A. 寬頻速度怎麼計算
寬頻速度的計算公式: 服務商承諾給你提供的帶寬×1024÷8=你每秒鍾實際可用的網路速度
例如:你裝的是2M帶寬 則你的寬頻理論速度是:2×1024÷8= 256KB / 每秒
你裝的是10M帶寬 則你的寬頻理論速度是:10×1024÷8= 1280KB / 每秒
許多人對 Kbps、KB、Mbps 等速度單位有所誤解,以下簡單解釋一下所謂的 1.5M、
3M、6M 如何計算。
所謂 1.5M 寬頻,其實是指 1.5Mbps (bits per second),亦即 1.5 x 1024 / 8
= 192KB/sec,
但這只是理論上的速度,實際上則要再扣約 12% 的 Ethernet Header, IP
Header, TCP Header, ATM Header 等控制訊號,故其傳輸速度上限應為 169KB/sec 左
右。
在傳輸單位的寫法上,B 和 b 分別代表 Bytes 和 bits,兩者的定義是不同的,千
萬不要混淆。
1 Byte = 8 bits
1 Kb = 1024 bits
1 KB = 1024 bytes
1 Mb = 1024 Kb
1 MB = 1024 KB
寬頻最高下載理論值:
1.5 M =169 KB/s
3 M =338 KB/s
6 M =676 KB/s
10 M =1126 KB/s
以上談到的是理論值,對於實際的連接速度可以通過下載文件的方法來測試,看看
離理論值有多遠,另外有一些網速測試網站,也可以測試家中正在使用的寬頻服務質量
。
影響上 / 下傳速度的因素
事實上,影響傳輸速度的因素很多,無論哪一家寬頻服務供貨商,都不能保證每個
用戶 24 小時均擁有均衡、全速的頻寬,以下解說種種原因:
Peak Hour
所謂 Peak Hour,就是該地區的寬頻用戶同時上網比率最高的時段,極大量用戶會
在此段時間內瀏覽網頁,下載檔案,進行在線游戲等等,約該 ISP 的頻寬總容量不足以
分配 6M 於每個用戶的話,頻寬便會攤分開來,結果每個用戶的最高頻寬便會低於 6M,
甚至只得更低的傳輸速度。
不同國家地區的頻寬限制
在測試中,聯機到美國地區的上傳速度為 47.375KB/s,但曾經傳送大型檔案給美國
的一位朋友,上傳速度可達 4xxKB/s〈對方使用 FlashGet 軟體〉故傳輸速度是否能達
到 6M,也要視乎用戶與該地區之間的頻寬是否足夠。
本地網路的地區頻寬限制
以一般 1.5M 或 3M 寬頻為例,用戶家中的 ADSL Modem 會直接接駁到機樓,再接
駁至該區的總機樓,然後各區的總機樓再接駁到 ISP。如果該區的寬頻用戶特別多,而
所有傳輸均要經由機樓與機樓之間的光纖完成,該區的光纖可傳輸總容量便會成為傳輸
速度的瓶頸
B. 寬頻網速到底怎麼計算的
像中國電信、中國移動、中國聯通等正規的寬頻運營商提供的寬頻是不存在虛標的情況。造成這種誤解的原因是:
1、運營商指的多少M的寬頻和我們理解的多少MB並不是同一個東西。
2、測速的過程中方式方法出現了問題。
3、傳輸介質(光纖)和傳輸過程存在損耗。
另外,如果測速時重復多次,測速結果均和實際帶寬不相符,一定要第一時間撥打寬頻運營商的電話,讓專業的運維人員上門檢查線路、網路設備問題。
C. 航空航天與現代計算機網路技術2000字
