導航:首頁 > 網路安全 > 如何加快神經網路訓練速度1001無標題

如何加快神經網路訓練速度1001無標題

發布時間:2022-11-27 22:22:35

❶ 神經網路淺談

人工智慧技術是當前炙手可熱的話題,而基於神經網路的深度學習技術更是熱點中的熱點。去年穀歌的Alpha Go 以4:1大比分的優勢戰勝韓國的李世石九段,展現了深度學習的強大威力,後續強化版的Alpha Master和無師自通的Alpha Zero更是在表現上完全碾壓前者。不論你怎麼看,以深度學習為代表的人工智慧技術正在塑造未來。

下圖為英偉達(NVIDIA)公司近年來的股價情況, 該公司的主要產品是「圖形處理器」(GPU),而GPU被證明能大大加快神經網路的訓練速度,是深度學習必不可少的計算組件。英偉達公司近年來股價的飛漲足以證明當前深度學習的井噴之勢。

好,話不多說,下面簡要介紹神經網路的基本原理、發展脈絡和優勢。

神經網路是一種人類由於受到生物神經細胞結構啟發而研究出的一種演算法體系,是機器學習演算法大類中的一種。首先讓我們來看人腦神經元細胞:

一個神經元通常具有多個樹突 ,主要用來接受傳入信息,而軸突只有一條,軸突尾端有許多軸突末梢,可以給其他多個神經元傳遞信息。軸突末梢跟其他神經元的樹突產生連接,從而傳遞信號

下圖是一個經典的神經網路(Artificial Neural Network,ANN):

乍一看跟傳統互聯網的拓撲圖有點類似,這也是稱其為網路的原因,不同的是節點之間通過有向線段連接,並且節點被分成三層。我們稱圖中的圓圈為神經元,左邊三個神經元組成的一列為輸入層,中間神經元列為隱藏層,右邊神經元列為輸出層,神經元之間的箭頭為權重。

神經元是計算單元,相當於神經元細胞的細胞核,利用輸入的數據進行計算,然後輸出,一般由一個線性計算部分和一個非線性計算部分組成;輸入層和輸出層實現數據的輸入輸出,相當於細胞的樹突和軸突末梢;隱藏層指既不是輸入也不是輸出的神經元層,一個神經網路可以有很多個隱藏層。

神經網路的關鍵不是圓圈代表的神經元,而是每條連接線對應的權重。每條連接線對應一個權重,也就是一個參數。權重具體的值需要通過神經網路的訓練才能獲得。我們實際生活中的學習體現在大腦中就是一系列神經網路迴路的建立與強化,多次重復的學習能讓迴路變得更加粗壯,使得信號的傳遞速度加快,最後對外表現為「深刻」的記憶。人工神經網路的訓練也借鑒於此,如果某種映射關系出現很多次,那麼在訓練過程中就相應調高其權重。

1943年,心理學家McCulloch和數學家Pitts參考了生物神經元的結構,發表了抽象的神經元模型MP:

符號化後的模型如下:

Sum函數計算各權重與輸入乘積的線性組合,是神經元中的線性計算部分,而sgn是取符號函數,當輸入大於0時,輸出1,反之輸出0,是神經元中的非線性部分。向量化後的公式為z=sgn(w^T a)(w^T=(w_1,w_2,w_3),a=〖(a_1,a_2,a_3)〗^T)。

但是,MP模型中,權重的值都是預先設置的,因此不能學習。該模型雖然簡單,並且作用有限,但已經建立了神經網路大廈的地基

1958年,計算科學家Rosenblatt提出了由兩層神經元組成(一個輸入層,一個輸出層)的神經網路。他給它起了一個名字–「感知器」(Perceptron)

感知器是當時首個可以學習的人工神經網路。Rosenblatt現場演示了其學習識別簡單圖像的過程,在當時引起了轟動,掀起了第一波神經網路的研究熱潮。

但感知器只能做簡單的線性分類任務。1969年,人工智慧領域的巨擘Minsky指出這點,並同時指出感知器對XOR(異或,即兩個輸入相同時輸出0,不同時輸出1)這樣的簡單邏輯都無法解決。所以,明斯基認為神經網路是沒有價值的。

隨後,神經網路的研究進入低谷,又稱 AI Winter 。

Minsky說過單層神經網路無法解決異或問題,但是當增加一個計算層以後,兩層神經網路不僅可以解決異或問題,而且具有非常好的非線性分類效果。

下圖為兩層神經網路(輸入層一般不算在內):

上圖中,輸出層的輸入是上一層的輸出。

向量化後的公式為:

注意:

每個神經元節點默認都有偏置變數b,加上偏置變數後的計算公式為:

同時,兩層神經網路不再使用sgn函數作為激勵函數,而採用平滑的sigmoid函數:

σ(z)=1/(1+e^(-z) )

其圖像如下:

理論證明: 兩層及以上的神經網路可以無限逼近真實的對應函數,從而模擬數據之間的真實關系 ,這是神經網路強大預測能力的根本。但兩層神經網路的計算量太大,當時的計算機的計算能力完全跟不上,直到1986年,Rumelhar和Hinton等人提出了反向傳播(Backpropagation,BP)演算法,解決了兩層神經網路所需要的復雜計算量問題,帶動了業界使用兩層神經網路研究的熱潮。

但好景不長,演算法的改進僅使得神經網路風光了幾年,然而計算能力不夠,局部最優解,調參等一系列問題一直困擾研究人員。90年代中期,由Vapnik等人發明的SVM(Support Vector Machines,支持向量機)演算法誕生,很快就在若干個方面體現出了對比神經網路的優勢:無需調參;高效;全局最優解。

