① 大數據有前途,還是網路安全有前途
大數據學習內容主要有:
①JavaSE核心技術;
②Hadoop平台核心技術、Hive開發、HBase開發;
③Spark相關技術、Scala基本編程;
④掌握Python基本使用、核心庫的使用、Python爬蟲、簡單數據分析;理解Python機器學習;
⑤大數據項目開發實戰,大數據系統管理優化等。
工作崗位列舉幾個熱門:
初級大數據離線處理,薪資10000-13000;
Spark開發工程師,薪資14000-16000;
Python爬蟲工程師,薪資16000-20000;
大數據開發工程師,薪資20000+。
你可以考察對比一下南京課工場、北大青鳥、中博軟體學院等開設有大數據專業的學校。祝你學有所成,望採納。
北大青鳥中博軟體學院大數據課堂實拍
② 大數據帶來解決網路安全新機遇
大數據帶來解決網路安全新機遇_數據分析師考試
2015年中國互聯網大會近日在北京召開,網路安全成為討論熱點,在專家看來,傳統防禦手段已經失效。
普華永道發布的調查報告指出,2014年全球所有行業監測到的網路攻擊共有4280萬次,比上一年增長了48%。有專家分析,隨著大數據時代的到來,解決網路安全問題變得越來越難。
360公司總裁齊向東認為,以前的互聯網安全,企業面臨的是只是操作系統的安全問題,用軟體就能夠解決。但是進入萬物互聯的時代以後,包括智能攝像機、路由器、汽車,甚至隨身穿戴、智能醫療設備等,都趨於智能化、網路化,解決這些智能硬體的安全問題,無法用上網安全的解決方案完成。
齊向東透露了一組數據:2011年到2014年,國內互聯網公開的安全事故已經造成了累計11.3億用戶的信息泄露。95%的網站能夠被黑,40%網站存在後門,70%網站存在漏洞。」
隨著大數據、雲服務的普及,物聯網成為攻擊對象,網路安全威脅如「細胞分裂」般擴散。在新一代技術革命的浪潮下,信息資源已經成為基礎性社會資源,融入到了社會生活的各個領域,顛覆性地改變著人類的生活方式和生產方式。
齊向東表示,「在個人網路安全領域,360已擁有超過12億的用戶,這就相當於12億個安全大數據的「探測器」,分布在互聯網每一個節點上。每一個用戶在使用產品的同時,這些終端設備都可以實時感知各種威脅和攻擊,匯集到雲端。」
以上是小編為大家分享的關於大數據帶來解決網路安全新機遇的相關內容,更多信息可以關注環球青藤分享更多干貨
③ 大數據網路安全的建議是什麼
大數據網路安全的建議是什麼?鑒於大數據資源在國家安全中的戰略價值,除加強基礎軟硬體設施建設、網路攻擊監控、防護等方面外,對國內大數據服務和大數據應用提出以下建議。
對重要的大數據應用或服務進行國家網路安全審查。重要的大數據應用程序或服務涉及國民經濟、人民生活和政府治理應該被包括在國家網路安全審查的范圍,並明確安全評估規范應盡快制定確保這些大數據平台有嚴格的和可靠的安全措施,防止受到攻擊和受到敵對勢力。
合理限制敏感和重要部門使用社交網路工具。政府部門、中央企業和重要信息系統單位應避免或限制使用社交網路工具作為日常辦公的通訊工具,將辦公移動終端和個人移動終端分開使用,防止重要保密信息的泄露。
大數據網路安全的建議是什麼?敏感和重要的部門應該謹慎使用第三方雲計算服務。雲計算服務是大數據的主要載體。越來越多的政府部門、企事業單位在第三方雲計算平台上建立了電子政務和企業業務系統。然而,由於缺乏安全意識、安全專業知識和安全措施,第三方雲計算平台本身的安全往往得不到保障。因此,政府、中央企業和重要信息系統單位應謹慎使用第三方雲服務,避免使用公共雲服務。同時,國家應盡快出台雲服務安全評估和測試的相關規范和標准。