.航空航天技術的簡介: 該技術是為航空航天活動的順利進行而創立的一系列高級復雜的施工作業程序。它涉及人力資源配置設備儀器搭配與安裝使用等艱深的學術作業。是國家,民族,乃至整個人類發展的高度追求。航空航天技術使人類文明進入三維時代。航空是大氣層內的飛行活動,航天是穿越大氣層的飛行活動。其中,航空技術的基礎理論是空氣動力學。該技術是綜合高技術,在理論和設計的基礎上,材料技術是關鍵,電子技術是靈魂。航空指飛行器在地球大氣層內的航行活動。飛艇是利用空氣的浮力在大氣層內飛行,飛機則是利用與空氣相互作用產生的空氣動力在大氣層內飛行。飛機上的發動機依靠飛機攜帶的燃料(汽油)和大氣中的氧氣工作。航天技術則是探索、開發和利用宇宙空間的技術。它是一門高度綜合性的科學技術,涉及各類航天飛行器的設計、製造、發射和應用。載人航天是航天技術的最前沿。。航天活動的目的是探索、開發和利用太空與天體,為人類服務。航天的基本條件是航天器必須達到足夠的速度,擺脫地球或太陽的引力。第一、第二、第三宇宙速度是航天所需的特徵速度。按航天器探索、開發和利用的對象劃分,航天包括環繞地球的運行、飛往月球的航行、飛往行星及其衛星的航行、星際航行(行星際航行、恆星際航行)。按航天器與探索、開發和利用對象的關系或位置劃分,航天飛行方式包括飛越(從天體近旁飛過)、繞飛(環繞天體飛行)、著陸(降落在天體上面)、返回(脫離天體、重返地球)。 2.航空航天技術的發展:該技術的發展大體可分為以下四個階段。 一火箭技術:近代火箭的出現是在第二次世界大戰時的法西斯德國。早在1932年德國就發射A2火箭,飛行高度達3公里。1942年10月發射成功V-2火箭(A4型),飛行高度85公里,飛行距離190公里。V-2火箭的發射成功,把航天先驅者的理論變成現實,是現代火箭技術發展史的重要一頁。接著美國為發射多種航天器的需要,先後研製成功"先鋒"號、"丘諾"號、"偵察兵"號、"大力神"號和"土星"號等運載火箭。1990年4月7日,中國CZ-3 運載火箭發射成功美國製造的"亞洲一號"衛星。長征火箭成功地進入了國際商業發射衛星的行列,至今已將27顆外國衛星發射上天。 不得不 說火箭技術推動了人類航天發展的歷史。 二衛星時代: 1957年10月4日,前蘇聯用"衛星"號運載火箭把世界上第一顆人造地球衛星送入太空 。人造地球衛星出現之後,60年代前蘇聯和美國發射了大量的科學實驗衛星、技術實驗衛星和各類應用衛星。70年代軍、民用衛星全面進入應用階段,並向偵察、通信、導航、預警、氣象、測地、海洋和地球資源等專門化方向發展。衛星時代的到來是航空航天技術發展的又一重要見證。 三空間探測:空間探測的主要目的是了解太陽系的起源、演變和現狀,通過對太陽系內的各主要行星及其衛星的比較研究進一步認識地球環境的形成和演變。了解太陽系的變化歷史,探索生命的起源和演變。空間探測器實現了對月球和行星的逼近觀測和直接取樣探測,開創了人類探索太陽系內天體的新階段。月球是人類第一個探索的目標,接著是行星和行星際探測,人類在探索過程中獲得了大量太空星球的信息資料,進一步了解了宇宙,航空航天方便不停的在超越。 四載人航天:載人航天在航天活動中佔有重要位置。盡管航天器攜帶裝置精確、靈敏度高、能自動觀察、操作、儲存、處理數據,但它們不能代替人的思維。初期載人航天器一方面研究航天技術,另一方面進行生物學和醫學試驗,研究航天員在長期失重條件下的反應,航天員在密閉艙中的工作能力,航天器對接時和走出航天器時的人的生理反應。 3、世界航空航天技術的發展現狀及中國技術發展的瓶頸問題: 一世界航空航天技術的發展現狀:21世紀以來, 航天科技工業發展進入新的階段。