由於以上原因,SVM迅速打敗了神經網路演算法成為主流。神經網路的研究再一次進入低谷, AI Winter again 。

多層神經網路一般指兩層或兩層以上的神經網路(不包括輸入層),更多情況下指兩層以上的神經網路。

2006年,Hinton提出使用 預訓練 」(pre-training)和「微調」(fine-tuning)技術能優化神經網路訓練,大幅度減少訓練多層神經網路的時間

並且,他給多層神經網路相關的學習方法賦予了一個新名詞–「 深度學習 」,以此為起點,「深度學習」紀元開始了:)

「深度學習」一方面指神經網路的比較「深」,也就是層數較多;另一方面也可以指神經網路能學到很多深層次的東西。研究發現,在權重參數不變的情況下,增加神經網路的層數,能增強神經網路的表達能力。

但深度學習究竟有多強大呢?沒人知道。2012年,Hinton與他的學生在ImageNet競賽中,用多層的卷積神經網路成功地對包含一千類別的一百萬張圖片進行了訓練,取得了分類錯誤率15%的好成績,這個成績比第二名高了近11個百分點,充分證明了多層神經網路識別效果的優越性。

同時,科研人員發現GPU的大規模並行矩陣運算模式完美地契合神經網路訓練的需要,在同等情況下,GPU的速度要比CPU快50-200倍,這使得神經網路的訓練時間大大減少,最終再一次掀起了神經網路研究的熱潮,並且一直持續到現在。

2016年基於深度學習的Alpha Go在圍棋比賽中以4:1的大比分優勢戰勝了李世石,深度學習的威力再一次震驚了世界。

神經網路的發展歷史曲折盪漾,既有被捧上神壇的高潮,也有無人問津的低谷,中間經歷了數次大起大落,我們姑且稱之為「三起三落」吧,其背後則是演算法的改進和計算能力的持續發展。

下圖展示了神經網路自發明以來的發展情況及一些重大時間節點。

當然,對於神經網路我們也要保持清醒的頭腦。由上圖,每次神經網路研究的興盛期持續10年左右,從最近2012年算起,或許10年後的2022年,神經網路的發展將再次遇到瓶頸。

神經網路作為機器學習的一種,其模型訓練的目的,就是使得參數盡可能的與真實的模型逼近。理論證明,兩層及以上的神經網路可以無限逼近真實的映射函數。因此,給定足夠的訓練數據和訓練時間,總能通過神經網路找到無限逼近真實關系的模型。

具體做法:首先給所有權重參數賦上隨機值,然後使用這些隨機生成的參數值,來預測訓練數據中的樣本。假設樣本的預測目標為yp ,真實目標為y,定義值loss,計算公式如下:

loss = (yp -y) ^2

這個值稱之為 損失 (loss),我們的目標就是使對所有訓練數據的損失和盡可能的小,這就轉化為求loss函數極值的問題。

一個常用方法是高等數學中的求導,但由於參數不止一個,求導後計算導數等於0的運算量很大,所以常用梯度下降演算法來解決這樣的優化問題。梯度是一個向量,由函數的各自變數的偏導數組成。

比如對二元函數 f =(x,y),則梯度∇f=(∂f/∂x,∂f/∂y)。梯度的方向是函數值上升最快的方向。梯度下降演算法每次計算參數在當前的梯度,然後讓參數向著梯度的反方向前進一段距離,不斷重復,直到梯度接近零時截止。一般這個時候,所有的參數恰好達到使損失函數達到一個最低值的狀態。下圖為梯度下降的大致運行過程:

在神經網路模型中,由於結構復雜,每次計算梯度的代價很大。因此還需要使用 反向傳播 (Back Propagation)演算法。反向傳播演算法利用了神經網路的結構進行計算,不一次計算所有參數的梯度,而是從後往前。首先計算輸出層的梯度,然後是第二個參數矩陣的梯度,接著是中間層的梯度,再然後是第一個參數矩陣的梯度,最後是輸入層的梯度。計算結束以後,所要的兩個參數矩陣的梯度就都有了。當然,梯度下降只是其中一個優化演算法,其他的還有牛頓法、RMSprop等。

確定loss函數的最小值後,我們就確定了整個神經網路的權重,完成神經網路的訓練。

在神經網路中一樣的參數數量,可以用更深的層次去表達。

由上圖,不算上偏置參數的話,共有三層神經元,33個權重參數。

由下圖,保持權重參數不變,但增加了兩層神經元。

在多層神經網路中,每一層的輸入是前一層的輸出,相當於在前一層的基礎上學習,更深層次的神經網路意味著更深入的表示特徵,以及更強的函數模擬能力。更深入的表示特徵可以這樣理解,隨著網路的層數增加,每一層對於前一層次的抽象表示更深入。

如上圖,第一個隱藏層學習到「邊緣」的特徵,第二個隱藏層學習到「邊緣」組成的「形狀」的特徵,第三個隱藏層學習到由「形狀」組成的「圖案」的特徵,最後的隱藏層學習到由「圖案」組成的「目標」的特徵。通過抽取更抽象的特徵來對事物進行區分,從而獲得更好的區分與分類能力。

前面提到, 明斯基認為Rosenblatt提出的感知器模型不能處理最簡單的「異或」(XOR)非線性問題,所以神經網路的研究沒有前途,但當增加一層神經元後,異或問題得到了很好地解決,原因何在?原來從輸入層到隱藏層,數據發生了空間變換,坐標系發生了改變,因為矩陣運算本質上就是一種空間變換。

如下圖,紅色和藍色的分界線是最終的分類結果,可以看到,該分界線是一條非常平滑的曲線。

但是,改變坐標系後,分界線卻表現為直線,如下圖:

