1. 神經網路輸出神經元個數怎麼確定
如果是RBF神經網路,那麼只有3層,輸入層,隱含層和輸出層。確定神經元個數的方法有K-means,ROLS等演算法。現在還沒有什麼成熟的定理能確定各層神經元的神經元個數和含有幾層網路,大多數還是靠經驗,不過3層網路可以逼近任意一個非線性網路,神經元個數越多逼近的效果越好。
神經網路可以指向兩種,一個是生物神經網路,一個是人工神經網路。
生物神經網路:一般指生物的大腦神經元,細胞,觸點等組成的網路,用於產生生物的意識,幫助生物進行思考和行動。
人工神經網路(Artificial Neural Networks,簡寫為ANNs)也簡稱為神經網路(NNs)或稱作連接模型(Connection Model),它是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
人工神經網路:是一種應用類似於大腦神經突觸聯接的結構進行信息處理的數學模型。在工程與學術界也常直接簡稱為「神經網路」或類神經網路。
2. 神經元個數的判斷
看胞體數目,也就是圖中圓圈的數目,每個神經元可能有2個或多個突起,數目不定,但是每個神經元只有一個胞體.
3. 神經網路參數如何確定
神經網路各個網路參數設定原則:
①、網路節點 網路輸入層神經元節點數就是系統的特徵因子(自變數)個數,輸出層神經元節點數就是系統目標個數。隱層節點選按經驗選取,一般設為輸入層節點數的75%。如果輸入層有7個節點,輸出層1個節點,那麼隱含層可暫設為5個節點,即構成一個7-5-1 BP神經網路模型。在系統訓練時,實際還要對不同的隱層節點數4、5、6個分別進行比較,最後確定出最合理的網路結構。
②、初始權值的確定 初始權值是不應完全相等的一組值。已經證明,即便確定 存在一組互不相等的使系統誤差更小的權值,如果所設Wji的的初始值彼此相等,它們將在學習過程中始終保持相等。故而,在程序中,我們設計了一個隨機發生器程序,產生一組一0.5~+0.5的隨機數,作為網路的初始權值。
③、最小訓練速率 在經典的BP演算法中,訓練速率是由經驗確定,訓練速率越大,權重變化越大,收斂越快;但訓練速率過大,會引起系統的振盪,因此,訓練速率在不導致振盪前提下,越大越好。因此,在DPS中,訓練速率會自動調整,並盡可能取大一些的值,但用戶可規定一個最小訓練速率。該值一般取0.9。
④、動態參數 動態系數的選擇也是經驗性的,一般取0.6 ~0.8。
⑤、允許誤差 一般取0.001~0.00001,當2次迭代結果的誤差小於該值時,系統結束迭代計算,給出結果。
⑥、迭代次數 一般取1000次。由於神經網路計算並不能保證在各種參數配置下迭代結果收斂,當迭代結果不收斂時,允許最大的迭代次數。
⑦、Sigmoid參數 該參數調整神經元激勵函數形式,一般取0.9~1.0之間。
⑧、數據轉換。在DPS系統中,允許對輸入層各個節點的數據進行轉換,提供轉換的方法有取對數、平方根轉換和數據標准化轉換。
(3)如何確定神經網路中神經元個數擴展閱讀:
神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。主要的研究工作集中在以下幾個方面:
1.生物原型
從生理學、心理學、解剖學、腦科學、病理學等方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。
2.建立模型
根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。
3.演算法
在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機模擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。
神經網路用到的演算法就是向量乘法,並且廣泛採用符號函數及其各種逼近。並行、容錯、可以硬體實現以及自我學習特性,是神經網路的幾個基本優點,也是神經網路計算方法與傳統方法的區別所在。
4. 請問圖中有幾個神經元應該如何判斷
判斷突觸個數:
一個「人」+「〇」就是一個突觸。
判斷神經元個數:
一個突觸對應著兩個神經元。
那麼,可以看出圖中有2個突觸,4個神經元。
5. som神經網路中競爭層神經元數目怎麼確定
輸出層神經元數量設定和訓練集樣本的類別數相關,但是實際中我們往往不能清除地知道有多少類。如果神經元節點數少於類別數,則不足以區分全部模式,訓練的結果勢必將相近的模式類合並為一類;相反,如果神經元節點數多於類別數,則有可能分的過細,或者是出現「死節點」,即在訓練過程中,某個節點從未獲勝過且遠離其他獲勝節點,因此它們的權值從未得到過更新。
不過一般來說,如果對類別數沒有確定知識,寧可先設定較多的節點數,以便較好的映射樣本的拓撲結構,如果分類過細再酌情減少輸出節點。「死節點」問題一般可通過重新初始化權值得到解決。
6. BP神經網路中隱含層的神經元數怎麼確定
經驗公式未必能達到理想效果,這個真的需要一個個嘗試。可以先按樓上說的設定,然後再根據結果的誤差以及收斂速度來一個個調整。
7. 請問如何確定神經網路控制中網路層數和每層神經元個數
你使用的什麼神經網路?如果是RBF神經網路,那麼只有3層,輸入層,隱含層和輸出層。確定神經元個數的方法有K-means,ROLS等演算法。