運載器及其技術繼續向滿足大噸位、高可靠性、高環保性及強適應性的方向發展, 同時向低成本、快速響應方向發展; 衛星向高可靠、長壽命、高空間與時間解析度、大容量、高速率方向發展; 人類逐步突破地球軌道載人航天技術, 正在向載人深空探測發展。新型技術主要是以下三種: 1. 運載器及技術:新一代大中型一次性使用運載火箭技術已基本成熟, 其設計思想遵循通用化、系列化、模塊化,並採用大直徑、少級數結構和推力液體火箭發動機。美國與俄羅斯的現役小型運載火箭如飛馬座、金牛座、起跑號、第聶伯等大多從戰略導彈衍生而來, 可進行一定的機動發射, 但快速響應能力不足。完全重復使用運載器技術尚未實現突破, 只有美國在 役的太空梭是目前世界上唯一能部分重復使用的運載器。現役主流運載火箭近地軌道運載能力已超過20噸, 地球同步轉移軌道(GTO) 運載能力達到10噸, 可實現一箭雙星、一箭多星等多種發射。小型火箭近地軌 道運載能力為500千克。太空梭可運送30噸貨物到近地軌道, 可發射衛星或向國際空間站運送人或物。現役火箭的發射成功率較高, 宇宙神5、阿里安5和H-2A等的發射成功率達到了92%左右。 2. 衛星系統及技術:近幾年來, 美國、俄羅斯以及歐洲國家等世界主要 航天國家均在積極開展應用衛星的更新換代。其中雷達與光學高性能衛星 遙感技術擴散迅速, 尤以歐洲、以色列發展迅速; 歐洲與美國陸續將一代軍用通信衛星投入現役; 美、俄的導航衛星正在升級改進, 歐洲的伽利略系統成功進行在軌驗證。 3. 空間對抗系統及技術:目前, 只有美國與俄羅斯形成了以地基為主、天基為輔的空間態勢感知系統, 當前天基系統還主要依賴在軌的導彈預警衛星。空間防護技術則停留在對高空核爆、射頻、激光和動能武器的攻擊探測和抗核加固等一些有限的本體防護裝置上。反衛星武器技術美國發展得最多、最全面, 但當前進入實戰部署的一般為軟殺傷裝備。美國相關設備低軌探測精度可達10厘米, 定位精度可達1千米; 初步形成了有限的攻擊告警能力並應用了多種有針對性的防護措施;反衛星裝備具備實戰能力的較少, 大多處於技術儲備階段。總體來講, 包括美俄在內的國家空 間對抗能力都十分有限。 4. 深空探測系統及技術:當前深空探測開展最多的是月球探測, 美國、俄羅斯、歐洲、日本、中國、印度均成功發射過月球探測器, 只有美國與歐 洲成功進行了火星探測, 其中美國已經成功在火星表面著陸, 尚未全面實現對水星、木星、土星和冥王星等行星以及小天體的探測。各國根據各自不同的技術能力水平, 在探測方式的選擇上呈現多樣性。 二中國技術發展的瓶頸問題:近年來我國的「高新工程」取得了不小的成績,但在先進作戰飛機、航空發動機和大型飛機研製及其基礎科學研究等方面,與世界先進水平相比還存在很大差距,急需國家加大投入,解決基礎研究、產品研發和生產能力不足的問題,以應對國際局勢變化和國際新軍事變革。。發動機是飛機的「心臟」,國外一直對我嚴格封鎖高性能發動機的核心技術。我國航空發動機落後已成為嚴重製約我國航天事業發展的瓶頸。中國民用裝配的飛機幾乎都是進口,主要由空客和波音壟斷了干線客貨運市場,支線航空主要是加拿大航空和巴西航空的客機所覆蓋。還有就是航空航天技術發展所需要的大量資金任然是我們面臨的一個嚴峻的問題。 二.現代計算機網路核心技術:21世紀已進入計算機網路時代。計算機網路的極大普及,使它成為了計算機行業不可分割的一部分。計算機網路技術是當前發展速度最快、生命力最強、對人類社會影響最大、新技術新工藝涌現最多和最猛烈的前沿技術。