同時,非線性激勵函數的引入使得神經網路對非線性問題的表達能力大大加強。

對於傳統的樸素貝葉斯、決策樹、支持向量機SVM等分類器,提取特徵是一個非常重要的前置工作。在正式訓練之前,需要花費大量的時間在數據的清洗上,這樣分類器才能清楚地知道數據的維度,要不然基於概率和空間距離的線性分類器是沒辦法進行工作的。然而在神經網路中,由於巨量的線性分類器的堆疊(並行和串列)以及卷積神經網路的使用,它對雜訊的忍耐能力、對多通道數據上投射出來的不同特徵偏向的敏感程度會自動重視或忽略,這樣我們在處理的時候,就不需要使用太多的技巧用於數據的清洗了。有趣的是,業內大佬常感嘆,「你可能知道SVM等機器學習的所有細節,但是效果並不好,而神經網路更像是一個黑盒,很難知道它究竟在做什麼,但工作效果卻很好」。

人類對機器學習的環節干預越少,就意味著距離人工智慧的方向越近。神經網路的這個特性非常有吸引力。

1) 谷歌的TensorFlow開發了一個非常有意思的神經網路 入門教程 ,用戶可以非常方便地在網頁上更改神經網路的參數,並且能看到實時的學習效率和結果,非常適合初學者掌握神經網路的基本概念及神經網路的原理。網頁截圖如下:

2) 深度學習領域大佬吳恩達不久前發布的《 神經網路和深度學習 》MOOC,現在可以在網易雲課堂上免費觀看了,並且還有中文字幕。

3) 《神經網路於深度學習》(Michael Nielsen著)、《白話深度學習與TensorFlow》也是不錯的入門書籍。

❷ OPENNN如何加快神經網路訓練速度(54個輸入,100個隱層,1個輸出)

開頭注釋:針對這些問題,都是在tensorflow框架下,去尋找代碼解決問題的。所以非tensorflow框架下編程的,可以看看出現該類問題的原因,以及解決問題的方向,具體的解決問題的代碼需要自行查閱資料。

情況1:訓練速度慢

針對實體鏈接任務,搭建了Bi-LSTM+CNN的模型,目前訓練速度很慢,半個小時才出一個批次的預測結果。

類比於手寫數字識別,無論是使用LSTM,還是CNN,都不會很慢,最慢的至少在10分鍾內能出每一個批次的預測結果。

❸ 神經網路設計如何提高精度

增加神經網路訓練目標,以提高精度要求:

trainParam.goal = 0.01 %0.01表示訓練目標誤差為0.01

❹ 如何訓練神經網路

1、先別著急寫代碼

訓練神經網路前,別管代碼,先從預處理數據集開始。我們先花幾個小時的時間,了解數據的分布並找出其中的規律。

Andrej有一次在整理數據時發現了重復的樣本,還有一次發現了圖像和標簽中的錯誤。所以先看一眼數據能避免我們走很多彎路。

由於神經網路實際上是數據集的壓縮版本,因此您將能夠查看網路(錯誤)預測並了解它們的來源。如果你的網路給你的預測看起來與你在數據中看到的內容不一致,那麼就會有所收獲。

一旦從數據中發現規律,可以編寫一些代碼對他們進行搜索、過濾、排序。把數據可視化能幫助我們發現異常值,而異常值總能揭示數據的質量或預處理中的一些錯誤。

2、設置端到端的訓練評估框架

處理完數據集,接下來就能開始訓練模型了嗎?並不能!下一步是建立一個完整的訓練+評估框架。

在這個階段,我們選擇一個簡單又不至於搞砸的模型,比如線性分類器、CNN,可視化損失。獲得准確度等衡量模型的標准,用模型進行預測。

這個階段的技巧有:

· 固定隨機種子

使用固定的隨機種子,來保證運行代碼兩次都獲得相同的結果,消除差異因素。

· 簡單化

在此階段不要有任何幻想,不要擴增數據。擴增數據後面會用到,但是在這里不要使用,現在引入只會導致錯誤。

· 在評估中添加有效數字

在繪制測試集損失時,對整個測試集進行評估,不要只繪制批次測試損失圖像,然後用Tensorboard對它們進行平滑處理。

· 在初始階段驗證損失函數

驗證函數是否從正確的損失值開始。例如,如果正確初始化最後一層,則應在softmax初始化時測量-log(1/n_classes)。

· 初始化

正確初始化最後一層的權重。如果回歸一些平均值為50的值,則將最終偏差初始化為50。如果有一個比例為1:10的不平衡數據集,請設置對數的偏差,使網路預測概率在初始化時為0.1。正確設置這些可以加速模型的收斂。

· 人類基線

監控除人為可解釋和可檢查的損失之外的指標。盡可能評估人的准確性並與之進行比較。或者對測試數據進行兩次注釋,並且對於每個示例,將一個注釋視為預測,將第二個注釋視為事實。

· 設置一個獨立於輸入的基線

最簡單的方法是將所有輸入設置為零,看看模型是否學會從輸入中提取任何信息。

· 過擬合一個batch

增加了模型的容量並驗證我們可以達到的最低損失。

· 驗證減少訓練損失

嘗試稍微增加數據容量。

❺ bp神經網路訓練速度慢怎麼調整

BP(Back Propagation)網路是1986年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播演算法訓練的多層前饋網路,是目前應用最廣泛的神經網路模型之一。BP網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。BP神經網路模型拓撲結構包括輸入層(input)、隱層(hide layer)和輸出層(output layer)。
人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。

❻ weka 中用rbf神經網路演算法進行訓練,速度奇慢無比,不知道要改哪些參數,在哪裡改,請具體說一下,謝謝啦

像是rbf這類演算法碰到高維度大容量的數據集就是慢的像老牛拉車...很多論文上的實驗模型都是訓練了n小時的結果。
建議嘗試用屬性選擇搞幾個特徵子集出來,試試看哪個的效果好就用哪個代替原始數據集。個人感覺演算法的參數調整對提高模型的訓練效率來說意義不大,用屬性選擇降低數據集的維度是最有效的。