嚴格規范和限制境外機構數據跨境流動。在中國提供大數據應用或服務的海外機構應接受更嚴格的網路安全審計,以確保其數據存儲在國內伺服器上,並嚴格限制數據跨境流動。
大數據網路安全的建議有哪些?大數據工程師可以這樣解決,在攜程信用卡信息泄露、小米社區用戶信息泄露、OpenSSL“心臟出血”漏洞等事件中,大量用戶信息數據被盜,可以點擊本站的其他文章進行學習。
④ 大數據時代網路安全如何保障
如果是個人隱私文件需要加密可以使用紅線隱私保護系統,如果是企業數據安全可以選擇紅線防泄密系統,都是加密數據,杜絕泄密問題。
⑤ 什麼是大數據信息安全的威脅
在攜程信用卡信息泄露、小米社區用戶信息泄露、OpenSSL“心臟出血”漏洞等事件中,大量用戶信息數據被盜,導致用戶網路銀行賬戶發生入侵事件等情況。這些事情發生在個人用戶身上。如果類似事件發生在國家財政、政務等相關部門的數據平台系統上,其後果將是不可想像的,對國家網路安全造成的損失將是前所未有的。大數據時代,我國網路安全面臨多重安全威脅。
1、大數據信息安全的威脅——網路基礎設施和基本的硬體和軟體系統由其他人控制
大數據平台依託互聯網,為政府、企業、公眾提供服務。然而,從基礎設施的角度來看,中國互聯網已經存在一些不可控的因素。例如,域名解析系統(DNS)是Internet的基礎設施之一,使訪問Internet變得很容易,而不必記住復雜的IP地址字元串。今年1月,由於DNS根伺服器受到攻擊,數千萬人在數小時內無法訪問該網站。根伺服器是全球DNS的基礎,但全世界有13個根伺服器,都是國外的,由美國控制。此外,中國還沒有完全實現對大數據平台基礎軟硬體系統的自主控制。在能源、金融、電信等重要信息系統的核心軟硬體實施中,伺服器、資料庫等相關產品占據主導地位。因此,目前中國的信息流是通過對國外企業產品的計算、傳輸和存儲來實現的。相關設備設置更多“後門”,國內數據安全生命線幾乎全部掌握在外國公司手中。2013年棱鏡事件的曝光,突顯了硬體和軟體基礎設施對中國數據安全乃至國家安全的重要性。
2、大數據信息安全的威脅——網站和應用程序充斥著漏洞和後門
近年來,由於網站和應用系統的漏洞,由後門引起的重大安全事件頻繁發生,以上三起事件都屬於這一類。據中國安全公司的網站安全檢測服務統計,多達60%的中國網站存在安全漏洞和後門。可以說,網站和應用系統的漏洞是大數據平檯面臨的最大威脅之一。然而,各種第三方資料庫和中間件在中國的各種大數據行業應用中得到了廣泛的應用。然而,此類系統的安全狀況並不樂觀,存在廣泛的漏洞。更令人擔憂的是,網站的錯誤修復都不令人滿意。
3、大數據信息安全的威脅——除了系統問題之外,網路攻擊的手段更加豐富
其中,終端惡意軟體和惡意代碼是黑客或敵對勢力攻擊大數據平台、竊取數據的主要手段之一。目前,越來越多的網路攻擊來自終端。終端滲透攻擊也成為國與國之間網路戰的主要手段。例如,著名的針對伊朗核設施的stuxnet病毒,利用Windows操作系統的弱點,滲透到特定終端,滲透到伊朗核工廠的內部網路,摧毀伊朗核設施。此外,針對大數據平台的高級持續威脅(Advanced Persistent Threat, APT)攻擊十分常見,可以繞過各種傳統的安全檢測和保護措施,竊取網路信息系統的核心數據和各種智能。例如,極光襲擊谷歌和其他30多家高科技公司就是一個例子。APT攻擊結合了社會工程、吊馬、脆弱性、深度滲透、潛伏期長、隱蔽性等特點,具有極強的破壞性。它不僅是未來網路戰的主要手段,也是對我國網路空間安全危害最大的攻擊手段之一。近年來,具有國家和組織背景的APT攻擊不斷增多,大數據平台無疑將成為APT攻擊的主要目標。
