導航:首頁 > 網路安全 > 如何調制神經網路代碼

如何調制神經網路代碼

發布時間:2022-08-31 02:51:24

如何用代碼編寫一個神經網路異或運算器

配置環境、安裝合適的庫、下載數據集……有時候學習深度學習的前期工作很讓人沮喪,如果只是為了試試現在人人都談的深度學習,做這些麻煩事似乎很不值當。但好在我們也有一些更簡單的方法可以體驗深度學習。近日,編程學習平台 Scrimba 聯合創始人 Per Harald Borgen 在 Medium 上發文介紹了一種僅用30行 JavaScript 代碼就創建出了一個神經網路的教程,而且使用的工具也只有 Node.js、Synaptic.js 和瀏覽器而已。另外,作者還做了一個互動式 Scrimba 教程,也許能幫你理解其中的復雜概念。

Synaptic.js:http://synaptic.juancazala.com

Node.js:http://nodejs.org

Scrimba 教程:http://scrimba.com/casts/cast-1980

Synaptic.js 讓你可以使用 Node.js 和瀏覽器做深度學習。在這篇文章中,我將介紹如何使用 Synaptic.js 創建和訓練神經網路。

//創建網路const { Layer, Network }= window.synaptic;var inputLayer = new Layer(2);var hiddenLayer = new Layer(3);var outputLayer = new Layer(1);

inputLayer.project(hiddenLayer);

hiddenLayer.project(outputLayer);var myNetwork = new Network({

input: inputLayer,

hidden:[hiddenLayer],

output: outputLayer

});//訓練網路——學習異或運算var learningRate =.3;for (var i =0; i <20000; i++)

{//0,0=>0

myNetwork.activate([0,0]);

myNetwork.propagate(learningRate,[0]);//0,1=>1

myNetwork.activate([0,1]);

myNetwork.propagate(learningRate,[1]);//1,0=>1

myNetwork.activate([1,0]);

myNetwork.propagate(learningRate,[1]);//1,1=>0

myNetwork.activate([1,1]);

myNetwork.propagate(learningRate,[0]);

}//測試網路console.log(myNetwork.activate([0,0]));//[0.0]console.log(myNetwork.activate([0,1]));//[0.]console.log(myNetwork.activate([1,0]));//[0.]console.log(myNetwork.activate([1,1]));//[0.0]

我們將創建一個最簡單的神經網路:一個可以執行異或運算的網路。上面就是這個網路的全部代碼,但在我們深入解讀這些代碼之前,首先我們先了解一下神經網路的基礎知識。

神經元和突觸

神經網路的基本構造模塊是神經元。神經元就像是一個函數,有幾個輸入,然後可以得到一個輸出。神經元的種類有很多。我們的網路將使用 sigmoid 神經元,它可以輸入任何數字並將其壓縮到0 到1 之間。下圖就是一個 sigmoid 神經元。它的輸入是5,輸出是1。箭頭被稱為突觸,可以將該神經元與網路中的其它層連接到一起。

現在訓練這個網路:

// train the network - learn XORvar learningRate =.3;for (var i =0; i <20000; i++){ //0,0=>0

myNetwork.activate([0,0]);

myNetwork.propagate(learningRate,[0]);//0,1=>1

myNetwork.activate([0,1]);

myNetwork.propagate(learningRate,[1]);//1,0=>1

myNetwork.activate([1,0]);

myNetwork.propagate(learningRate,[1]);//1,1=>0

myNetwork.activate([1,1]);

myNetwork.propagate(learningRate,[0]);

}

這里我們運行該網路20000次。每一次我們都前向和反向傳播4 次,為該網路輸入4 組可能的輸入:[0,0][0,1][1,0][1,1]。

首先我們執行 myNetwork.activate([0,0]),其中[0,0]是我們發送給該網路的數據點。這是前向傳播,也稱為激活這個網路。在每次前向傳播之後,我們需要執行反向傳播,這時候網路會更新自己的權重和偏置。

反向傳播是通過這行代碼完成的:myNetwork.propagate(learningRate,[0]),其中 learningRate 是一個常數,給出了網路每次應該調整的權重的量。第二個參數0 是給定輸入[0,0]對應的正確輸出。

然後,該網路將自己的預測與正確的標簽進行比較,從而了解自己的正確程度有多少

然後網路使用這個比較為基礎來校正自己的權重和偏置值,這樣讓自己的下一次猜測更加正確一點。

這個過程如此反復20000次之後,我們可以使用所有四種可能的輸入來檢查網路的學習情況:

->[0.0]console.log(myNetwork.activate([0,1]));

->[0.]console.log(myNetwork.activate([1,0]));