❼ 如何用FPGA加速卷積神經網路

深度學習本身是一個非常龐大的知識體系。本文更多想從程序員的視角出發,讓大家觀察一下深度學習對程序員意味著什麼,以及我們如何利用這樣一個高速發展的學科,來幫助程序員提升軟體開發的能力。
本文根據費良宏在2016QCon全球軟體開發大會(上海)上的演講整理而成。
前言
1973年,美國上映了一部熱門的科幻電影《WestWorld》,三年之後又有一個續集叫做《FutureWorld》。這部電影在80年代初被引進到中國叫《未來世界》。那部電影對我來講簡直可以說得上是震撼。影片中出現了很多機器人,表情豐富的面部下面都是集成電路板。這讓那時候的我覺得未來世界都是那麼遙遠、那麼神秘。
時間到了2016年,很多朋友可能都在追看HBO斥巨資拍攝的同一題材的系列劇《WestWorld》。如果前兩部電影還是局限在機器人、人工智慧這樣的話題,2016年的新劇則在劇情和人工智慧的思考方面有了很大的突破。不再渲染機器人是否會威脅到人類,而是在探討「Dreamsaremainlymemories」這一類更具哲理的問題。
「記憶究竟如何影響了智能」這個話題非常值得我們去思考,也給我們一個很好的啟示——今天,人工智慧領域究竟有了怎樣的發展和進步。
今天我們探討的話題不僅僅是簡單的人工智慧。如果大家對深度學習感興趣,我相信各位一定會在搜索引擎上搜索過類似相關的關鍵字。我在Google上以deeplearning作為關鍵字得到了2,630萬個搜索的結果。這個數字比一周之前足足多出了300多萬的結果。這個數字足以看得出來深度學習相關的內容發展的速度,人們對深度學習的關注也越來越高。
從另外的一個角度,我想讓大家看看深度學習在市場上究竟有多麼熱門。從2011年到現在一共有140多家專注人工智慧、深度學習相關的創業公司被收購。僅僅在2016年這種並購就發生了40多起。
其中最瘋狂的是就是Google,已經收購了 11 家人工智慧創業公司,其中最有名的就是擊敗了李世石九段的 DeepMind。排名之後的就要數 Apple、Intel以及Twitter。以Intel 公司為例,僅在今年就已經收購了 3 家創業公司,Itseez、Nervana 和 Movidius。這一系列大手筆的並購為了布局人工智慧以及深度學習的領域。
當我們去搜索深度學習話題的時候,經常會看到這樣的一些晦澀難懂的術語:Gradient descent(梯度下降演算法)、Backpropagation(反向傳播演算法)、Convolutional Neural Network(卷積神經網路)、受限玻耳茲曼機(Restricted Boltzmann Machine)等。
如打開任何一篇技術文章,你看到的通篇都是各種數學公式。大家看到如下左邊的圖,其實並不是一篇高水準的學術論文,而僅僅是維基網路關於玻耳茲曼機的介紹。維基網路是科普層面的內容,內容復雜程度就超過了大多數數學知識的能力。
在這樣的背景之下,我今天的的話題可以歸納成三點:第一,我們為什麼要學習深度學習;第二,深度學習最核心的關鍵概念就是神經網路,那麼究竟什麼是神經網路;第三,作為程序員,當我們想要成為深度學習開發者的時候,我們需要具備怎樣的工具箱,以及從哪裡著手進行開發。
為什麼要學習深度學習
首先,我們談談為什麼要學習深度學習。在這個市場當中,最不缺乏的就是各種概念以及各種時髦新技術的詞彙。深度學習有什麼不一樣的地方?我非常喜歡AndrewNg(吳恩達)曾經用過的一個比喻。
他把深度學習比喻成一個火箭。這個火箭有一個最重要的部分,就是它的引擎,目前來看在這個領域裡面,引擎的核心就是神經網路。大家都知道,火箭除了引擎之外還需要有燃料,那麼大數據其實就構成了整個火箭另外的重要組成部分——燃料。以往我們談到大數據的時候,更多是強調存儲和管理數據的能力,但是這些方法和工具更多是對於以往歷史數據的統計、匯總。
而對於今後未知的東西,這些傳統的方法並不能夠幫助我們可以從大數據中得出預測的結論。如果考慮到神經網路和大數據結合,我們才可能看清楚大數據真正的價值和意義。AndrewNg就曾經說過「我們相信(神經網路代表的深度學習)是讓我們獲得最接近於人工智慧的捷徑」。這就是我們要學習深度學習的一個最重要的原因。
其次,隨著我們進行數據處理以及運算能力的不斷提升,深度學習所代表的人工智慧技術和傳統意義上人工智慧技術比較起來,在性能上有了突飛猛進的發展。這主要得益於在過去幾十間計算機和相關產業不斷發展帶來的成果。在人工智慧的領域,性能是我們選擇深度學習另一個重要的原因。
這是一段Nvidia在今年公布的關於深度學習在無人駕駛領域應用的視頻。我們可以看到,將深度學習應用在自動駕駛方面,僅僅經歷了3千英里的訓練,就可以達到什麼樣的程度。在今年年初進行的實驗上,這個系統還不具備真正智能能力,經常會出現各種各樣的讓人提心吊膽的狀況,甚至在某些情況下還需要人工干預。
但經過了3千英里的訓練之後,我們看到在山路、公路、泥地等各種復雜的路況下面,無人駕駛已經有了一個非常驚人的表現。請大家注意,這個深度學習的模型只經過了短短幾個月、3千英里的訓練。
如果我們不斷完善這種模型的話,這種處理能力將會變得何等的強大。這個場景裡面最重要的技術無疑就是深度學習。我們可以得出一個結論:深度學習可以為我們提供強大的能力,如果程序員擁有了這個技術的話,無異於會讓每個程序員如虎添翼。
神經網路快速入門
如果我們對於學習深度學習沒有任何疑慮的話,接下來就一定會關心我需要掌握什麼樣的知識才能讓我進入到這個領域。這裡面最重要的關鍵技術就是「神經網路」。說起「神經網路」,容易混淆是這樣兩個完全不同的概念。
一個是生物學神經網路,第二個才是我們今天要談起的人工智慧神經網路。可能在座的各位有朋友在從事人工智慧方面的工作。當你向他請教神經網路的時候,他會拋出許多陌生的概念和術語讓你聽起來雲里霧里,而你只能望而卻步了。