大數據信息安全的威脅有哪些?這才是大數據工程師頭疼的問題,在攜程信用卡信息泄露、小米社區用戶信息泄露、OpenSSL“心臟出血”漏洞等事件中,大量用戶信息數據被盜,你能處理好嗎?如果您還擔心自己入門不順利,可以點擊本站的其他文章進行學習。
⑥ 大數據環境下的網路安全分析
大數據環境下的網路安全分析
「大數據」一詞常被誤解。事實上,使用頻率太高反而使它幾乎沒有什麼意義了。大數據確實存儲並處理大量的數據集合,但其特性體現遠不止於此。
在著手解決大數據問題時,將其看作是一種觀念而不是特定的規模或技術非常有益。就其最簡單的表現來說,大數據現象由三個大趨勢的交集所推動:包含寶貴信息的大量數據、廉價的計算資源、幾乎免費的分析工具。
大數據架構和平台算是新事物,而且還在以一種非凡的速度不斷發展著。商業和開源的開發團隊幾乎每月都在發布其平台的新功能。當今的大數據集群將會與將來我們看到的數據集群有極大不同。適應這種新困難的安全工具也將發生變化。在採用大數據的生命周期中,業界仍處於早期階段,但公司越早開始應對大數據的安全問題,任務就越容易。如果安全成為大數據集群發展過程中的一種重要需求,集群就不容易被黑客破壞。此外,公司也能夠避免把不成熟的安全功能放在關鍵的生產環境中。
如今,有很多特別重視不同數據類型(例如,地理位置數據)的大數據管理系統。這些系統使用多種不同的查詢模式、不同的數據存儲模式、不同的任務管理和協調、不同的資源管理工具。雖然大數據常被描述為「反關系型」的,但這個概念還無法抓住大數據的本質。為了避免性能問題,大數據確實拋棄了許多關系型資料庫的核心功能,卻也沒犯什麼錯誤:有些大數據環境提供關系型結構、業務連續性和結構化查詢處理。
由於傳統的定義無法抓住大數據的本質,我們不妨根據組成大數據環境的關鍵要素思考一下大數據。這些關鍵要素使用了許多分布式的數據存儲和管理節點。這些要素存儲多個數據副本,在多個節點之間將數據變成「碎片」。這意味著在單一節點發生故障時,數據查詢將會轉向處理資源可用的數據。正是這種能夠彼此協作的分布式數據節點集群,可以解決數據管理和數據查詢問題,才使得大數據如此不同。
節點的鬆散聯系帶來了許多性能優勢,但也帶來了獨特的安全挑戰。大數據資料庫並不使用集中化的「圍牆花園」模式(與「完全開放」的互聯網相對而言,它指的是一個控制用戶對網頁內容或相關服務進行訪問的環境),內部的資料庫並不隱藏自己而使其它應用程序無法訪問。在這兒沒有「內部的」概念,而大數據並不依賴數據訪問的集中點。大數據將其架構暴露給使用它的應用程序,而客戶端在操作過程中與許多不同的節點進行通信。
規模、實時性和分布式處理:大數據的本質特徵(使大數據解決超過以前數據管理系統的數據管理和處理需求,例如,在容量、實時性、分布式架構和並行處理等方面)使得保障這些系統的安全更為困難。大數據集群具有開放性和自我組織性,並可以使用戶與多個數據節點同時通信。驗證哪些數據節點和哪些客戶應當訪問信息是很困難的。別忘了,大數據的本質屬性意味著新節點自動連接到集群中,共享數據和查詢結果,解決客戶任務。
嵌入式安全:在涉及大數據的瘋狂競賽中,大部分的開發資源都用於改善大數據的可升級、易用性和分析功能上。只有很少的功能用於增加安全功能。但是,你希望得到嵌入到大數據平台中的安全功能。你希望開發人員在設計和部署階段能夠支持所需要的功能。你希望安全功能就像大數據集群一樣可升級、高性能、自組織。問題是,開源系統或多數商業系統一般都不包括安全產品。而且許多安全產品無法嵌入到Hadoop或其它的非關系型資料庫中。多數系統提供最少的安全功能,但不足以包括所有的常見威脅。在很大程度上,你需要自己構建安全策略。
