導航:首頁 > 網路安全 > 語言在神經網路中如何表示

語言在神經網路中如何表示

發布時間:2022-10-10 14:54:16

1. 人工神經網路的知識表示形式

人工神經網路的知識表示形式:

1、每個神經元都是一個多輸入單輸出的信息處理單元 ;
2、神經元輸入分興奮性輸入和抑制性輸入兩種類型 ;
3、神經元具有空間整合特性和閾值特性 ;
4、神經元輸入與輸出間有固定的時滯 ,主要取決於突觸延擱 ;
5、忽略時間整合作用和不應期 ;
6、神經元本身是非時變的 , 即其突觸時延和突觸強度均為常數 。

概念分析

人工神經網路是在現代神經生物學研究基礎上提出的模擬生物過程 ,反映人腦某些特性的一種計算結構。它不是人腦神經系統的真實描寫,而只是它的某種抽象、簡化和模擬。

根據前面對生物神經網路的介紹可知,神經元及其突觸是神經網路的基本器件 。 因此,模擬生物神經網路應首先模擬生物神經元。在人工神經網路中,神經元常被稱為「處理單元」 。有時從網路的觀點出發常把它稱為「節點」 。

2. 人工神經網路的知識表示形式和推理機制

神經網路有多種分類方式,例如,按網路性能可分為連續型與離散型網路,確定型與隨機型網路:按網路拓撲結構可分為前向神經網路與反饋神經網路。本章土要簡介前向神經網路、反饋神經網路和自組織特徵映射神經網路。

前向神經網路是數據挖掘中廣為應用的一種網路,其原理或演算法也是很多神經網路模型的基礎。徑向基函數神經網路就是一種前向型神經網路。Hopfield神經網路是反饋網路的代表。Hvpfi}ld網路的原型是一個非線性動力學系統,目前,已經在聯想記憶和優化計算中得到成功應用。

基本特徵

非線性關系是自然界的普遍特性。大腦的智慧就是一種非線性現象。人工神經元處於激活或抑制二種不同的狀態,這種行為在數學上表現為一種非線性關系。具有閾值的神經元構成的網路具有更好的性能,可以提高容錯性和存儲容量。

一個神經網路通常由多個神經元廣泛連接而成。一個系統的整體行為不僅取決於單個神經元的特徵,而且可能主要由單元之間的相互作用、相互連接所決定。通過單元之間的大量連接模擬大腦的非局限性。聯想記憶是非局限性的典型例子。

以上內容參考:網路-人工神經網路

3. 什麼是形式語言

形式語言
形式語言 是一個字母表上的某些有限長字串的集合。一個形式語言可以包含無限多個字串。

語言的形式定義
字母表 ∑ 為任意有限集合,ε 表示空串, 記 ∑ 0 為{ε},全體長度為 n 的字串為 ∑ n , ∑ * 為 ∑ 0 ∪∑ 1 ∪…∪∑ n ∪…, 語言 L 定義為 ∑ * 的任意子集。

注記:∑ * 的空子集 Φ 與 {ε} 是兩個不同的語言。

語言間的運算
語言間的運算就是 ∑ * 冪集上的運算。

字串集合的交並補等運算。
連接運算:L 1 L 2 = { xy | x 屬於L 1 並且 y 屬於L 2 }。
冪運算:L n = L … L (共 n 個 L 連接在一起),L 0 = {ε}。
閉包運算:L * = L 0 ∪L 1 ∪…∪L n ∪…。
(右)商運算:L 1 /L 2 = {x | 存在 y 屬於L 2 使得 xy 屬於L 1 }。
語言的表示方法
一個形式語言可以通過多種方法來限定自身,比如:

枚舉出各個字串(只適用於有限字串集合)。
通過 形式文法 來產生(參見 喬姆斯基譜系 )。
通過正則表達式來產生。
通過某種自動機來識別,比如 圖靈機 、 有限狀態自動機 。
自動機
automata

信號序列進行邏輯處理的裝置。在自動控制領域內,是指離散數字系統的動態數學模型,可定義為一種邏輯結構,一種演算法或一種符號串變換。自動機這一術語也廣泛出現在許多其他相關的學科中,分別有不同的內容和研究目標。在計算機科學中自動機用作計算機和計算過程的動態數學模型,用來研究計算機的體系結構、邏輯操作、程序設計乃至計算復雜性理論。在語言學中則把自動機作為語言識別器,用來研究各種形式語言。在神經生理學中把自動機定義為神經網路的動態模型,用來研究神經生理活動和思維規律,探索人腦的機制。在生物學中有人把自動機作為生命體的生長發育模型,研究新陳代謝和遺傳變異。在數學中則用自動機定義可計算函數,研究各種演算法。現代自動機的一個重要特點是能與外界交換信息,並根據交換得來的信息改變自己的動作,即改變自己的功能,甚至改變自己的結構,以適應外界的變化。也就是說在一定程度上具有類似於生命有機體那樣的適應環境變化的能力。
自動機與一般機器的重要區別在於自動機具有固定的內在狀態,即具有記憶能力和識別判斷能力或決策能力,這正是現代信息處理系統的共同特點。因此,自動機適宜於作為信息處理系統乃至一切信息系統的數學模型。自動機可按其變數集和函數的特性分類,也可按其抽象結構和聯結方式分類。主要有:有限自動機和無限自動機、線性自動機和非線性自動機、確定型自動機和不確定型自動機、同步自動機和非同步自動機、級聯自動機和細胞自動機等。

4. 理解n-gram及神經網路語言模型

語言模型 定義了自然語言中標記序列的概率分布,簡單的說就是定義了任何一個句子可能出現的概率,比如「小明吃了個蘋果」每100個句子中就會出現1次,那它的概率就是 , 而"蘋果吃了個小明"這個句子從古至今從來就不會有,那麼就可以認為它的概率是 .

一般的,假設一個句子有一連串的詞 組成,那麼我們要怎麼計算它在語言模型中的概率 呢?