對於人工智慧神經網路這個概念,大多數的程序員都會覺得距離自己有很大的距離。因為很難有人願意花時間跟你分享神經網路的本質究竟是什麼。而你從書本上讀的到的理論和概念,也很讓你找到一個清晰、簡單的結論。
今天就我們來看一看,從程序員角度出發神經網路究竟是什麼。我第一次知道神經網路這個概念是通過一部電影——1991年上映的《終結者2》。男主角施瓦辛格有一句台詞:
「MyCPUisaneural-netprocessor;alearningcomputer.」(我的處理器是一個神經處理單元,它是一台可以學習的計算機)。從歷史來看人類對自身智力的探索,遠遠早於對於神經網路的研究。
1852年,義大利學者因為一個偶然的失誤,將人類的頭顱掉到硝酸鹽溶液中,從而獲得第一次通過肉眼關注神經網路的機會。這個意外加速了對人類智力奧秘的探索,開啟了人工智慧、神經元這樣概念的發展。
生物神經網路這個概念的發展,和今天我們談的神經網路有什麼關系嗎?我們今天談到的神經網路,除了在部分名詞上借鑒了生物學神經網路之外,跟生物學神經網路已經沒有任何關系,它已經完全是數學和計算機領域的概念,這也是人工智慧發展成熟的標志。這點大家要區分開,不要把生物神經網路跟我們今天談到的人工智慧有任何的混淆。
90年代中期,由Vapnik等人提出了支持向量機演算法(Support Vector Machines,支持向量機)。很快這個演算法就在很多方面體現出了對比神經網路的巨大優勢,例如:無需調參、高效率、全局最優解等。基於這些理由,SVM演算法迅速打敗了神經網路演算法成為那個時期的主流。而神經網路的研究則再次陷入了冰河期。
在被人摒棄的十年裡面,有幾個學者仍然在堅持研究。其中很重要的一個人就是加拿大多倫多大學的Geoffery Hinton教授。2006年,他的在著名的《Science》雜志上發表了論文,首次提出了「深度信念網路」的概念。
與傳統的訓練方式不同,「深度信念網路」有一個「預訓練」(pre-training)的過程,這可以方便的讓神經網路中的權值找到一個接近最優解的值,之後再使用「微調」(fine-tuning)技術來對整個網路進行優化訓練。這兩個技術的運用大幅度減少了訓練多層神經網路的時間。在他的論文裡面,他給多層神經網路相關的學習方法賦予了一個新名詞— 「深度學習」。
很快,深度學習在語音識別領域嶄露頭角。接著在2012年,深度學習技術又在圖像識別領域大展拳腳。Hinton與他的學生在ImageNet競賽中,用多層的卷積神經網路成功地對包含一千個類別的一百萬張圖片進行了訓練,取得了分類錯誤率15%的好成績,這個成績比第二名高了將近11個百分點。
這個結果充分證明了多層神經網路識別效果的優越性。從那時起,深度學習就開啟了新的一段黃金時期。我們看到今天深度學習和神經網路的火熱發展,就是從那個時候開始引爆的。
利用神經網路構建分類器,這個神經網路的結構是怎樣的?
其實這個結構非常簡單,我們看到這個圖就是簡單神經網路的示意圖。神經網路本質上就是一種「有向圖」。圖上的每個節點借用了生物學的術語就有了一個新的名詞 – 「神經元」。連接神經元的具有指向性的連線(有向弧)則被看作是「神經」。這這個圖上神經元並不是最重要的,最重要的是連接神經元的神經。每個神經部分有指向性,每一個神經元會指向下一層的節點。
節點是分層的,每個節點指向上一層節點。同層節點沒有連接,並且不能越過上一層節點。每個弧上有一個值,我們通常稱之為」權重「。通過權重就可以有一個公式計算出它們所指的節點的值。這個權重值是多少?我們是通過訓練得出結果。它們的初始賦值往往通過隨機數開始,然後訓練得到的最逼近真實值的結果作為模型,並可以被反復使用。這個結果就是我們說的訓練過的分類器。
節點分成輸入節點和輸出節點,中間稱為隱層。簡單來說,我們有數據輸入項,中間不同的多個層次的神經網路層次,就是我們說的隱層。之所以在這樣稱呼,因為對我們來講這些層次是不可見的。輸出結果也被稱作輸出節點,輸出節點是有限的數量,輸入節點也是有限數量,隱層是我們可以設計的模型部分,這就是最簡單的神經網路概念。
如果簡單做一個簡單的類比,我想用四層神經網路做一個解釋。左邊是輸入節點,我們看到有若干輸入項,這可能代表不同蘋果的RGB值、味道或者其它輸入進來的數據項。中間隱層就是我們設計出來的神經網路,這個網路現在有不同的層次,層次之間權重是我們不斷訓練獲得一個結果。
最後輸出的結果,保存在輸出節點裡面,每一次像一個流向一樣,神經是有一個指向的,通過不同層進行不同的計算。在隱層當中,每一個節點輸入的結果計算之後作為下一層的輸入項,最終結果會保存在輸出節點上,輸出值最接近我們的分類,得到某一個值,就被分成某一類。這就是使用神經網路的簡單概述。
除了從左到右的形式表達的結構圖,還有一種常見的表達形式是從下到上來表示一個神經網路。這時候,輸入層在圖的最下方,輸出層則在圖的最上方。從左到右的表達形式以AndrewNg和LeCun的文獻使用較多。而在Caffe框架里則使用的則是從下到上的表達。
簡單來說,神經網路並不神秘,它就是有像圖,利用圖的處理能力幫助我們對特徵的提取和學習的過程。2006年Hinton的那篇著名的論文中,將深度學習總結成三個最重要的要素:計算、數據、模型。有了這三點,就可以實現一個深度學習的系統。
程序員需要的工具箱
對於程序員來說,掌握理論知識是為了更好的編程實踐。那就讓我們看看,對於程序員來說,著手深度學習的實踐需要准備什麼樣的工具。
硬體
從硬體來講,我們可能需要的計算能力,首先想到的就是CPU。除了通常的CPU架構以外,還出現了附加有乘法器的CPU,用以提升計算能力。此外在不同領域會有DSP的應用場景,比如手寫體識別、語音識別、等使用的專用的信號處理器。還有一類就是GPU,這是一個目前深度學習應用比較熱門的領域。最後一類就是FPGA(可編程邏輯門陣列)。
