導航:首頁 > 網路安全 > 網路安全動態感知

網路安全動態感知

發布時間:2022-07-22 09:13:34

① 態勢感知探針是什麼

態勢感知探針大規模系統環境中,對能夠引起系統狀態發生變化的安全要素進行獲取、理解、顯示以及預測未來的發展趨勢。

態勢感知探針的作用:

聯合作戰、網路中心戰的提出,推動了態勢感知的產生和不斷發展,作為實現態勢感知的重要平台和物質基礎,態勢圖對數據和信息復雜的需求和特性構成了突出的大數據問題。

最後對關鍵數據和信息處理技術進行了研究.該研究對於「大數據」在軍事信息處理和數據化決策等領域的研究具有重要探索價值。

隨著計算機和通信技術的迅速發展, 計算機網路的應用越來越廣泛, 其規模越來越龐大, 多層面的網路安全威脅和安全風險也在不斷增加, 網路病毒、 Dos/DDos攻擊等構成的威脅和損失越來越大, 網路攻擊行為向著分布化、 規模化、 復雜化等趨勢發展。

網路安全態勢感知技術能夠綜合各方面的安全因素, 從整體上動態反映網路安全狀況, 並對網路安全的發展趨勢進行預測和預警。 大數據技術特有的海量存儲、 並行計算、 高效查詢等特點。

為大規模網路安全態勢感知技術的突破創造了機遇, 藉助大數據分析, 對成千上萬的網路日誌等信息進行自動分析處理與深度挖掘, 對網路的安全狀態進行分析評價, 感知網路中的異常事件與整體安全態勢。

② 現在的網路安全問題很多,態勢感知可以保障網路安全嗎

態勢感知可以對保障網路安全起到很好的監測並提早預防的作用,都是僅憑態勢感知還遠遠不夠,還需要很多網路安全技術和管理措施,如密碼加密技術、身份認證、訪問控制等

③ 人工智慧在網路安全領域的應用有哪些

近年來,在網路安全防禦中出現了多智能體系統、神經網路、專家系統、機器學習等人工智慧技術。一般來說,AI主要應用於網路安全入侵檢測、惡意軟體檢測、態勢分析等領域。


1、人工智慧在網路安全領域的應用——在網路入侵檢測中。


入侵檢測技術利用各種手段收集、過濾、處理網路異常流量等數據,並為用戶自動生成安全報告,如DDoS檢測、僵屍網路檢測等。目前,神經網路、分布式代理系統和專家系統都是重要的人工智慧入侵檢測技術。2016年4月,麻省理工學院計算機科學與人工智慧實驗室(CSAIL)與人工智慧初創企業PatternEx聯合開發了基於人工智慧的網路安全平台AI2。通過分析挖掘360億條安全相關數據,AI2能夠准確預測、檢測和防範85%的網路攻擊。其他專注於該領域的初創企業包括Vectra Networks、DarkTrace、Exabeam、CyberX和BluVector。


2、人工智慧在網路安全領域的應用——預測惡意軟體防禦。


預測惡意軟體防禦使用機器學習和統計模型來發現惡意軟體家族的特徵,預測進化方向,並提前防禦。目前,隨著惡意病毒的增多和勒索軟體的突然出現,企業對惡意軟體的保護需求日益迫切,市場上出現了大量應用人工智慧技術的產品和系統。2016年9月,安全公司SparkCognition推出了DeepArmor,這是一款由人工智慧驅動的“Cognition”殺毒系統,可以准確地檢測和刪除惡意文件,保護網路免受未知的網路安全威脅。在2017年2月舉行的RSA2017大會上,國內外專家就人工智慧在下一代防病毒領域的應用進行了熱烈討論。預測惡意軟體防禦的公司包括SparkCognition、Cylance、Deep Instinct和Invincea。


3、人工智慧在網路安全領域的應用——在動態感知網路安全方面。


網路安全態勢感知技術利用數據融合、數據挖掘、智能分析和可視化技術,直觀地顯示和預測網路安全態勢,為網路安全預警和防護提供保障,在不斷自我學習的過程中提高系統的防禦水平。美國公司Invincea開發了基於人工智慧的旗艦產品X,以檢測未知的威脅,而英國公司Darktrace開發了一種企業安全免疫系統。國內偉達安防展示了自主研發的“智能動態防禦”技術,以及“人工智慧”與“動態防禦”六大“魔法”系列產品的整合。其他參與此類研究的初創企業包括LogRhythm、SecBI、Avata Intelligence等。


此外,人工智慧應用場景被廣泛應用於網路安全運行管理、網路系統安全風險自評估、物聯網安全問題等方面。一些公司正在使用人工智慧技術來應對物聯網安全挑戰,包括CyberX、network security、PFP、Dojo-Labs等。