最簡單的想法就是我們構建一個巨大無比的語料庫,把全人類從古至今講過的話都放在裡面,然後通過統計這句話出現的頻率就可以了,但是顯然是行不通的,我們沒有這么大的語料庫。

就算是有一個相對來說比較大的庫,在其中的句子的概率相對來說還好算,只要頻率除以總數就可以了,但是沒有在這個庫中的句子就會都變成0,顯然這是不合理的。比如說在我們的庫里,「小明吃了個蘋果」概率0.01是可以理解的,但是「小明吃了個橘子」這句話並不在庫里,那它的概率就應該為0嗎?根據我們的直覺,「小明吃了個橘子」這個句子也是一個正常人類表達的句子,它不應該為0。

既然句子不行,那要不我們試試更細粒度的詞彙,詞彙在一個比較大的語料庫中總歸基本都是有出現的吧,於是我們可以定義一個條件概率:

觀察上面的公式,前面的 還算比較好算,但是越後面...越沒法算了....

這該如何是好?

於是有人就想出了 n-gram語言模型,它是最早成功的基於固定長度序列的標記模型。

它的思想來源於馬爾可夫假設,它假設任意一個詞 出現的概率只和它前面的 個詞有關,而不是跟前面的所有詞都有關,這樣一來,前面的條件概率就變得簡單了:

特別的,當n=1時稱為 一元語法 (unigram),n=2時稱為 二元語法 (bigram),n=3時稱為 三元語法 (trigram),其中,三元語法是用的比較多的。顯然,要訓練 n-gram 語言模型是簡單的,因為它的最大似然估計可以通過簡單的統計每個可能的n-gram在語料庫中出現的頻率來獲得。

通常我們同時訓練n-gram模型和n-1 gram模型,這使得下面的式子可以簡單的通過查找兩個存儲的概率來計算:

舉個例子,我們演示一下三元模型是如何計算句子「蘋果 吃了 個 小明」的概率的,套用上面的公式:

顯然,n-gram模型的最大似然有一個基本限制,就是有可能在語料庫中的統計數據 可能是 ,這將導致兩種災難性的後果。當 時,分母為0無法產生有意義輸出,而當 時,測試樣本的對數似然為 ,主要有兩種方式來避免這種災難性的後果:

n-gram模型特別容易引起維數災難,因為存在 可能的n-gram,而 通常很大,即使有大量訓練數據和適當的 ,大多數的n-gram也不會在訓練集中出現。另外還有一個缺點就是模型詞與詞之間並沒有什麼關聯,無法體現不同語義詞彙之間的不同。

NNLM是一類用來克服位數災難的語言模型,它使用詞的分布式表示來對自然語言序列建模,其中詞的分布式表示其實就是眾所周知的 詞向量

下面我們就來介紹一下NNLM的網路結構。

它的本質其實是一個前饋網路,就是用一個句子詞序列 來預測下1個詞(就記為 吧),因此它的輸入是 , 標簽是 ,模型訓練的目的就是預測接近 分布的 ,因為輸出層用的softmax激活,因此也可以理解成是輸出 的概率分布。

下面,通過這個圖,來看一下輸入是怎麼一步步到輸出的。

是one-hot形式表示的詞彙向量,它的維度等於總的詞彙數。比如語料庫只有4個詞"小明","吃了", 「個」,"蘋果",那它們的one-hot向量就可以是4維向量:

總之就是詞庫有多少個不同的詞, 就有幾維,一般的詞庫而言可能會有幾萬維,然後每個次分別在自己的索引為為1,其餘為0。

而look-up的作用就是要將one-hot的大維向量映射到一個分布式表示的相對低維的向量上,各自共享一個參數相同的全連接網路,通常會由200個左右的神經元,這里我們假設是 個,也就是從 維映射到 維:

這樣的映射過程有 -1個,把 拼接在一起,就得到了一個 維的向量 ,然後繼續往前傳播,傳到一個全連接的隱層,有h個神經元,並通過 激活,得到一個h維的向量:

之後就是輸出層了,輸出的雖然是一個和輸入 一樣的|V|維向量,但是這個輸出層的連接比較特殊,並不是普通的全連接,它和隱藏層的輸入和輸出都有關系 , 就是詞庫中所有詞的概率分布,然後用它和真實分布 計算交叉熵就是損失函數。

5. 神經網路如何識別和編碼性別

神經網路模擬人腦中的神經元,神經元相互連接。每個神經元接收數據,並將判斷過程中產生的信號傳輸到下一個神經元,該神經元逐層傳輸,最終達到識別的目的,與其他模型不同,神經網路很像模糊統計預測模型。由於這一特點,其適應性非常強。只要有充足的數據和充足的神經元,就可以實現識別,決策,預測等功能。

其實人工神經網路他是一種簡單的數學模型,它將類似於大腦神經突觸連接的結構應用於信息處理。因為在工程和學術界裡面,它也經常被直接稱為神經網路或准神經網路。神經網路是一種操作模型,它由大量的節點或神經元及其相互連接組成,每個節點代表一個稱為激勵函數的特定輸出函數。

6. NLP基礎知識和綜述

一種流行的自然語言處理庫、自帶語料庫、具有分類,分詞等很多功能,國外使用者居多,類似中文的jieba處理庫

為單詞序列分配概率的模型就叫做語言模型。

通俗來說, 語言模型就是這樣一個模型:對於任意的詞序列,它能夠計算出這個序列是一句話的概率。或者說語言模型能預測單詞序列的下一個詞是什麼。

** n-gram Language Models **

N-gram模型是一種典型的統計語言模型(Language Model,LM),統計語言模型是一個基於概率的判別模型.統計語言模型把語言(詞的序列)看作一個隨機事件,並賦予相應的概率來描述其屬於某種語言集合的可能性。給定一個詞彙集合 V,對於一個由 V 中的詞構成的序列S = ⟨w1, · · · , wT ⟩ ∈ Vn,統計語言模型賦予這個序列一個概率P(S),來衡量S 符合自然語言的語法和語義規則的置信度。用一句簡單的話說,統計語言模型就是計算一個句子的概率大小的這種模型。

n-gram模型可以減輕單詞序列沒有在訓練集中出現過而引起的問題,即數據稀疏問題

n-gram模型問題
對於n-gram模型的問題,這兩頁ppt說的很明白

N-gram模型基於這樣一種假設,當前詞的出現只與前面N-1個詞相關,而與其它任何詞都不相關,整句的概率就是各個詞出現概率的乘積。這些概率可以通過直接從語料中統計N個詞同時出現的次數得到。常用的是二元的Bi-Gram(N=2)和三元的Tri-Gram(N=3).Bi-Gram所滿足的假設是馬爾科夫假設。

一般常用的N-Gram模型是Bi-Gram和Tri-Gram。分別用公式表示如下:

Bi-Gram:P(T)=p(w1|begin) p(w2|w1) p(w3|w2)***p(wn|wn-1)

Tri-Gram:P(T)=p(w1|begin1,begin2) p(w2|w1,begin1) p(w3|w2w1)***p(wn|wn-1,wn-2)

注意上面概率的計算方法:P(w1|begin)=以w1為開頭的所有句子/句子總數;p(w2|w1)=w1,w2同時出現的次數/w1出現的次數。以此類推。

對於其中每項的計算舉個例子:

由上可見Bi-Gram計算公式中的begin一般都是加個<s>標簽。

N-gram存在的問題:

舉一個小數量的例子進行輔助說明:假設我們有一個語料庫(注意語料庫),如下:

老鼠真討厭,老鼠真丑,你愛老婆,我討厭老鼠。

想要預測「我愛老」這一句話的下一個字。我們分別通過 bigram 和 trigram 進行預測。

1)通過 bigram,便是要對 P(w|老)進行計算,經統計,「老鼠」出現了3次,「老婆」出現了1次,通過最大似然估計可以求得P(鼠|老)=0.75,P(婆|老)=0.25, 因此我們通過 bigram 預測出的整句話為: 我愛老鼠。

2)通過 trigram,便是要對便是要對 P(w|愛老)進行計算,經統計,僅「愛老婆」出現了1次,通過最大似然估計可以求得 P(婆|愛 老)=1,因此我們通過trigram 預測出的整句話為: 我愛老婆。顯然這種方式預測出的結果更加合理。

問題一:隨著 n 的提升,我們擁有了更多的前置信息量,可以更加准確地預測下一個詞。但這也帶來了一個問題,當N過大時很容易出現這樣的狀況:某些n-gram從未出現過, 導致很多預測概率結果為0, 這就是稀疏問題。 實際使用中往往僅使用 bigram 或 trigram 。(這個問題可以通過平滑來緩解參考: https://mp.weixin.qq.com/s/NvwB9H71JUivFyL_Or_ENA )

問題二:同時由於上個稀疏問題還導致N-gram無法獲得上下文的長時依賴。

問題三:n-gram 基於頻次進行統計,沒有足夠的泛化能力。

n-gram總結:統計語言模型就是計算一個句子的概率值大小,整句的概率就是各個詞出現概率的乘積,概率值越大表明該句子越合理。N-gram是典型的統計語言模型,它做出了一種假設,當前詞的出現只與前面N-1個詞相關,而與其它任何詞都不相關,整句的概率就是各個詞出現概率的乘積。它其中存在很多問題,再求每一個詞出現的概率時,隨著N的提升,能夠擁有更多的前置信息量,可以使得當前詞的預測更加准確,但是當N過大時會出現稀疏問題,導致很多詞的概率值為0,為解決這一問題,因此常用的為bigram 或 trigram,這就導致N-gram無法獲得上文的長時依賴。另一方面N-gram 只是基於頻次進行統計,沒有足夠的泛化能力。

神經網路語言模型

2003年 Bengio 提出,神經網路語言模型( neural network language model, NNLM)的思想是提出詞向量的概念,代替 ngram 使用離散變數(高維),採用連續變數(具有一定維度的實數向量)來進行單詞的分布式表示,解決了維度爆炸的問題,同時通過詞向量可獲取詞之間的相似性。

結合下圖可知它所建立的語言模型的任務是根據窗口大小內的上文來預測下一個詞,因此從另一個角度看它就是一個使用神經網路編碼的n-gram模型。

它是一個最簡單的神經網路,僅由四層構成,輸入層、嵌入層、隱藏層、輸出層。(從另一個角度看它就是一個使用神經網路編碼的n-gram模型)

輸入是單詞序列的index序列,例如單詞『這』在字典(大小為∣V∣)中的index是10,單詞『是』的 index 是23,『測』的 index 是65,則句子「這是測試」通過『這是測』預測『試』,窗口大小內上文詞的index序列就是 10, 23, 65。嵌入層(Embedding)是一個大小為∣V∣×K的矩陣(注意:K的大小是自己設定的,這個矩陣相當於隨機初始化的詞向量,會在bp中進行更新,神經網路訓練完成之後這一部分就是詞向量),從中取出第10、23、65行向量拼成3×K的矩陣就是Embedding層的輸出了。隱層接受拼接後的Embedding層輸出作為輸入,以tanh為激活函數,最後送入帶softmax的輸出層,輸出概率,優化的目標是使得待預測詞其所對應的softmax值最大。

缺點:因為這是通過前饋神經網路來訓練語言模型,缺點顯而易見就是其中的參數過多計算量較大,同時softmax那部分計算量也過大。另一方面NNLM直觀上看就是使用神經網路編碼的 n-gram 模型,也無法解決長期依賴的問題。

RNNLM

它是通過RNN及其變種網路來訓練語言模型,任務是通過上文來預測下一個詞,它相比於NNLM的優勢在於所使用的為RNN,RNN在處理序列數據方面具有天然優勢, RNN 網路打破了上下文窗口的限制,使用隱藏層的狀態概括歷史全部語境信息,對比 NNLM 可以捕獲更長的依賴,在實驗中取得了更好的效果。RNNLM 超參數少,通用性更強;但由於 RNN 存在梯度彌散問題,使得其很難捕獲更長距離的依賴信息。

Word2vec中的CBOW 以及skip-gram,其中CBOW是通過窗口大小內的上下文預測中心詞,而skip-gram恰恰相反,是通過輸入的中心詞預測窗口大小內的上下文。

Glove 是屬於統計語言模型,通過統計學知識來訓練詞向量

ELMO 通過使用多層雙向的LSTM(一般都是使用兩層)來訓練語言模型,任務是利用上下文來預測當前詞,上文信息通過正向的LSTM獲得,下文信息通過反向的LSTM獲得,這種雙向是一種弱雙向性,因此獲得的不是真正的上下文信息。