這四種方法各有其優缺點,每種產品會有很大的差異。相比較而言CPU雖然運算能力弱一些,但是擅長管理和調度,比如讀取數據,管理文件,人機交互等,工具也豐富。DSP相比而言管理能力較弱,但是強化了特定的運算能力。
這兩者都是靠高主頻來解決運算量的問題,適合有大量遞歸操作以及不便拆分的演算法。GPU的管理能力更弱一些,但是運算能力更強。但由於計算單元數量多,更適合整塊數據進行流處理的演算法。
FPGA在管理與運算處理方面都很強,但是開發周期長,復雜演算法開發難度較大。就實時性來說,FPGA是最高的。單從目前的發展來看,對於普通程序員來說,現實中普遍採用的計算資源就還是是CPU以及GPU的模式,其中GPU是最熱門的領域。
這是我前天為這次分享而准備的一個AWS 上p2的實例。僅僅通過幾條命令就完成了實例的更新、驅動的安裝和環境的設置,總共的資源創建、設置時間大概在10分鍾以內。而之前,我安裝調試前面提到的那台計算機,足足花了我兩天時間。
另外,從成本上還可以做一個對比。p2.8xLarge 實例每小時的費用是7.2美元。而我自己那台計算機總共的花費了是¥16,904元。這個成本足夠讓我使用350多個小時的p2.8xLarge。在一年裡使用AWS深度學習站就可以抵消掉我所有的付出。隨著技術的不斷的升級換代,我可以不斷的升級我的實例,從而可以用有限的成本獲得更大、更多的處理資源。這其實也是雲計算的價值所在。
雲計算和深度學習究竟有什麼關系?今年的8月8號,在IDG網站上發表了一篇文章談到了這個話題。文章中做了這樣一個預言:如果深度學習的並行能力不斷提高,雲計算所提供的處理能力也不斷發展,兩者結合可能會產生新一代的深度學習,將帶來更大影響和沖擊。這是需要大家考慮和重視的一個方向!
軟體
深度學習除了硬體的基礎環境之外。程序員會更關心與開發相關的軟體資源。這里我羅列了一些曾經使用過的軟體框架和工具。
Scikit-learn是最為流行的一個Python機器學習庫。它具有如下吸引人的特點:簡單、高效且異常豐富的數據挖掘/數據分析演算法實現; 基於NumPy、SciPy以及matplotlib,從數據探索性分析,數據可視化到演算法實現,整個過程一體化實現;開源,有非常豐富的學習文檔。
Caffe專注在卷及神經網路以及圖像處理。不過Caffe已經很久沒有更新過了。這個框架的一個主要的開發者賈揚清也在今年跳槽去了Google。也許曾經的霸主地位要讓位給他人了。
Theano 是一個非常靈活的Python 機器學習的庫。在研究領域非常流行,使用上非常方便易於定義復雜的模型。Tensorflow 的API 非常類似於Theano。我在今年北京的QCon 大會上也分享過關於Theano 的話題。
Jupyter notebook 是一個很強大的基於ipython的python代碼編輯器,部署在網頁上,可以非常方便的進行互動式的處理,很適合進行演算法研究合數據處理。
Torch 是一個非常出色的機器學習的庫。它是由一個比較小眾的lua語言實現的。但是因為LuaJIT 的使用,程序的效率非常出色。Facebook在人工智慧領域主打Torch,甚至現在推出了自己的升級版框架Torchnet。
深度學習的框架非常之多,是不是有一種亂花漸欲迷人眼的感覺?我今天向各位程序員重點介紹的是將是TensorFlow。這是2015年穀歌推出的開源的面向機器學習的開發框架,這也是Google第二代的深度學習的框架。很多公司都使用了TensorFlow開發了很多有意思的應用,效果很好。
用TensorFlow可以做什麼?答案是它可以應用於回歸模型、神經網路以深度學習這幾個領域。在深度學習方面它集成了分布式表示、卷積神經網路(CNN)、遞歸神經網路(RNN) 以及長短期記憶人工神經網路(Long-Short Term Memory, LSTM)。
關於Tensorflow 首先要理解的概念就是Tensor。在辭典中對於這個詞的定義是張量,是一個可用來表示在一些向量、標量和其他張量之間的線性關系的多線性函數。實際上這個表述很難理解,用我自己的語言解釋Tensor 就是「N維數組」而已。
使用 TensorFlow, 作為程序員必須明白 TensorFlow這樣幾個基礎概念:它使用圖 (Graph) 來表示計算任務;在被稱之為 會話 (Session) 的上下文 (context) 中執行圖;使用 Tensor 表示數據;通過 變數 (Variable) 維護狀態;使用 feed 和 fetch 可以為任意的操作(arbitrary operation) 賦值或者從其中獲取數據。
一句話總結就是,TensorFlow 就是有狀態圖的數據流圖計算環境,每個節點就是在做數據操作,然後提供依賴性和指向性,提供完整數據流。
TensorFlow安裝非常簡單,但官網提供下載的安裝包所支持的CUDA 的版本是7.5。考慮到CUDA 8 的讓人心動的新特以及不久就要正式發布的現狀。或許你想會考慮立即體驗CUDA 8,那麼就只能通過編譯Tensorflow源代碼而獲得。目前TensorFlow已經支持了Python2.7、3.3+。
此外,對於使用Python 語言的程序員還需要安裝所需要的一些庫,例如:numpy、protobuf等等。對於卷積處理而言,cuDNN是公認的性能最好的開發庫,請一定要安裝上。常規的Tensorsorflow的安裝很簡單,一條命令足矣:
$ pip3 install —upgrade
如果想評估一下或者簡單學習一下,還可以通過Docker進行安裝,安裝的命令如下:
$ docker run -it -p 8888:8888 gcr.io/tensorflow/tensorflow