計算機網路,是指將地理位置不同的具有獨立功能的多台計 算機及其外部設備,通過通信線路連接起來,在網路操作系統,網路管理軟體及網路通 信協議的管理和協調下,實現資源共享和信息傳遞的計算機系統。而 計 算 機 網 絡 技 術 則 是通 信 技 術 與計 算 機 技術 相 結 合 的產 物 ,它 在迅 速 地 發 展著 ,對世界、社會和人 類都產生了巨大的影響。 目前,計算機網路學術界和技術界對許多計算機網路的前沿技術進行著認真刻苦的 研究工作。其中比較熱門的 研究技術涵蓋了雲計算、 軟交換以及 IMS 等。 雲計算:雲計算(Cloud Computing)是分布式處理(Distributed Computing)、並行處理 (Parallel Computing)和網格計算(Grid Computing)的發展,或者說是這些計算機科學概念的商業實現 ;雲計算也是虛擬化(Virtualization)、效用計算(Utility Computing)、IaaS(基 礎設 施 即 服 務)、PaaS(平台即服務)、SaaS(軟體 即 服 務)等概念混合演進並躍升的結果 。其最基本的概念,是透過網路將龐大的計算處理程序自動分拆成無數個較小的子程序, 再交由多部伺服器 所組成的龐大系統經搜尋、計算分析之後將處理結果回傳給用戶。透過 這項技術 ,網路服務提供者可以在數秒之內 ,達成處理數以千萬計甚 至億的信息,達到和「超級計算機 同樣強大效能的網路服務。 所以從 最根本的意義來說,雲計算就是利用互聯網上的軟體和數據的能力。 最 簡單的雲計算在網路服務中已經隨處可見,如搜索引擎、洛信箱等。未來如手機、gps等行動設置都可以透過雲計算技術發展出更多的應用服務。進一步的雲計算不僅只有資料搜尋、分析的功能,未來如分析DNA的結構、基因圖譜定序、解析癌細胞等都可透過這項技術輕易達成。雲計算具備以下四個顯著特徵:1. 雲計算提供了最可靠、最安全的數據存儲中心,用戶不用擔心存儲丟失、病毒入侵等麻煩。2. 雲計算對用戶端的設備要求最低,使用起來最方便。3.雲計算可以輕松實現不同設備間的數據與應用共享。 4.雲計算為我們使用網路提供了近乎無限多的可能。 軟交換:這一術語是從英文單詞 Softswitch 翻譯過來的。軟交換是一 種正在發展的概念和技術,核心是一個標准化協議和應用編程介面的開發體系結構,以便提供更廣泛的應用和業務平台。軟交換的核心思想是通過硬體軟體化的思想來實現原來交換業務的 控制連接和處理,可以同時在同一個網路上同時提供語音、數據以及多媒體業務。 軟交換的體系結構分為業務/應用層、網路控制層、核心交換層和邊緣接入層。邊 緣接入層,負責將各種網路和終端設備介入軟交換體系機構;核心交換層,對各種不同 的業務和媒體流提供公共的傳送平台,多採用基於分組的傳送方式,目前比較公認的核心傳送網IP網或ATM骨幹網;其主要實體為軟交換設備,實現網路控制層,完成呼叫控制、路由、認證、資源管理等功能;業務應用層,在呼叫控制的基礎上向最終用戶提供各種增值業務。 在軟交換系統中,IP 承載使網路調整更為靈活,同時也使媒體能力增強,進而帶來一些新的業務,增強運營商網路的網路價值。另一方面,軟交換分離的架構使得網路部署更靈活,可以有效降低運營商網路的建網成本和運營維護成本。由此可見,IP承載的變化是對傳統網路的一個革命性的改變。軟交換是網路發展的一個重要技術未來。 IMS(IP Multimedia Subsystem)IP多媒體系統 ,是一種全新的多媒體 業務形式,它能夠滿足現在的終端客戶更新穎、更多樣化的多媒體業務需求。