->[0.]console.log(myNetwork.activate([1,1]));

->[0.0]

如果我們將這些值四捨五入到最近的整數,我們就得到了正確的異或運算結果。

這樣就完成了。盡管這僅僅只碰到了神經網路的表皮,但也足以幫助你進一步探索 Synaptic 和繼續學習了。http://github.com/cazala/synaptic/wiki 這里還包含了更多好教程。

② 神經網路BP演算法求代碼

輸入節點數為3x3x5=45,輸出節點數為3x3+2=11,隱節點數通過試湊法得出。

BP神經網路的Matlab代碼見附件,修改節點數、增加歸一化和反歸一化過程即可。


BP演算法,誤差反向傳播(Error Back Propagation, BP)演算法。BP演算法的基本思想是,學習過程由信號的正向傳播與誤差的反向傳播兩個過程組成。由於多層前饋網路的訓練經常採用誤差反向傳播演算法,人們也常把將多層前饋網路直接稱為BP網路。

1)正向傳播:輸入樣本->輸入層->各隱層(處理)->輸出層

注1:若輸出層實際輸出與期望輸出(教師信號)不符,則轉入2)(誤差反向傳播過程)

2)誤差反向傳播:輸出誤差(某種形式)->隱層(逐層)->輸入層

其主要目的是通過將輸出誤差反傳,將誤差分攤給各層所有單元,從而獲得各層單元的誤差信號,進而修正各單元的權值(其過程,是一個權值調整的過程)。

注2:權值調整的過程,也就是網路的學習訓練過程(學習也就是這么的由來,權值調整)。

③ 如何用python和scikit learn實現神經網路

1:神經網路演算法簡介

2:Backpropagation演算法詳細介紹

3:非線性轉化方程舉例

4:自己實現神經網路演算法NeuralNetwork

5:基於NeuralNetwork的XOR實例

6:基於NeuralNetwork的手寫數字識別實例

7:scikit-learn中BernoulliRBM使用實例

8:scikit-learn中的手寫數字識別實例

一:神經網路演算法簡介

1:背景

以人腦神經網路為啟發,歷史上出現過很多版本,但最著名的是backpropagation

2:多層向前神經網路(Multilayer Feed-Forward Neural Network)

④ 神經網路演算法中,參數的設置或者調整,有什麼方法可以採用

若果對你有幫助,請點贊。
神經網路的結構(例如2輸入3隱節點1輸出)建好後,一般就要求神經網路里的權值和閾值。現在一般求解權值和閾值,都是採用梯度下降之類的搜索演算法(梯度下降法、牛頓法、列文伯格-馬跨特法、狗腿法等等),這些演算法會先初始化一個解,在這個解的基礎上,確定一個搜索方向和一個移動步長(各種法算確定方向和步長的方法不同,也就使各種演算法適用於解決不同的問題),使初始解根據這個方向和步長移動後,能使目標函數的輸出(在神經網路中就是預測誤差)下降。 然後將它更新為新的解,再繼續尋找下一步的移動方向的步長,這樣不斷的迭代下去,目標函數(神經網路中的預測誤差)也不斷下降,最終就能找到一個解,使得目標函數(預測誤差)比較小。
而在尋解過程中,步長太大,就會搜索得不仔細,可能跨過了優秀的解,而步長太小,又會使尋解過程進行得太慢。因此,步長設置適當非常重要。
學習率對原步長(在梯度下降法中就是梯度的長度)作調整,如果學習率lr = 0.1,那麼梯度下降法中每次調整的步長就是0.1*梯度,
而在matlab神經網路工具箱里的lr,代表的是初始學習率。因為matlab工具箱為了在尋解不同階段更智能的選擇合適的步長,使用的是可變學習率,它會根據上一次解的調整對目標函數帶來的效果來對學習率作調整,再根據學習率決定步長。
機制如下:
if newE2/E2 > maxE_inc %若果誤差上升大於閾值
lr = lr * lr_dec; %則降低學習率
else
if newE2 < E2 %若果誤差減少
lr = lr * lr_inc;%則增加學習率
end
詳細的可以看《神經網路之家》nnetinfo里的《[重要]寫自己的BP神經網路(traingd)》一文,裡面是matlab神經網路工具箱梯度下降法的簡化代碼

若果對你有幫助,請點贊。
祝學習愉快

⑤ matlab BP神經網路預測代碼

P=[1;2;3;4;5];%月
P=[P/50];
T=[2;3;4;5;6];%月訓練樣本
T=[T/50];
threshold=[0 1;0 1;0 1;0 1;0 1;0 1;0 1];
net=newff(threshold,[15,7],{'tansig','logsig'},'trainlm');
net.trainParam.epochs=2000;
net.trainParam.goal=0.001;
LP.lr=0.1;
net=train(net,P,T);
P_test=[6月]';%6月數據預測7月
P_test=[P_test/50];
y=sim(net,P_test)
y=[y*50]