以上就是《人工智慧在網路安全領域的應用是什麼?這個領域才是最關鍵的》,近年來,在網路安全防禦中出現了多智能體系統、神經網路、專家系統、機器學習等人工智慧技術,如果你想知道更多的人工智慧安全的發展,可以點擊本站其他文章進行學習。

④ 網路安全態勢感知做的好的有哪幾家

目前國內廠商做網路安全態勢感知比較大而全的有這么幾家深信服、天融信、奇安信、啟明星辰;但是態勢感知這個產品重點在於交付層面而非標准版產品所能解決的(標准版無法解決用戶的各種細節要求,風險探針各家的又不兼容)。所以綜合還是要看各個廠商在當地的服務能力。

⑤ 什麼是網路安全態勢感知

在大規模網路環境中,對能夠引起網路態勢發生變化的安全要素進行獲取、理解、顯示並據此預測未來的網路安全發展趨勢。簡而言之就是根據網路安全數據,預測未來網路安全的趨勢。

⑥ 網路傳銷監測治理基地中的「網路安全態勢感知系統」真的有用嗎

通過深度線索分析報告,騰訊的「網路安全態勢感知系統」破獲多起詐騙,傳銷案件中發揮了積極作用。你說有用嗎?

⑦ 全國人大表決通過《網路安全法》 網路安全法解決哪些重要問題

《網路安全法》共計七十多條,對網路安全各方面事項行了規定。從宏觀來看,本法的出台將解決長期困擾網路安全工作的一些基礎性問題。

(一)明確了網路安全工作的內涵

(二)明確了網路安全的工作體制

(三)明確了網路安全工作的重點

上述規定體現了網路安全工作整體動態的理念,反映了網路安全為人民、網路安全靠人民的思想,也體現了技術、產業、人才等在網路安全工作中的重要地位。

另外彌補了我國參與國際網路安全治理的短板。我國的網路安全法制化水平和西方發達國家相比還較為落後,限制了我國與其他國家的網路安全合作和參與國際網路空間安全治理。很多國家的政府和行業組織在評估網路安全狀況時,都明確指出中國缺乏明確的法律規定和保護能力,因此都不願意和中國政策對等合作交流,限制中國代表參與相關的規則制定。

⑧ 網路安全等級保護2.0什麼時候實施,相比1.0有哪些變化

以下資料來源等保測評機構——時代新威官網。如還有更多疑問請官網查看。

等保2.0相比1.0主要有四大方面的變化:

(1) 名稱上的變化

名稱上由「信息系統安全等級保護」轉變為「網路安全等級保護」。

(2) 法律效力不同

《網路安全法》第21條規定「國家實行網路安全等級保護制度,要求網路運營者應當按照網路安全等級保護制度要求,履行安全保護義務」。落實網路安全等級保護制度上升為法律義務。

(3)保護對象有擴展

等保1.0主要是信息系統。而等保2.0將網路基礎設施(廣電網、電信網、專用通信網路等)、雲計算平台/系統、採用移動互聯技術的系統、物聯網、工業控制系統等納入到等級保護對象范圍中。

(4) 控制措施分類不同

等保1.0按照技術和管理各5個方面的要求進行分類,技術要求分為物理安全、網路安全、主機安全、應用安全、數據安全及備份恢復,管理要求分為安全管理制度、安全管理機構、人員安全管理、系統建設管理和系統運維管理。

等保2.0則有很大的變化。技術要求分為安全物理環境、安全通信網路、安全區域邊界、安全計算環境、安全管理中心,管理要求分為安全管理制度、安全管理機構、安全人員管理、安全建設管理和安全運維管理。此外,等保2.0基本要求、測評要求、安全設計技術要求框架保持了一致性,即「一個中心,三重防護」。

(5) 內容進行了擴充

等保1.0有五個規定性動作,包括定級、備案、建設整改、等級測評和監督檢查。而等保2.0除了定級、備案、建設整改、等級測評和監督檢查之外,增加了風險評估、安全監測、通報預警、案事件調查、數據防護、災難備份、應急處置等。