GPT是通過Transformer來訓練語言模型,它所訓練的語言模型是單向的,通過上文來預測下一個單詞

BERT通過Transformer來訓練MLM這種真正意義上的雙向的語言模型,它所訓練的語言模型是根據上下文來預測當前詞。

以上部分的詳細介紹在NLP之預訓練篇中有講到

語言模型的評判指標

具體參考: https://blog.csdn.net/index20001/article/details/78884646

Perplexity可以認為是average branch factor(平均分支系數),即預測下一個詞時可以有多少種選擇。別人在作報告時說模型的PPL下降到90,可以直觀地理解為,在模型生成一句話時下一個詞有90個合理選擇,可選詞數越少,我們大致認為模型越准確。這樣也能解釋,為什麼PPL越小,模型越好。
一般用困惑度Perplexity(PPL)衡量語言模型的好壞,困惑度越小則模型生成一句話時下一個詞的可選擇性越少,句子越確定則語言模型越好。

簡單介紹
Word2vec是一種有效創建詞嵌入的方法,它自2013年以來就一直存在。但除了作為詞嵌入的方法之外,它的一些概念已經被證明可以有效地創建推薦引擎和理解時序數據。在商業的、非語言的任務中。

背景
由於任何兩個不同詞的one-hot向量的餘弦相似度都為0,多個不同詞之間的相似度難以通過onehot向量准確地體現出來。
word2vec⼯具的提出正是為了解決上⾯這個問題。它將每個詞表⽰成⼀個定⻓的向量,並使得這些向量能較好地表達不同詞之間的相似和類⽐關系。

word2vec模型
word2vec⼯具包含了兩個模型,即跳字模型(skip-gram)和連續詞袋模型(continuous bag of words,CBOW)。word2vec的input/output都是將單詞作為one-hot向量來表示,我們可以把word2vec認為是詞的無監督學習的降維過程。

MaxEnt 模型(最大熵模型): 可以使用任意的復雜相關特徵,在性能上最大熵分類器超過了 Byaes 分類器。但是,作為一種分類器模型,這兩種方法有一個共同的缺點:每個詞都是單獨進行分類的,標記(隱狀態)之間的關系無法得到充分利用,具有馬爾可夫鏈的 HMM 模型可以建立標記之間的馬爾可夫關聯性,這是最大熵模型所沒有的。

最大熵模型的優點:首先,最大熵統計模型獲得的是所有滿足約束條件的模型中信息熵極大的模型;其次,最大熵統計模型可以靈活地設置約束條件,通過約束條件的多少可以調節模型對未知數據的適應度和對已知數據的擬合程度;再次,它還能自然地解決統計模型中參數平滑的問題。

最大熵模型的不足:首先,最大熵統計模型中二值化特徵只是記錄特徵的出現是否,而文本分類需要知道特徵的強度,因此,它在分類方法中不是最優的;其次,由於演算法收斂的速度較慢,所以導致最大熵統計模型它的計算代價較大,時空開銷大;再次,數據稀疏問題比較嚴重。

CRF(conditional random field) 模型(條件隨機場模型):首先,CRF 在給定了觀察序列的情況下,對整個的序列的聯合概率有一個統一的指數模型。一個比較吸引人的特性是其為一個凸優化問題。其次,條件隨機場模型相比改進的隱馬爾可夫模型可以更好更多的利用待識別文本中所提供的上下文信息以得更好的實驗結果。並且有測試結果表明:在採用相同特徵集合的條件下,條件隨機域模型較其他概率模型有更好的性能表現。

CRF 可以用於構造在給定一組輸入隨機變數的條件下,另一組輸出隨機變數的條件概率分布模型。經常被用於序列標注,其中包括詞性標注,分詞,命名實體識別等領域。

建一個條件隨機場,我們首先要定義一個特徵函數集,每個特徵函數都以整個句子s,當前位置i,位置i和i-1的標簽為輸入。然後為每一個特徵函數賦予一個權重,然後針對每一個標注序列l,對所有的特徵函數加權求和,必要的話,可以把求和的值轉化為一個概率值。

CRF 具有很強的推理能力,並且能夠使用復雜、有重疊性和非獨立的特徵進行訓練和推理,能夠充分地利用上下文信息作為特徵,還可以任意地添加其他外部特徵,使得模型能夠 獲取的信息非常豐富。

CRF 模型的不足:首先,通過對基於 CRF 的結合多種特徵的方法識別英語命名實體的分析,發現在使用 CRF 方法的過程中,特徵的選擇和優化是影響結果的關鍵因素,特徵選擇問題的好與壞,直接決定了系統性能的高低。其次,訓練模型的時間比 MaxEnt 更長,且獲得的模型很大,在一般的 PC 機上無法運行。

潛在語義分析(Latent Semantic Analysis,LSA)模型
在潛在語義分析(LSA)模型首先給出了這樣一個 『『分布式假設」 :一個 單詞的屬性是由它所處的環境刻畫的。這也就意味著如果兩個單詞在含義上比較接近,那麼它們也會出現在相似的文本中,也就是說具有相似的上下文。
LSA模型在構建好了單詞-文檔矩陣之後,出於以下幾種可能的原因,我們會使用奇異值分解(Singular Value Decomposition,SVD) 的方法來尋找該矩陣的一個低階近似。

概率潛在語義分析(Probability Latent Semantic Analysis ,PLSA)模型
概率潛在語義分析(PLSA)模型其實是為了克服潛在語義分析(LSA)模型存在的一些缺點而被提出的。LSA 的一個根本問題在於,盡管我們可以把 U k 和 V k 的每一列都看成是一個話題,但是由於每一列的值都可以看成是幾乎沒有限制的實數值,因此我們無法去進一步解釋這些值到底是什麼意思,也更無法從概率的角度來理解這個模型。
PLSA模型則通過一個生成模型來為LSA賦予了概率意義上的解釋。該模型假設,每一篇文檔都包含一系列可能的潛在話題,文檔中的每一個單詞都不是憑空產生的,而是在這些潛在的話題的指引下通過一定的概率生成的。

在 PLSA 模型裡面,話題其實是一種單詞上的概率分布,每一個話題都代表著一個不同的單詞上的概率分布,而每個文檔又可以看成是話題上的概率分布。每篇文檔就是通過這樣一個兩層的概率分布生成的,這也正是PLSA 提出的生成模型的核心思想。

PLSA 通過下面這個式子對d和 w 的聯合分布進行了建模:

該模型中的 *z * 的數量是需要事先給定的一個超參數。需要注意的是,上面這 個式子裡面給出了 P (w, d ) 的兩種表達方式,在前一個式子里, *d * 和 w 都是在給定 *z * 的前提下通過條件概率生成出來的,它們的生成方式是相似的,因此是 『『對稱』』 的;在後一個式子里,首先給定 d ,然後根據 P ( z | d ) 生成可能的話題 z ,然後再根據 P (w| z ) 生成可能的單詞 w,由於在這個式子裡面單詞和文檔的生成並不相似, 所以是 『『非對稱』』 的。