應用程序:面向大數據集群的大多數應用都是Web應用。它們利用基於Web的技術和無狀態的基於REST的API。雖然全面討論大數據安全的這個問題超出了本文的范圍,但基於Web的應用程序和API給這些大數據集群帶來了一種最重大的威脅。在遭受攻擊或破壞後,它們可以提供對大數據集群中所存儲數據的無限制訪問。應用程序安全、用戶訪問管理及授權控制非常重要,與重點保障大數據集群安全的安全措施一樣都不可或缺。
數據安全:存儲在大數據集群中的數據基本上都保存在文件中。每一個客戶端應用都可以維持其自己的包含數據的設計,但這種數據是存儲在大量節點上的。存儲在集群中的數據易於遭受正常文件容易感染的所有威脅,因而需要對這些文件進行保護,避免遭受非法的查看和復制。
⑦ 大數據和網路空間安全哪個好
大數據和網路空間安全無法比較哪個「好」,只能比較哪個行業的技術、待遇及發展趨勢,大數據應用廣泛,網路空間安全世界各國和國家及企事業機構都高度重視,二者在不同地區和企事業機構中待遇差別也很大,最關鍵還要看對於個人專長和愛好是否更合適做什麼
⑧ 大數據時代網路安全進入產業爆發期
大數據時代網路安全進入產業爆發期
2017年中國雲市場競爭中,「1分中標」、「1元中標」案例已經不新鮮,在競爭白熱化的雲計算市場中,第一部網路安全相關法律的出台,再次攪動業界神經,安全成為各大雲服務廠商標榜的核心競爭力。以近日菜鳥和順豐的爭議為例,數據安全、雲市場爭奪都被成為各執一詞的緣由。
21世紀經濟報道記者近日采訪包括阿里雲在內的雲服務公司以及網路安全領域的創業者和專家,解讀雲服務市場的安全競爭。其中阿里雲總裁胡曉明一一回應跟阿里雲相關的競爭和安全問題。他表示,「根本不存在(阿里雲)與騰訊雲爭奪順豐一事,另外如果阿里雲做侵犯用戶隱私的事情,那應該倒閉。」
阿里雲回應「不安全」
6月1日,《網路安全法》實施第一天,順豐和菜鳥陷入數據之爭,在數據資源方面互不讓步,雙方皆以保護用戶數據隱私安全的名義指責對方。捲入這場「羅生門」的,還有順豐和菜鳥各執一詞的「雲市場」爭奪,即騰訊雲和阿里雲的的雲服務市場競爭。
在這場風波中,關於安全的討論爭議也很多。
近日,胡曉明在上海接受21世紀經濟報道記者采訪時回應菜鳥順豐之爭。「順豐早就是我們的客戶了,我也沒有提要跟順豐進一步加大雲計算的合作,我們都沒有找過對方。」胡曉明說。
他表示,一方面不存在與騰訊雲爭奪順豐一事,另外一方面從技術角度也不可能實現通過用戶IP地址獲取用戶核心數據的可能。
在接受采訪的一個小時時間里,胡曉明約有一半時間在談安全、回應與安全相關的質疑。據介紹,阿里雲平台上承載了大概37%的中國網站業務,阿里雲平均每天承受的攻擊是16億次。
據胡曉明介紹,阿里雲有嚴格的內部審計制度。阿里雲工程師進行任何運維管理操作時,都會有內部審計和實時違規預警。所有工程師都需要雙因素認證來完成操作人的身份驗證。此外,還通過定期的安全掃描和模擬滲透,來確保數據安全的內部控制有效、完整性。
「為什麼我們今天特別歡迎網路安全法的正式實施?就像交通法規定的紅綠燈一樣,交通規則越嚴格越好。」阿里雲的另一位負責人補充說,這個也是整個雲計算產業發展的前提。
網路安全產業爆發期
從5月份的勒索病毒事件,再到6月的菜鳥順豐事件,疊加《網路安全法》的落地,網路安全的概念被熱炒到了新高度。
法律對於網路運營者的管理責任作了較為明確的規定,《網路安全法》規定了網路安全等級保護制度,而網路運營者則應根據網路安全等級保護制度的要求,履行安全保護義務,保障網路免受干擾、破壞或入侵,防止數據泄露或被竊取或篡改。
6月13日,21世紀經濟報道記者在2017中國網路安全大會采訪十餘家參會網路安全公司,其中瑞星安全的一位負責人告訴21世紀經濟報道記者,近期咨詢業務的客戶明顯增加,行業向好。
北京另一家做雲安全服務的創業公司人士表示,國外的網路安全市場相對成熟,中國相當於剛剛做完基礎設施建設,對安全的需求正處於爆發的上升期,產業也在爆發期。他們公司2015年創立,現在基本能做到盈虧平衡,比較難得。