⑨ 大數據與大規模網路安全感知技術初探

大數據與大規模網路安全感知技術初探
快速發展的互聯網技術不斷地改變人們的生活方式,然而,多層面的安全威脅和安全風險也不斷出現。對於一個大型網路,在網路安全層面,除了訪問控制、入侵檢測、身份識別等基礎技術手段,需要安全運維和管理人員能夠及時感知網路中的異常事件與整體安全態勢。對於安全運維人員來說,如何從成千上萬的安全事件和日誌中找到最有價值、最需要處理和解決的安全問題,從而保障網路的安全狀態,是他們最關心也是最需要解決的問題。與此同時,對於安全管理者和高層管理者而言,如何描述當前網路安全的整體狀況,如何預測和判斷風險發展的趨勢,如何指導下一步安全建設與規劃,則是一道持久的難題。
隨著大數據技術的成熟、應用與推廣,網路安全態勢感知技術有了新的發展方向,大數據技術特有的海量存儲、並行計算、高效查詢等特點,為大規模網路安全態勢感知的關鍵技術創造了突破的機遇。本文將對大規模網路環境下的安全態勢感知、大數據技術在安全感知方面的促進做一些探討。
對於一個大規模的網路而言,面臨的風險也是巨大的,可分為廣度風險和深度風險。從廣度上講,以中國移動的CMNET網路為例,所轄IP地址超過3000萬個,提供對外服務的網站數千個,規模大、節點類型豐富多樣,伴隨其中的安全問題隨網路節點數量的增加呈指數級上升。從深度上講,下一代移動互聯網安全威脅主要表現在傳統攻擊依然存在且手段多樣、APT(高級持續性威脅)攻擊逐漸增多且造成的損失不斷增大。而攻擊者的工具和手段呈現平台化、集成化和自動化的特點,具有更強的隱蔽性、更長的攻擊與潛伏時間、更加明確和特定的攻擊目標。以上造成了下一代安全威脅具有更強的殺傷能力與逃避能力。結合廣度風險與深度風險來看,大規模網路所引發的安全保障的復雜度激增,主要面臨的問題包括:安全數據量巨大;安全事件被割裂,從而難以感知;安全的整體狀況無法描述。
網路安全感知能力具體可分為資產感知、脆弱性感知、安全事件感知和異常行為感知4個方面。資產感知是指自動化快速發現和收集大規模網路資產的分布情況、更新情況、屬性等信息;脆弱性感知則包括3個層面的脆弱性感知能力:不可見、可見、可利用;安全事件感知是指能夠確定安全事件發生的時間、地點、人物、起因、經過和結果;異常行為感知是指通過異常行為判定風險,以彌補對不可見脆弱性、未知安全事件發現的不足,主要面向的是感知未知的攻擊。
一個相對完整的網路安全感知的能力模型與架構設計如下圖所示:
隨著Hadoop、NoSQL等技術的興起,BigData大數據的應用逐漸增多和成熟,而大數據自身擁有Velocity快速處理、Volume大數據量存儲、Variety支持多類數據格式三大特性。大數據的這些天生特性,恰巧可以用於大規模網路的安全感知。首先,多類數據格式可以使網路安全感知獲取更多類型的日誌數據,包括網路與安全設備的日誌、網路運行情況信息、業務與應用的日誌記錄等;其次,大數據量存儲與快速處理為高速網路流量的深度安全分析提供了技術支持,可以為高智能模型演算法提供計算資源;最後,在異常行為的識別過程中,核心是對正常業務行為與異常攻擊行為之間的未識別行為進行離群度分析,大數據使得在分析過程中採用更小的匹配顆粒與更長的匹配時間成為可能。
中國移動自2010年起在雲計算和大數據方面就開始了積極探索。中國移動的「大雲」系統目前已實現了分布式海量數據倉庫、分布式計算框架、雲存儲系統、彈性計算系統、並行數據挖掘工具等關鍵功能。在「大雲」系統的基礎上,中國移動的網路安全感知也具備了一定的技術積累,進行了大規模網路安全感知和防禦體系的技術研究,在利用雲平台進行脆弱性發現方面的智能型任務調度演算法、主機和網路異常行為發現模式等關鍵技術上均有突破,在安全運維中取得了一些顯著的效果。
大數據的出現,擴展了計算和存儲資源,提供了基礎平台和大數據量處理的技術支撐,為安全態勢的分析、預測創造了無限可能。

閱讀全文

與網路安全動態感知相關的資料

熱點內容
無線網路高級設置怎麼找 瀏覽:906
極光網路精靈盛典v12多少錢 瀏覽:518
和網路上不相識的人見到過什麼 瀏覽:63
公寓里的網路wifi賬號 瀏覽:721
網路實體店怎麼開 瀏覽:674
gogo總是顯示網路異常 瀏覽:955
怎麼將wifi設置成家庭網路 瀏覽:977
美團專送軟體顯示網路異常 瀏覽:395
益陽營銷策劃網路推廣途徑有哪些 瀏覽:251
如何做網路收費咨詢 瀏覽:959
光纖交換機與網路交換機哪個好 瀏覽:537
如何安全使用網路家電 瀏覽:333
微信網路打開在哪裡設置 瀏覽:469
pq什麼意思網路上污 瀏覽:636
上海網路商城系統哪裡買 瀏覽:390
wifi網路延遲1500 瀏覽:203
網路高手的職業特徵是什麼 瀏覽:60
管家婆網路版如何遠程 瀏覽:757
網路病毒的危害主要有哪些 瀏覽:463
訂票時出現影院網路異常是什麼 瀏覽:667

友情鏈接