框架方便的搭建深層網路而不需要完全理解其內部工作原理。但是我覺得對於有追求的數據科學家來說,理解內部原理是非常有益的。
這種練習對我自己來說已成成為重要的時間投入,希望也能對你有所幫助

C. 用最簡單的神經網路做數據分類,展示神經網路訓練過程

本文用簡單的神經網路做數據分類,展示神經網路訓練過程,伏薯方便理解缺鋒者
神經網路模型:Y = w1 x1 + w2 x2 + b
第一步 :生成訓練數據與標簽

第二步 :合並數據並將數據打亂,然後將數據轉換為Paddle框架基知所需要的數據類型

第三步 ,基於Paddle,構建神經網路、定義損失函數和優化器:Y = w1 x1 + w2 x2 + b

第四步 ,構建訓練過程

最後一步 ,繪制訓練結果

D. 卷積神經網路LeNet-5結構卷積采樣中加偏置Bx的作用是什麼

簡單的講吧
h(x)=f(wx+b)
上式子就是神經元所表示的函數,x表示輸入,w表示權重,b表示偏置,f表示激活函數,h(x)表示輸出。
訓練卷積神經網路的過程就是不斷調整權重w與偏置b的過程,以使其輸出h(x)達到預期值。
權重w與偏置b就相當於神經元的記憶。
至於你說的為什麼要偏置b可以看看這個博客http://blog.csdn.net/xwd18280820053/article/details/70681750
從其根本上講,就是不加偏置b的話,上面的函數就必定經過原點,進行分類的適用范圍就少了不是嗎

閱讀全文

與神經網路偏置b如何訓練相關的資料

熱點內容
如何查看誰連接了我家的網路 瀏覽:622
寶卡pro免流用哪個網路連接 瀏覽:215
電信網路盒用戶名密碼 瀏覽:384
杭州無線網路服務口碑推薦 瀏覽:737
定製版路由器可以使用其他網路嗎 瀏覽:720
網路異常金幣領取失敗怎麼辦 瀏覽:582
有線網路安全證書 瀏覽:84
聯通寬頻網路重新設置 瀏覽:651
蘋果13光遇網路異常 瀏覽:917
廣州營銷網路電話軟體 瀏覽:246
網路安全ppt演講台詞 瀏覽:668
移動網路處的cmcc 瀏覽:230
如何使用網路看電視機 瀏覽:219
西安4g網路什麼時候開通 瀏覽:737
濮陽兩年制計算機網路專業課 瀏覽:288
網路信號很強但使用很卡 瀏覽:129
voip網路電話如何溯源 瀏覽:362
寬頻無線連接不上網路 瀏覽:109
有線網路電視如何禁用有線 瀏覽:358
如何查詢我的網路信息 瀏覽:201

友情鏈接