據介紹,他們的客戶主要是政府的政務雲平台和金融機構,客戶的安全意識還是比較強的,特別是《網路安全法》出台後,對一些網路數據管理運營平台擔負的責任進一步清晰,大家也不得不重視起來。
某信息安全眾包服務電商平台的CEO陳新龍表示,網路安全元年,應該從2017年《網路安全法》的實施開始。
根據國家互聯網應急中心數據顯示,2016年1月至11月,中國境內被篡改網站數量總數達到62894個,其中被篡改政府網站數量達到1483個。已收集到的信息系統安全漏洞達9756個,其中高危漏洞3764個,佔比為38.6%。
又一份IDC 報告數據顯示,截至 2014 年底,中國信息安全投資的比例依然不足 1%,和美國(3.6%)及日本(6%)等成熟市場差距明顯,中國網路安全市場還有很大的釋放空間。
陳新龍告訴21世紀經濟報道記者,2017年他所創立的安全服務平台,新入駐的網路安全廠商增長迅速。
此前,工信部電子科學技術情報研究所總工程師尹麗波在接受21世紀經濟報道記者采訪時也表示,目前政府的意識很強,包括工信部和網信辦,這些年都在對政府部門在做安全培訓和檢查,提升網路安全意識,普及網路安全技能和知識。在保護安全方面,大部分政府部門都已經行動起來。但企業這塊還有很大的空間,特別是中小企業,信息化程度很低,更別說網路安全措施。所以海量的中小企業,可能會是將來網路安全產業的巨大目標群體。
⑨ 現在大數據有前途,還是網路安全有什麼前途
如果讓我選擇大數據和網路安全的話,我覺得網路安全可能更有前途。因為現在大數據這個專業太寬泛了,而不如網路安全這個專業來得更加實際一些,因為每個企業都面臨著一些網路數據的安全性的問題。
⑩ 如何利用大數據來處理網路安全攻擊
「大數據」已經成為時下最火熱的IT行業詞彙,各行各業的大數據解決方案層出不窮。究竟什麼是大數據、大數據給信息安全帶來哪些挑戰和機遇、為什麼網路安全需要大數據,以及怎樣把大數據思想應用於網路安全技術,本文給出解答。
一切都源於APT
APT(Advanced Persistent Threat)攻擊是一類特定的攻擊,為了獲取某個組織甚至是國家的重要信息,有針對性的進行的一系列攻擊行為的整個過程。APT攻擊利用了多種攻擊手段,包括各種最先進的手段和社會工程學方法,一步一步的獲取進入組織內部的許可權。APT往往利用組織內部的人員作為攻擊跳板。有時候,攻擊者會針對被攻擊對象編寫專門的攻擊程序,而非使用一些通用的攻擊代碼。此外,APT攻擊具有持續性,甚至長達數年。這種持續體現在攻擊者不斷嘗試各種攻擊手段,以及在滲透到網路內部後長期蟄伏,不斷收集各種信息,直到收集到重要情報。更加危險的是,這些新型的攻擊和威脅主要就針對國家重要的基礎設施和單位進行,包括能源、電力、金融、國防等關繫到國計民生,或者是國家核心利益的網路基礎設施。
現有技術為什麼失靈
先看兩個典型APT攻擊案例,分析一下盲點在哪裡:
1、 RSA SecureID竊取攻擊
1) 攻擊者給RSA的母公司EMC的4名員工發送了兩組惡意郵件。郵件標題為「2011 Recruitment Plan」,寄件人是[email protected],正文很簡單,寫著「I forward this file to you for review. Please open and view it.」;裡面有個EXCEL附件名為「2011 Recruitment plan.xls」;