⑥ 神經網路切負荷控制matlab代碼是什麼

摘要 你好!親~p=[];t=[];

⑦ 如何用70行Java代碼實現神經網路演算法

如何用70行Java代碼實現神經網路演算法
import java.util.Random;
public class BpDeep{
public double[][] layer;//神經網路各層節點
public double[][] layerErr;//神經網路各節點誤差
public double[][][] layer_weight;//各層節點權重
public double[][][] layer_weight_delta;//各層節點權重動量
public double mobp;//動量系數
public double rate;//學習系數

public BpDeep(int[] layernum, double rate, double mobp){
this.mobp = mobp;
this.rate = rate;
layer = new double[layernum.length][];
layerErr = new double[layernum.length][];
layer_weight = new double[layernum.length][][];
layer_weight_delta = new double[layernum.length][][];
Random random = new Random();
for(int l=0;l<layernum.length;l++){
layer[l]=new double[layernum[l]];
layerErr[l]=new double[layernum[l]];
if(l+1<layernum.length){
layer_weight[l]=new double[layernum[l]+1][layernum[l+1]];
layer_weight_delta[l]=new double[layernum[l]+1][layernum[l+1]];
for(int j=0;j<layernum[l]+1;j++)
for(int i=0;i<layernum[l+1];i++)
layer_weight[l][j][i]=random.nextDouble();//隨機初始化權重
}
}
}
//逐層向前計算輸出
public double[] computeOut(double[] in){
for(int l=1;l<layer.length;l++){
for(int j=0;j<layer[l].length;j++){
double z=layer_weight[l-1][layer[l-1].length][j];
for(int i=0;i<layer[l-1].length;i++){
layer[l-1][i]=l==1?in[i]:layer[l-1][i];
z+=layer_weight[l-1][i][j]*layer[l-1][i];
}
layer[l][j]=1/(1+Math.exp(-z));
}
}
return layer[layer.length-1];
}
//逐層反向計算誤差並修改權重
public void updateWeight(double[] tar){
int l=layer.length-1;
for(int j=0;j<layerErr[l].length;j++)
layerErr[l][j]=layer[l][j]*(1-layer[l][j])*(tar[j]-layer[l][j]);

while(l-->0){
for(int j=0;j<layerErr[l].length;j++){
double z = 0.0;
for(int i=0;i<layerErr[l+1].length;i++){
z=z+l>0?layerErr[l+1][i]*layer_weight[l][j][i]:0;
layer_weight_delta[l][j][i]= mobp*layer_weight_delta[l][j][i]+rate*layerErr[l+1][i]*layer[l][j];//隱含層動量調整
layer_weight[l][j][i]+=layer_weight_delta[l][j][i];//隱含層權重調整
if(j==layerErr[l].length-1){
layer_weight_delta[l][j+1][i]= mobp*layer_weight_delta[l][j+1][i]+rate*layerErr[l+1][i];//截距動量調整
layer_weight[l][j+1][i]+=layer_weight_delta[l][j+1][i];//截距權重調整
}
}
layerErr[l][j]=z*layer[l][j]*(1-layer[l][j]);//記錄誤差
}
}
}

public void train(double[] in, double[] tar){
double[] out = computeOut(in);
updateWeight(tar);
}
}

⑧ 如何用9行Python代碼編寫一個簡易神經網路

python是一款應用非常廣泛的腳本程序語言,谷歌公司的網頁就是用python編寫。python在生物信息、統計、網頁製作、計算等多個領域都體現出了強大的功能。python和其他腳本語言如java、R、Perl 一樣,都可以直接在命令行里運行腳本程序。工具/原料
python;CMD命令行;windows操作系統
方法/步驟
1、首先下載安裝python,建議安裝2.7版本以上,3.0版本以下,由於3.0版本以上不向下兼容,體驗較差。

2、打開文本編輯器,推薦editplus,notepad等,將文件保存成 .py格式,editplus和notepad支持識別python語法。
腳本第一行一定要寫上 #!usr/bin/python
表示該腳本文件是可執行python腳本
如果python目錄不在usr/bin目錄下,則替換成當前python執行程序的目錄。
3、編寫完腳本之後注意調試、可以直接用editplus調試。調試方法可自行網路。腳本寫完之後,打開CMD命令行,前提是python 已經被加入到環境變數中,如果沒有加入到環境變數,請網路