上圖給出了 PLSA 模型中非對稱形式的 Plate Notation表示法。其中d表示 一篇文檔,z 表示由文檔生成的一個話題,w 表示由話題生成的一個單詞。 在這個模型中, d和w 是已經觀測到的變數,而z是未知的變數(代表潛在的話題)。

容易發現,對於一個新的文檔而言,我們無法得知它對應的 P ( d ) 究竟是什麼, 因此盡管 PLSA 模型在給定的文檔上是一個生成模型,它卻無法生成新的未知的文檔。該模型的另外的一個問題在於,隨著文檔數量的增加, P ( z | d ) 的參數也會隨著線性增加,這就導致無論有多少訓練數據,都容易導致模型的過擬合問題。這兩點成為了限制 PLSA 模型被更加廣泛使用的兩大缺陷。

潛在狄利克雷分配(Latent Dirichlet Analysis , LDA)模型

為了解決 PLSA 模型中出現的過擬合問題,潛在狄利克雷分配(LDA)模型被 Blei 等人提出,這個模型也成為了主題模型這個研究領域內應用最為廣泛的模 型。LDA就是在PLSA的基礎上加層貝葉斯框架,即LDA就是PLSA的貝葉斯版本(正因為LDA被貝葉斯化了,所以才需要考慮歷史先驗知識,才加的兩個先驗參數)。

從上一節我們可以看到,在 PLSA 這個模型里,對於一個未知的新文檔 d ,我們對於 P ( d ) 一無所知,而這個其實是不符合人的經驗的。或者說,它沒有去使用本來可以用到的信息,而這部分信息就是 LDA 中所謂的先驗信息。

具體來說,在 LDA 中,首先每一個文檔都被看成跟有限個給定話題中的每一個存在著或多或少的關聯性,而這種關聯性則是用話題上的概率分布來刻畫的, 這一點與 PLSA 其實是一致的。

但是在 LDA 模型中,每個文檔關於話題的概率分布都被賦予了一個先驗分布,這個先驗一般是用稀疏形式的狄利克雷分布表示的。 這種稀疏形式的狄利克雷先驗可以看成是編碼了人類的這樣一種先驗知識:一般而言,一篇文章的主題更有可能是集中於少數幾個話題上,而很少說在單獨一篇文章內同時在很多話題上都有所涉獵並且沒有明顯的重點。

此外,LDA 模型還對一個話題在所有單詞上的概率分布也賦予了一個稀疏形式的狄利克雷先驗,它的直觀解釋也是類似的:在一個單獨的話題中,多數情況是少部分(跟這個話題高度相關的)詞出現的頻率會很高,而其他的詞出現的頻率則明顯較低。這樣兩種先驗使得 LDA 模型能夠比 PLSA 更好地刻畫文檔-話題-單詞這三者的關系。

事實上,從 PLSA 的結果上來看,它實際上相當於把 LDA 模型中的先驗分布轉變為均勻分布,然後對所要求的參數求最大後驗估計(在先驗是均勻分布的前提下,這也等價於求參數的最大似然估計) ,而這也正反映出了一個較為合理的先驗對於建模是非常重要的。

分詞就是將連續的字序列按照一定的規范重新組合成詞序列的過程。
現有的分詞演算法可分為三大類:基於字元串匹配的分詞方法、基於理解的分詞方法和基於統計的分詞方法。
按照是否與詞性標注過程相結合,又可以分為單純分詞方法和分詞與標注相結合的一體化方法。

中文分詞根據實現原理和特點,主要分為以下2個類別:

(1)基於詞典分詞演算法
也稱字元串匹配分詞演算法。該演算法是按照一定的策略將待匹配的字元串和一個已建立好的「充分大的」詞典中的詞進行匹配,若找到某個詞條,則說明匹配成功,識別了該詞。常見的基於詞典的分詞演算法分為以下幾種:正向最大匹配法、逆向最大匹配法和雙向匹配分詞法等。
基於詞典的分詞演算法是應用最廣泛、分詞速度最快的。很長一段時間內研究者都在對基於字元串匹配方法進行優化,比如最大長度設定、字元串存儲和查找方式以及對於詞表的組織結構,比如採用TRIE索引樹、哈希索引等。

(2)基於統計的機器學習演算法
這類目前常用的是演算法是HMM、CRF(條件隨機場)、SVM、深度學習等演算法,比如stanford、Hanlp分詞工具是基於CRF演算法。以CRF為例,基本思路是對漢字進行標注訓練,不僅考慮了詞語出現的頻率,還考慮上下文,具備較好的學習能力,因此其對歧義詞和未登錄詞的識別都具有良好的效果。

常見的分詞器都是使用機器學習演算法和詞典相結合,一方面能夠提高分詞准確率,另一方面能夠改善領域適應性。

隨著深度學習的興起,也出現了 基於神經網路的分詞器 ,例如有人員嘗試使用雙向LSTM+CRF實現分詞器, 其本質上是序列標注 ,所以有通用性,命名實體識別等都可以使用該模型,據報道其分詞器字元准確率可高達97.5%。演算法框架的思路與論文《Neural Architectures for Named Entity Recognition》類似,利用該框架可以實現中文分詞,如下圖所示:

首先對語料進行字元嵌入,將得到的特徵輸入給雙向LSTM,然後加一個CRF就得到標注結果。

目前中文分詞難點主要有三個:
1、分詞標准 :比如人名,在哈工大的標准中姓和名是分開的,但在Hanlp中是合在一起的。這需要根據不同的需求制定不同的分詞標准。

2、歧義 :對同一個待切分字元串存在多個分詞結果。
歧義又分為組合型歧義、交集型歧義和真歧義三種類型。

一般在搜索引擎中,構建索引時和查詢時會使用不同的分詞演算法。常用的方案是,在索引的時候使用細粒度的分詞以保證召回,在查詢的時候使用粗粒度的分詞以保證精度。

3、新詞 :也稱未被詞典收錄的詞,該問題的解決依賴於人們對分詞技術和漢語語言結構的進一步認識。

典型的文本分類過程可以分為三個步驟:
1. 文本表示(Text Representation)
這一過程的目的是把文本表示成分類器能夠處理的形式。最常用的方法是向量空間模型,即把文本集表示成詞-文檔矩陣,矩陣中每個元素代表了一個詞在相應文檔中的權重。選取哪些詞來代表一個文本,這個過程稱為特徵選擇。常見的特徵選擇方法有文檔頻率、信息增益、互信息、期望交叉熵等等。為了降低分類過程中的計算量,常常還需要進行降維處理,比如LSI。
2. 分類器構建(Classifier Construction)
這一步驟的目的是選擇或設計構建分類器的方法。不同的方法有各自的優缺點和適用條件,要根據問題的特點來選擇一個分類器。我們會在後面專門講述常用的方法。選定方法之後,在訓練集上為每個類別構建分類器,然後把分類器應用於測試集上,得到分類結果。
3. 效果評估(Classifier Evaluation)
在分類過程完成之後,需要對分類效果進行評估。評估過程應用於測試集(而不是訓練集)上的文本分類結果,常用的評估標准由IR領域繼承而來,包括查全率、查准率、F1值等等。

1. Rocchio方法
每一類確定一個中心點(centroid),計算待分類的文檔與各類代表元間的距離,並作為判定是否屬於該類的判據。Rocchio方法的特點是容易實現,效率高。缺點是受文本集分布的影響,比如計算出的中心點可能落在相應的類別之外。

2. 樸素貝葉斯(naïve bayes)方法
將概率論模型應用於文檔自動分類,是一種簡單有效的分類方法。使用貝葉斯公式,通過先驗概率和類別的條件概率來估計文檔對某一類別的後驗概率,以此實現對此文檔所屬類別的判斷。

3. K近鄰(K-Nearest Neightbers, KNN)方法
從訓練集中找出與待分類文檔最近的k個鄰居(文檔),根據這k個鄰居的類別來決定待分類文檔的類別。KNN方法的優點是不需要特徵選取和訓練,很容易處理類別數目多的情況,缺點之一是空間復雜度高。KNN方法得到的分類器是非線性分類器。

4. 支持向量機(SVM)方法
對於某個類別,找出一個分類面,使得這個類別的正例和反例落在這個分類面的兩側,而且這個分類面滿足:到最近的正例和反例的距離相等,而且是所有分類面中與正例(或反例)距離最大的一個分類面。SVM方法的優點是使用很少的訓練集,計算量小;缺點是太依賴於分類面附近的正例和反例的位置,具有較大的偏執。

文本聚類過程可以分為3個步驟:
1. 文本表示(Text Representation)
把文檔表示成聚類演算法可以處理的形式。所採用的技術請參見文本分類部分。
2. 聚類演算法選擇或設計(Clustering Algorithms)
演算法的選擇,往往伴隨著相似度計算方法的選擇。在文本挖掘中,最常用的相似度計算方法是餘弦相似度。聚類演算法有很多種,但是沒有一個通用的演算法可以解決所有的聚類問題。因此,需要認真研究要解決的問題的特點,以選擇合適的演算法。後面會有對各種文本聚類演算法的介紹。
3. 聚類評估(Clustering Evaluation)
選擇人工已經分好類或者做好標記的文檔集合作為測試集合,聚類結束後,將聚類結果與已有的人工分類結果進行比較。常用評測指標也是查全率、查准率及F1值。

1.層次聚類方法
層次聚類可以分為兩種:凝聚(agglomerative)層次聚類和劃分(divisive)層次聚類。凝聚方法把每個文本作為一個初始簇,經過不斷的合並過程,最後成為一個簇。劃分方法的過程正好與之相反。層次聚類可以得到層次化的聚類結果,但是計算復雜度比較高,不能處理大量的文檔。

2.劃分方法
k-means演算法是最常見的劃分方法。給定簇的個數k,選定k個文本分別作為k個初始簇,將其他的文本加入最近的簇中,並更新簇的中心點,然後再根據新的中心點對文本重新劃分;當簇不再變化時或經過一定次數的迭代之後,演算法停止。k-means演算法復雜度低,而且容易實現,但是對例外和雜訊文本比較敏感。另外一個問題是,沒有一個好的辦法確定k的取值。

3.基於密度的方法
為了發現任意形狀的聚類結果,提出了基於密度的方法。這類方法將簇看作是數據空間中被低密度區域分割開的高密度區域。常見的基於密度的方法有DBSCAN, OPTICS, DENCLUE等等。

4.神經網路方法
神經網路方法將每個簇描述為一個標本,標本作為聚類的"原型",不一定對應一個特定的數據,根據某些距離度量,新的對象被分配到與其最相似的簇中。比較著名的神經網路聚類演算法有:競爭學習(competitive learing)和自組織特徵映射(self-organizing map)[Kohonen, 1990]。神經網路的聚類方法需要較長的處理時間和復雜的數據復雜性,所以不適用於大型數據的聚類。

7. 利用神經網路進行文本分類演算法綜述(持續更新中)

傳統的文本分類一般都是使用詞袋模型/Tf-idf作為特徵+機器學習分類器來進行分類的。隨著深度學習的發展,越來越多的神經網路模型被用來進行文本分類。本文將對這些神經網路模型做一個簡單的介紹。

本文介紹了一種詞向量模型,雖然算不得文本分類模型,但由於其可以說是fasttext的基礎。因此也簡單提一下。

作者認為cbow和skipgram及大部分詞向量模型都沒有考慮到單詞的多態性,而簡單的將一個單詞的多種形態視為獨立的單詞。例如like的不同形式有likes,liking,liked,likes,這些單詞的意思其實是相同的,但cbow/skipgram模型卻認為這些單詞是各自獨立的,沒有考慮到其形態多樣性。

因此作者提出了一個可以有效利用單詞字元級別信息的n-gram詞向量模型,該模型是以skipgram模式實現的。例如單詞 where,其n-gram表示為<wh, whe, her, ere, re>, where。其中<>分別表示前後綴。在原始的skipgram模型中,輸入僅僅只是where的onehot向量,而在此模型中輸入則變成了<wh, whe, her, ere, re>, where的onehot編碼的加和,有效的利用了字元級別的信息,因此效果更加好。