2) 很不幸,其中一位員工對此郵件感到興趣,並將其從垃圾郵件中取出來閱讀,殊不知此電子表格其實含有當時最新的Adobe Flash的0day漏洞(CVE-2011-0609)。這個Excel打開後啥也沒有,除了在一個表單的第一個格子裡面有個「X」(叉)。而這個叉實際上就是內嵌的一個Flash;
3) 該主機被植入臭名昭著的Poison Ivy遠端控制工具,並開始自BotNet的C&C伺服器(位於 good.mincesur.com)下載指令進行任務;
4) 首批受害的使用者並非「位高權重」人物,緊接著相關聯的人士包括IT與非IT等伺服器管理員相繼被黑;
5) RSA發現開發用伺服器(Staging server)遭入侵,攻擊方隨即進行撤離,加密並壓縮所有資料(都是rar格式),並以FTP傳送至遠端主機,又迅速再次搬離該主機,清除任何蹤跡;
6) 在拿到了SecurID的信息後,攻擊者就開始對使用SecurID的公司(例如上述防務公司等)進行攻擊了。
2、 震網攻擊
遭遇超級工廠病毒攻擊的核電站計算機系統實際上是與外界物理隔離的,理論上不會遭遇外界攻擊。堅固的堡壘只有從內部才能被攻破,超級工廠病毒也正充分的利用了這一點。超級工廠病毒的攻擊者並沒有廣泛的去傳播病毒,而是針對核電站相關工作人員的家用電腦、個人電腦等能夠接觸到互聯網的計算機發起感染攻擊,以此 為第一道攻擊跳板,進一步感染相關人員的U盤,病毒以U盤為橋梁進入「堡壘」內部,隨即潛伏下來。病毒很有耐心的逐步擴散,利用多種漏洞,包括當時的一個 0day漏洞,一點一點的進行破壞。這是一次十分成功的APT攻擊,而其最為恐怖的地方就在於極為巧妙的控制了攻擊范圍,攻擊十分精準。
以上兩個典型的APT攻擊案例中可以看出,對於APT攻擊,現代安全防禦手段有三個主要盲點:
1、0day漏洞與遠程加密通信
支撐現代網路安全技術的理論基礎最重要的就是特徵匹配,廣泛應用於各類主流網路安全產品,如殺毒、入侵檢測/防禦、漏洞掃描、深度包檢測。Oday漏洞和遠程加密通信都意味著沒有特徵,或者說還沒來得及積累特徵,這是基於特徵匹配的邊界防護技術難以應對的。
2、長期持續性的攻擊
現代網路安全產品把實時性作為衡量系統能力的一項重要指標,追求的目標就是精準的識別威脅,並實時的阻斷。而對於APT這種Salami式的攻擊,則是基於實時時間點的檢測技術難以應對的。
3、內網攻擊
任何防禦體系都會做安全域劃分,內網通常被劃成信任域,信任域內部的通信不被監控,成為了盲點。需要做接入側的安全方案加固,但不在本文討論范圍。
大數據怎麼解決問題
大數據可總結為基於分布式計算的數據挖掘,可以跟傳統數據處理模式對比去理解大數據:
1、數據采樣——>全集原始數據(Raw Data)
2、小數據+大演算法——>大數據+小演算法+上下文關聯+知識積累
3、基於模型的演算法——>機械窮舉(不帶假設條件)
4、精確性+實時性——>過程中的預測
使用大數據思想,可對現代網路安全技術做如下改進:
1、特定協議報文分析——>全流量原始數據抓取(Raw Data)
2、實時數據+復雜模型演算法——>長期全流量數據+多種簡單挖掘演算法+上下文關聯+知識積累
3、實時性+自動化——>過程中的預警+人工調查
通過傳統安全防禦措施很難檢測高級持續性攻擊,企業必須先確定日常網路中各用戶、業務系統的正常行為模型是什麼,才能盡早確定企業的網路和數據是否受到了攻擊。而安全廠商可利用大數據技術對事件的模式、攻擊的模式、時間、空間、行為上的特徵進行處理,總結抽象出來一些模型,變成大數據安全工具。為了精準地描述威脅特徵,建模的過程可能耗費幾個月甚至幾年時間,企業需要耗費大量人力、物力、財力成本,才能達到目的。但可以通過整合大數據處理資源,協調大數據處理和分析機制,共享資料庫之間的關鍵模型數據,加快對高級可持續攻擊的建模進程,消除和控制高級可持續攻擊的危害。