TensorFlow有很多優點。首先,目前為止,深度學習的開發框架裡面TensorFlow的文檔做的最好,對程序員學習而言是非常好的一點。第二,TensorFlow有豐富的參考實例,作為參考學習起來非常容易。
第三,開發者社區活躍,在任何一個深度學習的社區里,都有大量關於TensorFlow的討論。第四,谷歌的支持力度非常大,從2015年到現在升級速度非常快,這是其他開源框架遠遠達不到的結果。
參考TensorFlow的白皮書,我們會看到未來TensorFlow還將會有巨大的發展潛力。讓我特別感興趣是這兩個方向。第一,支持跨多台機器的 parallelisation。盡管在0.8版本中推出了並行化的能力,但是目前還不完善。隨著未來不斷發展,依託雲計算的處理能力的提升這個特性將是非常讓人振奮的。
第二,支持更多的開發語言,對於開發者來說這是一個絕大的利好,通過使用自己擅長的語言使用TensorFlow應用。這些開發語言將會擴展到Java、Lua以及R 等。
在這里我想給大家展示一個應用Tensorflow 的例子。這個例子的代碼託管在這個網址上 。白俄羅斯的現代印象派藝術家Leonid Afremov善於用濃墨重彩來表現都市和風景題材,尤其是其雨景系列作品。他習慣用大色塊的鋪陳來營造光影效果,對反光物體和環境色的把握非常精準。
於是我就找到了一張上海東方明珠電視塔的一張攝影作品,我希望通過Tensorflow 去學習一下Leonid Afremov 的繪畫風格,並將這張東方明珠的照片處理成那種光影色彩豐富的作品風格。利用Tensorflow 以及上面提到的那個項目的代碼,在一個AWS 的p2類型的實例上進行了一個一千次的迭代,於是就得到了下圖這樣的處理結果。
這個處理的代碼只有350行里,模型使用了一個成名於2014年ImageNet比賽中的明星 VGG。這個模型非常好,特點就是「go depper」。
TensorFlow 做出這樣的作品,並不僅僅作為娛樂供大家一笑,還可以做更多有意思的事情。將剛才的處理能力推廣到視頻當中,就可以看到下圖這樣的效果,用梵高著名的作品」星月夜「的風格就加工成了這樣新的視頻風格。
可以想像一下,如果這種處理能力在更多領域得以應用,它會產生什麼樣的神奇結果?前景是美好的,讓我們有無限遐想。事實上我們目前所從事的很多領域的應用開發都可以通過使用神經網路和深度學習來加以改變。對於深度學習而言,掌握它並不是難事。每一個程序員都可以很容易的掌握這種技術,利用所具備的資源,讓我們很快成為深度學習的程序開發人員。
結束語
未來究竟是什麼樣,我們沒有辦法預言。有位作家Ray Kurzweil在2005年寫了《奇點臨近》一書。在這本書裡面他明確告訴我們,那個時代很快到來。作為那個時代曙光前的人群,我們是不是有能力加速這個過程,利用我們學習的能力實現這個夢想呢?
中國人工智慧的發展
人工智慧的時代無疑已經到來,這個時代需要的當然就是掌握了人工智慧並將其解決具體問題的工程師。坦率的說,市場上這一類的工程師還屬於鳳毛麟角。職場上的薪酬待遇可以看得出來這樣的工程師的搶手的程度。人工智慧這門學科發展到今天,就學術自身而言已經具備了大規模產業化的能力。
所以說,對於工程師而言當務之急就是盡快的掌握應用人工智慧的應用技術。當下在互聯網上關於人工智慧的學習資料可以說已經是「汗牛充棟」,那些具備了快速學習能力的工程師一定會在人工智慧的大潮當中脫穎而出。
中國發展人工智慧產業的環境已經具備。無論從創業環境、人員的素質乃至市場的機遇而言完全具備了產生產業變革的一切條件。與美國相比較,在人工智慧的許多領域中國團隊的表現也可以說是不逞多讓。就人工智慧的技術層面而言,中國的工程師與全球最好的技術團隊正處於同一個起跑線上。
時不我待,中國的工程師是有機會在這個領域大展身手的。不過值得注意的是,要切忌兩點:一是好高騖遠,盲目與國外攀比。畢竟積累有長短,術業有專攻,我們要立足於已有的積累,尋求逐步的突破。二是一擁而上,盲目追求市場的風口。人工智慧的工程化需要大量的基礎性的積累,並非一蹴而就簡單復制就可以成功。
中國的科研技術人員在人工智慧領域的成就有目共睹。在王詠剛的一篇文章裡面,他統計了從2013年到2015年SCI收錄的「深度學習」論文,中國在2014年和2015年超已經超過了美國居於領跑者的位置。
另外一讓我感到驚訝的事情,Google的JeffDean在2016年發表過一篇名為《TensorFlow:Asystemforlarge-scalemachinelearning》的論文。文章的22個作者裡面,明顯是中國名字的作者占已經到了1/5。如果要列舉中國人/華人在人工智慧領域里的大牛,吳恩達、孫劍、楊強、黃廣斌、馬毅、張大鵬……很容易就可以說出一大串。
對於中國來說目前的當務之急是人工智慧技術的產業化,唯有如此我們才可以講科研/智力領域的優勢轉化為整體的、全面的優勢。在這一點上,中國是全球最大的消費市場以及製造業強國,我們完全有機會藉助市場的優勢成為這個領域的領先者。
矽谷創新企業
矽谷雖然去過許多回,但一直無緣在那裡長期工作。在人工智慧領域的市場我們聽到的更多是圍繞Google、Apple、Intel、Amazon這樣的一些大型科技公司的一舉一動。但是在美國市場上還有一大批小型的創業企業在人工智慧這個領域有驚艷的表現。僅以矽谷區域的公司為例:
Captricity,提供了手寫數據的信息提取;
VIVLab,針對語音識別開發了虛擬助手服務;
TERADEEP,利用FPGA提供了高效的卷積神經網路的方案;
還有提供無人駕駛解決方案的NetraDyne。
這個名單還可以很長,還有許許多多正在利用人工智慧技術試圖去創造歷史的團隊正在打造他們的夢想。這些團隊以及他們正在專注的領域是值得我們去學習和體會的。