而在loss方面,文中採用了負采樣+binary LogisticRegression的策略。即對每一個目標單詞都預測為正負中的一種。

在本文中作者提供了一個基於神經網路的文本分類模型,這個模型是基於cbow的,與cbow非常類似。

和CBOW一樣,fastText模型也只有三層:輸入層、隱含層、輸出層(Hierarchical Softmax),輸入都是多個經向量表示的單詞,輸出都是一個特定的target,隱含層都是對多個詞向量的疊加平均。不同的是,CBOW的輸入是目標單詞的上下文,fastText的輸入是多個單詞及其n-gram特徵的embeding表示方式,這些特徵用來表示單個文檔;CBOW的輸入單詞被onehot編碼過,fastText的輸入特徵是被embedding過;CBOW的輸出是目標詞彙,fastText的輸出是文檔對應的類標。輸出層的實現同樣使用了層次softmax,當然如果自己實現的話,對於類別數不是很多的任務,個人認為是可以直接使用softmax的。

最後,貼一個Keras的模型fasttext簡化版。

基於詞向量表示,本文提出利用卷積神經網路來進行文本分類。其演算法如上圖所示:

在本文中,作者嘗試了多種不同的詞向量模式:

在上一篇文章中CNN網路的輸入一般是預訓練好的詞向量,而在本文中作者提出一種直接將embedding訓練與分類任務結合在一起,且能有效提取/保留詞序信息,也即有效訓練出n-gram的模型方法,其實也可以理解為一種利用CNN來進行embedding的方法。

此外,另一個問題是輸入序列長度變化問題(在上一篇文章textCNN中通過padding解決的?),在本文作者提出使用一個動態可變的pooling層來解決這個問題,使得卷積層輸出的大小是相同的。關於可變pooling其實與圖像識別中的 空間金字塔池化 (Spatial Pyramid Pooling) 是類似的。

這篇文章有點將fastText與TextCNN結合在一起的感覺,將n-gram embedding與分類任務結合在了一起進行訓練,通過CNN來進行Embedding。

Text Categorization via Region Embedding》

在本篇文章中作者提出了一個tv-embedding(即two-view embedding),它也屬於region embedding(也可以理解為ngram embedding)。這種方法與上面的bow-CNN表示相似,使用bow(bag of words)的方式來表示一個區域的詞句,然後通過某個區域(region,左右鄰域的單詞或詞句)來預測其前後的區域(單詞或詞句),即輸入區域是view1,target區域是view2。tv-embedding是單獨訓練的,在使用的時候與CNN中的embedding組合在一起(形成多個channel?)。作者認為,word2vec方法預訓練得到的embedding向量是普適性的,而通過特定任務的數據集的訓練得到tv-embedding具有任務相關的一些信息,更有利於提升我們的模型效果。

吐槽一下,這篇文章沒太看懂,也可能是英語太差,作者文章中沒有那種一眼就能讓人理解的網路圖,像textCNN的圖就非常一目瞭然,看圖就知道是怎麼做的了。

本文提出了一個使用監督學習加半監督預訓練的基於LSTM的文本分類模型。文章作者與上面相同,所以用到的很多技術可以說與上面也是同出一轍。因此簡單說下本文的一些思路。

作者認為已有的直接使用LSTM作為文本分類模型並直接將LSTM的最後一個輸出作為後續全連接分類器的方法面臨兩個問題:(1)這種方式一般都是與word embedding整合在一起(即輸入onehot經過一個embedding層再進入LSTM),但是embedding訓練不穩定,不好訓練;(2)直接使用LSTM最後一個輸出來表示整個文檔不準確,一般來說LSTM輸入中後面的單詞會在最後輸出中佔有較重的權重,但是這對於文章表示來說並不總是對的。因此作者對這兩點進行了改進:

本文其實可以看作是作者將自己前面的tv-embedding半監督訓練與RCNN的一個融合吧,大有一種一頓操作猛如虎,一看人頭0-5的感覺(因為作者的實驗結果跟一般的CNN相比其實也搶不了多少)。

本文的作者也是前面兩篇使用CNN來進行文本分類處理的文章的作者。因此在本文中,結合了前面兩篇文章提出的一些方法,並使用了一個深層的卷積神經網路。具體的細節包括:

更多詳細的關於DPCNN的細節可以查看 從DPCNN出發,撩一下深層word-level文本分類模型 。

本文提出了一種基於CNN+Attention的文本分類模型。作者認為已有的基於CNN的文本分類模型大都使用的是固定大小的卷積核,因此其學習到的表示也是固定的n-gram表示,這個n與CNN filter大小相關。但是在進行句子的語義表示時,不同句子發揮重要作用的ngram詞語常常是不同的,也即是變化的。因此,模型能根據句子來自適應的選擇每個句子最佳的n-gram對於提升模型的語義表示能力是非常關鍵的。本文便是由此思路提出了一種自適應的來選擇不同n-gram表示的模型。

本文模型在主題結構上參照了CV中的DenseNet,藉由DenseNet中的稠密連接來提取到豐富的n-gram特徵表示。舉例來說,在layer3的特徵不僅能學習到f(x1, x2, x3),還能學習到f(x1(x2,x3))這種更多層次,更加豐富的特徵。網路的結構主要包括三部分:DenseCNN主網路,Attention mole和最後的全連接層分類網路。下面對這三部分進行簡單的說明:

本文通過Dense connection + Attention來自動獲取對於文本語義最重要的n-gram特徵,結果很好。但是缺點是,這個網路比較適合較短的文本,文中對輸入文本進行了padding補齊,對於不同數據集最大長度分別為50,100等,但這對於較長的文本明顯是不足的。因此對於較長的文本或許HAN這種借用RNN來不限制輸入長短的網路會更好。

本文提出了一種結合循環神經網路(RNN)和卷積神經網路來進行文本分類的方法,其結構如上圖所示,該網路可以分為三部分:

雖然說是RNN與CNN的結合,但是其實只用到了CNN中的pooling,多少有一點噱頭的意思。文中還提到了RCNN為什麼比CNN效果好的原因,即為什麼RCNN能比CNN更好的捕捉到上下文信息:CNN使用了固定大小window(也即kernel size)來提取上下文信息,其實就是一個n-gram。因此CNN的表現很大程度上受window大小的影響,太小了會丟失一些長距離信息,太大了又會導致稀疏性問題,而且會增加計算量。

在眾多自然語言處理任務中,一個非常突出的問題就是訓練數據不足,且標注難度大。因此文本提出了一種多任務共享的RNN模型框架,其使用多個不同任務數據集來訓練同一個模型共享參數,已達到擴充數據集的作用。

文中作者提出了三個模型,如上圖所示:

三個模型的訓練方式相同:

本文提出了一個層次LSTM+Attention模型。作者認為,雖然一篇文章有多個句子組成但真正其關鍵作用的可能是其中的某幾個,因此對各個句子施加了注意力機制,以使得對文章語義貢獻較多的句子佔有更多的權重。同樣的,組成一個句子的單詞有多個,但是發揮重要作用的可能就那麼幾個,因此使用注意力機制以使得重要單詞發揮更大的作用,這些便是本文的核心思想。整個網路可分為三層,兩個LSTM層分別用來進行word encode和sentence encode,最頂上為一個全連接分類層。若加上兩層注意力層,則可認為網路為5層。下面簡單聊聊這五層網路的結構:

總體來說,本文看起來還是比較有意思的,符合人閱讀文章的習慣,我們寫文章的時候也是有中心詞和中心句的。但是由於這個層級結構是否會導致訓練慢或者不好訓練還不得而知。最後,文中還提出對文章按長短先進行排序,長度相似的進入一個batch,這將訓練速度加快了3倍。

本文提出了一個基於圖神經網路的文本分類方法。該方法的主要思想是將所有文章及其包含的詞彙都放到一個圖網路裡面去,圖網路中的節點分為兩種類型:單詞節點和文章節點。其中連接單詞節點和文章節點的邊的權重使用TF-IDF來表示,而單詞與單詞之間邊的權重則是使用點互信息(PMI)來表示。點互信息與傳統語言模型中的條件概率計算方式非常相似。只不過PMI採用的是滑窗方式而條件概率是直接在所有語料中進行統計,可以認為是將所有語料當做一個大窗口,這時就又與PMI相同了。

A表示圖網路的鄰接矩陣,表示如下:

GCN同樣也是可以含有多層隱藏層的,其各個層的計算方式如下:

其中A'為歸一化對稱鄰接矩陣, W0 ∈ R^(m×k) 為權重矩陣,ρ是激活函數,例如 ReLU ρ(x) = max(0,x) 如前所述,可以通過疊加多個GCN層來合並更高階的鄰域信息:

其中j表示層數。
損失函數定義為所有已標記文檔的交叉熵誤差:

文中提到Text GCN運行良好的原因有兩個方面:

但是其也有一些缺:

總的來說,文章的idea還是挺有意思的,效果也還不錯。初識GCN可能還是有一點難以理解,可以參考如下資料進行進一步學習:
基於圖卷積網路的文本分類演算法
如何理解 Graph Convolutional Network(GCN)?

8. cnn全稱是什麼

CNN的全稱是Convolutional Neural Network,是一種前饋神經網路。由一個或多個卷積層、池化層以及頂部的全連接層組成,在圖像處理領域表現出色。本文主要講解CNN如何在自然語言處理方面的運用。

卷積神經網路主要用於提取卷積對象的局部特徵,當卷積對象是自然語言文本時,比如一個句子,此時其局部特徵是特定的關鍵詞或關鍵短語,所以利用卷積神經網路作為特徵提取器時相當於詞袋模型,表示一個句子中是否出現過特定的關鍵詞或關鍵短語。用在分類任務上,相當於提取出對於分類最有用的特徵信息。

cnn簡介:

現在,CNN已經成為眾多科學領域的研究熱點之一,特別是在模式分類領域,由於該網路避免了對圖像的復雜前期預處理,可以直接輸入原始圖像,因而得到了更為廣泛的應用。

在圖像處理中,往往把圖像表示為像素的向量,比如一個1000×1000的圖像,可以表示為一個1000000的向量。在上一節中提到的神經網路中,如果隱含層數目與輸入層一樣,即也是1000000時。

以上內容參考:網路-卷積神經網路

9. 言語是如何形成的,大腦的哪些部分對它進行控制

言語發育,他跟大腦是有分不開的,密切的聯系。我們的言語。要說話需要靠言語中樞,所以聽覺中樞和語言中樞他有橋梁,通過聽覺中樞刺激的言語中樞,言語中樞他的信號在指揮我們來表達我們的語言。

包括我們視覺、聽覺、味覺、嗅覺、觸覺都會刺激我們的大腦,我們的大腦功能的發育跟我們的刺激也是分不開的,首先它是一個促進的作用,大腦呢,其實他反過來他又會反饋啊。進一步來刺激我們的聽覺、視覺、味覺,特別我們說在大腦裡面,它有很豐富的一些神經網路的聯系,你比如說我們的聽覺進了大腦以後,他在聽覺皮層。

10. 神經網路模型 nlp是什麼意思

NLP是神經語言程序學 (Neuro-Linguistic Programming) 的英文縮寫。在香港,也有意譯為身心語法程式學的。N (Neuro) 指的是神經系統,包括大腦和思維過程。L (Linguistic) 是指語言,更准確點說,是指從感覺信號的輸入到構成意思的過程。P (Programming) 是指為產生某種後果而要執行的一套具體指令。即指我們思維上及行為上的習慣,就如同電腦中的程式,可以透過更新軟體而改變。
故此,NLP也可以解釋為研究我們的大腦如何工作的學問。知道大腦如何工作後,我們可以配合和提升它,從而使人生更成功快樂。也因此,把NLP譯為"身心語法程式學"或"神經語言程式學"。

與語言在神經網路中如何表示相關的資料

熱點內容
國產軟體網路版 瀏覽:759
為什麼路由器過2天就網路錯誤 瀏覽:428
農村小院無線網路覆蓋 瀏覽:493
出版學習網路課堂有哪些 瀏覽:676
小米手機檢測通信與網路異常 瀏覽:981
多個無線網路共享 瀏覽:303
網路電視台與手機台 瀏覽:193
正在使用網路的軟體是 瀏覽:476
計算機網路是怎麼學的 瀏覽:10
無線網路優化分析 瀏覽:246
普通家用網路多少hz 瀏覽:544
蘋果手機與安卓手機網路哪個好 瀏覽:145
網路異常2202 瀏覽:741
磊科路由器lpv6網路 瀏覽:22
網路游戲的合同履行地是哪裡 瀏覽:7
無線網路球機移動偵測無反應 瀏覽:263
榮耀x10網路慢怎麼處理 瀏覽:364
網路工程師如何考cisco 瀏覽:878
河南省文化網路安全 瀏覽:283
計算機網路中級基礎知識 瀏覽:994

友情鏈接