4、在CMD命令行中,輸入 「python」 + 「空格」,即 」python 「;將已經寫好的腳本文件拖拽到當前游標位置,然後敲回車運行即可。

⑨ 如何訓練神經網路

1、先別著急寫代碼

訓練神經網路前,別管代碼,先從預處理數據集開始。我們先花幾個小時的時間,了解數據的分布並找出其中的規律。

Andrej有一次在整理數據時發現了重復的樣本,還有一次發現了圖像和標簽中的錯誤。所以先看一眼數據能避免我們走很多彎路。

由於神經網路實際上是數據集的壓縮版本,因此您將能夠查看網路(錯誤)預測並了解它們的來源。如果你的網路給你的預測看起來與你在數據中看到的內容不一致,那麼就會有所收獲。

一旦從數據中發現規律,可以編寫一些代碼對他們進行搜索、過濾、排序。把數據可視化能幫助我們發現異常值,而異常值總能揭示數據的質量或預處理中的一些錯誤。

2、設置端到端的訓練評估框架

處理完數據集,接下來就能開始訓練模型了嗎?並不能!下一步是建立一個完整的訓練+評估框架。

在這個階段,我們選擇一個簡單又不至於搞砸的模型,比如線性分類器、CNN,可視化損失。獲得准確度等衡量模型的標准,用模型進行預測。

這個階段的技巧有:

· 固定隨機種子

使用固定的隨機種子,來保證運行代碼兩次都獲得相同的結果,消除差異因素。

· 簡單化

在此階段不要有任何幻想,不要擴增數據。擴增數據後面會用到,但是在這里不要使用,現在引入只會導致錯誤。

· 在評估中添加有效數字

在繪制測試集損失時,對整個測試集進行評估,不要只繪制批次測試損失圖像,然後用Tensorboard對它們進行平滑處理。

· 在初始階段驗證損失函數

驗證函數是否從正確的損失值開始。例如,如果正確初始化最後一層,則應在softmax初始化時測量-log(1/n_classes)。

· 初始化

正確初始化最後一層的權重。如果回歸一些平均值為50的值,則將最終偏差初始化為50。如果有一個比例為1:10的不平衡數據集,請設置對數的偏差,使網路預測概率在初始化時為0.1。正確設置這些可以加速模型的收斂。

· 人類基線

監控除人為可解釋和可檢查的損失之外的指標。盡可能評估人的准確性並與之進行比較。或者對測試數據進行兩次注釋,並且對於每個示例,將一個注釋視為預測,將第二個注釋視為事實。

· 設置一個獨立於輸入的基線

最簡單的方法是將所有輸入設置為零,看看模型是否學會從輸入中提取任何信息。

· 過擬合一個batch

增加了模型的容量並驗證我們可以達到的最低損失。

· 驗證減少訓練損失

嘗試稍微增加數據容量。

⑩ 有誰會基於BP神經網路進行信號調制方式識別,用C++

這個代碼是關於信號調制方式的識別。所採用的模擬平台是matlab編程實現。這份程序資料中首先是包括了qpsk gmsk msk fsk qam ask psk oqpsk ssb等各種常見的調制方式的詳細的調製程序。每一個程序都給出了詳細的注釋,易於理解。其次是包括了在分析信號調制方式的時候需要用的諸如瞬時頻率、瞬時相位等參量的獲取程序。最後是對於任意一個輸入信號如何辨別出其中的調制方式的程序。程序很全面,所有都能夠很好的運行,不論你是做信號調制還是做信號的識別的編程都很有參考的價值。

閱讀全文

與如何調制神經網路代碼相關的資料

熱點內容
易語言用哪個網路資料庫好 瀏覽:289
強化公安信息網路安全工作 瀏覽:846
電腦網路狀態進不去 瀏覽:511
如何收集網路連接的信息 瀏覽:943
廣電網路wifi接上了顯示上不了網 瀏覽:16
布線過長提示網路異常 瀏覽:435
4g網路不穩定和手機有關系嗎 瀏覽:393
如何測試家用無線網路 瀏覽:789
哪些網路平台有健康會員服務 瀏覽:240
網路電視的設置密碼怎麼修改 瀏覽:38
網路始創於哪個國家 瀏覽:573
棋牌網路異常請聯系客服 瀏覽:377
取消禁用網路共享 瀏覽:880
老手機明明有網路還是反應很慢 瀏覽:463
甘南經驗豐富的網路公司電話多少 瀏覽:953
上新浪博客說網路異常怎回事 瀏覽:742
網路線路建設屬於哪個會計科目 瀏覽:527
電腦映射連接不上網路密碼不對 瀏覽:621
聯通網路一路能帶多少設備 瀏覽:595
無線直連的手機能用移動網路么 瀏覽:186

友情鏈接