❽ 一般神經網路要訓練多久

決定神經網路訓練多久有很多因素,如用的是CPU還是GPU,神經網路的結點數、層數,學習速率,激活函數等。一般在測試集的准確率不再明顯增加時就可以停止訓練了。

❾ 如何提高神經網路的外推能力

人工神經網路以其智能性見長,那麼神經網路能真的學到一個映射的本質嗎?也就是說,對一個映射給出一定的必要的訓練樣本訓練後,網路能否對樣本以外的樣本給出較為准確的預測。泛化能力也就是神經網路用於對未知數據預測的能力。神經網路對訓練樣本區間范圍內的樣本有較好的泛化能力,而對於訓練樣本確定的范圍外的樣本不能認為有泛化能力。常規的幾種增強泛化能力的方法,羅列如下:

1、較多的輸入樣本可以提高泛化能力;
但不是太多,過多的樣本導致過度擬合,泛化能力不佳;樣本包括至少一次的轉折點數據。

2、隱含層神經元數量的選擇,不影響性能的前提下,盡量選擇小一點的神經元數量。隱含層節點太多,造成泛化能力下降,造火箭也只要幾十個到幾百個神經元,擬合幾百幾千個數據何必要那麼多神經元?

3、誤差小,則泛化能力好;誤差太小,則會過度擬合,泛化能力反而不佳。

4、學習率的選擇,特別是權值學習率,對網路性能有很大影響,太小則收斂速度很慢,且容易陷入局部極小化;太大則,收斂速度快,但易出現擺動,誤差難以縮小;一般權值學習率比要求誤差稍微稍大一點點;另外可以使用變動的學習率,在誤差大的時候增大學習率,等誤差小了再減小學習率,這樣可以收斂更快,學習效果更好,不易陷入局部極小化。

5、訓練時可以採用隨時終止法,即是誤差達到要求即終止訓練,以免過度擬合;可以調整局部權值,使局部未收斂的加快收斂。

❿ 神經網路訓練速度最慢的演算法是哪一個

為什麼要最慢的演算法。。就我現在用過的演算法來說,有個叫dpsgd的演算法最慢。。這個演算法為了保護dataset本身的隱私,將梯度下降的速度限定在一個范圍內,本來15分鍾能訓練一個epoch的樣本現在需要三個小時左右。

文章是這個網頁鏈接

閱讀全文

與如何加快神經網路訓練速度1001無標題相關的資料

熱點內容
網路介面卡是怎麼解釋的 瀏覽:775
2019下半年網路甜寵劇有哪些 瀏覽:946
沒網路信號rtk能實時定位嗎 瀏覽:3
網路運輸共享計劃 瀏覽:736
從哪裡查數據網路 瀏覽:372
黑白網路安全手抄報 瀏覽:646
網路電視和天威電視哪個好用 瀏覽:650
dns怎麼設置網路更好 瀏覽:857
寮國哪個網路最好用 瀏覽:833
電腦網路自動連接 瀏覽:274
如何禁止網路並啟用 瀏覽:5
手機訪問電腦需要網路連接網路連接 瀏覽:665
您的網路已經欠費了去哪裡交 瀏覽:177
在廣東大專院校計算機網路哪個好 瀏覽:560
網路語普及貼是什麼意思 瀏覽:500
電腦顯示未識別的網路怎麼設置 瀏覽:924
有哪些情況會被限制網路 瀏覽:683
無線聯通卡沒有網路卡里有錢 瀏覽:63
網路電視可以看但是wifi連不上網了 瀏覽:214
大型的無線網路設計 瀏覽:417

友情鏈接