IMS是對IP多媒體業務進行控制的多媒體網路核心層邏輯功能實體的總稱。。3GPPR5主要定義IMS的核心結構,網元功能、 介面和流程等內容;IMS 體系結構從上向下分為四層:應用層、控制層、承載層和接入層。應用層主要 實現傳統的電話業務、智能網的接入以及提供基於SIP的非傳統電信業務等;控制層主 要完成基本會話的控制、 SIP 會話路由控制等功能; 承載層採用具有 QoS 保證的 IP 網進 行承載;接入層主要完成各類 SIP 會話的發起、終結,完成與傳統 PSTN/PLMN 間的互聯 互通。 目 前,IM S被認為是下一代網路的核心技術,也是解決移動與固網融合,引入語音、 數據 、視頻 三重融合等差異化業務的重要方式。 三.計算機網路技術在航空航天技術領域的應用: 1.計算機網路高技術在國外導彈、火箭測控領域的應用:航天測試工程是集研究、開發、設計、測試為一體的工程技術,工程的難度在於要處理復雜的數據和信息以及通訊擴展行為,而當今測試工程師已經開始有意識地引入網路來支持工程管理軟體控制測試設備、收集遠程設備採集的數據。美國聯邦政府和航天工程組織正努力應用計算機網路來達到提高效益和競爭力的目的。約翰遜航天中心配有一個新型的任務控制中 fl,(MCC),該中心負責飛行測試計算任務的主控計算機把遙測數據和計算結果傳給宇航員,它的執行過程尤如把相關數據從主機壓到適當的飛行控制終端一樣。在分布式MCC設計方案中,遙測和計算中心的概念已經消失,飛行控制台包含了UNIX工作站,它能夠訪同網路上的遙測數據流,而共享數據方式替代主機依賴方式,MCC工作站上運行的軟體將從信息共享協議上佔有遙測數據,(信息共享協議)ISP採用客戶/服務方式,分布式客戶可 從對等式ISP伺服器集上得到ISP的支持,伺服器對網上的數據有效性負責。客戶的應用過程通過ISP客戶應用程序接12(API)啟動同伺服器的對話(可能來自不同機器)獲取數據,這些客戶機認可來自ISP伺服器的數據,這些數據 非同步方式經過轉換後傳給客戶機,ISP API提供獨立的數據源因而ISP客戶應用程序可 被測試數據驅動,並可以重現數據來對飛行訓練和遙測提供服務。美國政府目前正加緊實施的「聯邦高性能計算和通訊項目(HPfiCP)」,其主要功能之一就是建立遍布全美國的通訊網路, 目的是給科研提供通訊基礎,大量航天工程所需的測試模擬和計算數據可以通過此網路傳輸給分析程序進行分析。HPCfiP實施的重點是最大限度地利用現有高性能遠程網路的優勢來為廣域網遠程用戶提供服務。例如:某一航天型號前方測試站需要將型號模擬和測試數據文件向遠距數千公里之外的計算中心進行傳輸和保存,並要求將這些要傳送的典型數據作分析比較。這些工作用HPCCP來實現實際上是通過前後台操作來完成的。傳送和分析、比較工作通過後台完成,前端的用戶不必等待漫長的分析過程,而只需時常回來檢測一下結果送到沒有就行了。
D. 以運輸航空主要統計指標的計算方法分別是什麼
定義:
1、方差
方差是各個數據與平均數之差的平方的平均數。在概率論和數理統計中,方差(英文Variance)用來度量隨機變數和其數學期望(即均值)之間的偏離程度。在許多實際問題中,研究隨機變數和均值之間的偏離程度有著很重要的意義。
2、標准差
方差開根號。
3、協方差
在概率論和統計學中,協方差用於衡量兩個變數的總體誤差。而方差是協方差的一種特殊情況,即當兩個變數是相同的情況。
可以通俗的理解為:兩個變數在變化過程中是否同向變化?還是反方向變化?同向或反向程度如何?
你變大,同時我也變大,說明兩個變數是同向變化的,這是協方差就是正的。
你變大,同時我變小,說明兩個變數是反向變化的,這時協方差就是負的。
如果我是自然人,而你是太陽,那麼兩者沒有相關關系,這時協方差是0。
從數值來看,協方差的數值越大,兩個變數同向程度也就越大,反之亦然。
可以看出來,協方差代表了兩個變數之間的是否同時偏離均值,和偏離的方向是相同還是相反。
公式:如果有X,Y兩個變數,每個時刻的「X值與其均值之差」乘以「Y值與其均值之差」得到一個乘積,再對這每時刻的乘積求和並求出均值,即為協方差。
區別:
1. 方差和標准差都是對一組(一維)數據進行統計的,反映的是一維數組的離散程度;而協方差是對2組數據進行統計的,反映的是2組數據之間的相關性。
2. 標准差和均值的量綱(單位)是一致的,在描述一個波動范圍時標准差比方差更方便。比如九年級一個班的學生平均年齡是15歲,標准差是2歲,那麼方差就是2歲^2。可以進行的比較簡便的描述是本班學生年齡是15±2歲,方差就無法做到這點。
3. 方差可以看成是協方差的一種特殊情況,即2組數據完全相同。
4. 協方差只表示線性相關的方向,取值正無窮到負無窮。供參考。
E. 寬頻速度如何算
寬頻速度自己是無法計算的,需要藉助第三方工具,具體的操作方法為:
1、在手機桌面上找到360安全衛士應用程序,並點擊打開。
F. 如何計算一個網路需要多少帶寬
一種是Bit比特位,一種是Byte位元組。通常在1個Byte里有8個Bits。網路帶寬通常以bps(標稱bit/s)作為計量單位,即「Bits-Per-Second(每秒的比特位數量,通常又被譯為波特率)」,而許多下載工具軟體的計量單位是Byte/s,所以,兩者之間相差8倍。
註:現在大多數IDC機房提供的帶寬計量方法是:MBPS,實際就是交換機的埠流量,並不是每個伺服器的實際帶寬,通常一個機櫃的帶寬總值大約為:10~30mbps,所謂百兆共享其實是共享百兆埠,而不是共享100兆帶寬。
在通信領域和計算機領域
應特別注意數量單位「千」、「兆」、「吉」等的英文縮寫所代表的數值。計算機中的數量單位用位元組作為度量單位,「千位元組」的「千」用大寫K表示,它等於210,即1024,而不是1000。
在實際上網應用中,下載軟體時常常看到諸如下載速度顯示為176KB/s,103KB/s等寬頻速率大小字樣,因為ISP提供的線路帶寬使用的單位是比特(bit),而一般下載軟體顯示的是位元組(Byte)(1Byte=8bit),所以要通過換算,才能得實際值。
以上內容參考:網路-網路帶寬
G. 航空rsk; ask; rask 各是指那些指標,如何計算
首選需要糾正一點,不存在rsk指標,而是rpk或rask。這是比較容易造成混亂的。這幾個指標常用於航空公司成本運算中,具體介紹如下:
1.rpk。全稱是Revenue passenger kilometer,即所謂的收入乘客公里數(也叫旅客周轉量)。這個指標用於反應航空運輸企業旅客運輸工作量的綜合性指標。計算公式如下:
RPK(單位:人(客)公里或噸(貨)公里)=∑{航段旅客運輸量×航段的運輸距離(公里)}
2.RASK。該指標指的是單位內可用座位的公里收入。全稱是Revenue per ASK。計算方法即取ASK的值除以單位量。
3.ASK。全稱是Available seat kilometer,即所謂的可用座位公里。該指標用於表示航空公司課產生的最大經濟效益。其計算方法如下:
ASK=∑{可供銷售的座位數×航段的距離(公里)}
(7)我國航空網路連接度如何計算擴展閱讀:
1.需要注意的一點是:(在美國或者英國,「公里」會變成「英里」,1英里 = 1.6093公里)
2.ASK值越大,說明航空公司擁有越多的航線與運力資源。航運市場轉好時,ASK值越大的公司通常業績增長也快。
3.在市場處於平穩和充分競爭階段,客座率和平均座位公里數價格較ASK而言,是決定航空公司業績更為重要的經營指標。
參考資料來源:網路-航空經濟