隨著大數據的應用,人工智慧逐漸走入千家萬戶並顯示出巨大的市場空間,隨之而來的安全漏洞問題同樣不容忽視,有些甚至已經顯現。隨著技術革新,一些看似只有在電影中出現的場景正在成為現實。
傳統網路漏洞帶來的損失一般是信息泄露、銀行卡盜刷等欺詐、盜竊行為,這些損失往往可以用金錢衡量,相對比較低,隨著技術的逐漸完善,人工智慧技術已越來越多地進入到工業、生活等諸多領域。而針對人工智慧的網路攻擊帶來的損失,有可能迅速傳導給消費者,嚴重時會危及生命。
無人駕駛就是其中的一大熱點。「現在很多公司都在利用人工智慧技術研究無人駕駛,而特斯拉去年已經在新車型上實現了這個功能。等紅燈、保持車距、躲避障礙物都沒問題,打一下轉向燈,就能自己並線。特斯拉要實現這些,依靠的是遍布車身的上百個感測器將源源不斷的數據發送給它的自動駕駛系統。但我們通過研究發現,其實可以利用數據欺詐等手段遠程式控制制汽車,讓汽車偏航,甚至逼停汽車造成事故。人工智慧的網路攻擊不僅僅是財產損失,有時甚至會威脅到生命。因此,如何完善現有技術手段加強監管,並利用大數據等創新方式予以制衡,成為需要思考解決的問題。
更重要的是隨著「互聯網+」、大數據、網路融合等戰略實施,網路安全的威脅也進入國計民生的領域。電信和互聯網企業收集處理大量用戶個人數據、生產運行數據、政務數據等重要數據,面臨著很大的安全挑戰。信息竊取、數據泄露等事件時有發生,網路數據安全和用戶信息保護形勢日趨嚴峻。所以在網路安全方面目前工信部正在研究制定通信行業網路安全技術手段建設的指導意見,建造國家級網路安全大數據中心,形成全網安全態勢感知和安全防禦能力,為國家部門提供強有力的網路安全支撐服務。
B. 人工智慧在網路安全領域的應用有哪些
近年來,在網路安全防禦中出現了多智能體系統、神經網路、專家系統、機器學習等人工智慧技術。一般來說,AI主要應用於網路安全入侵檢測、惡意軟體檢測、態勢分析等領域。
1、人工智慧在網路安全領域的應用——在網路入侵檢測中。
入侵檢測技術利用各種手段收集、過濾、處理網路異常流量等數據,並為用戶自動生成安全報告,如DDoS檢測、僵屍網路檢測等。目前,神經網路、分布式代理系統和專家系統都是重要的人工智慧入侵檢測技術。2016年4月,麻省理工學院計算機科學與人工智慧實驗室(CSAIL)與人工智慧初創企業PatternEx聯合開發了基於人工智慧的網路安全平台AI2。通過分析挖掘360億條安全相關數據,AI2能夠准確預測、檢測和防範85%的網路攻擊。其他專注於該領域的初創企業包括Vectra Networks、DarkTrace、Exabeam、CyberX和BluVector。
2、人工智慧在網路安全領域的應用——預測惡意軟體防禦。
預測惡意軟體防禦使用機器學習和統計模型來發現惡意軟體家族的特徵,預測進化方向,並提前防禦。目前,隨著惡意病毒的增多和勒索軟體的突然出現,企業對惡意軟體的保護需求日益迫切,市場上出現了大量應用人工智慧技術的產品和系統。2016年9月,安全公司SparkCognition推出了DeepArmor,這是一款由人工智慧驅動的“Cognition”殺毒系統,可以准確地檢測和刪除惡意文件,保護網路免受未知的網路安全威脅。在2017年2月舉行的RSA2017大會上,國內外專家就人工智慧在下一代防病毒領域的應用進行了熱烈討論。預測惡意軟體防禦的公司包括SparkCognition、Cylance、Deep Instinct和Invincea。
3、人工智慧在網路安全領域的應用——在動態感知網路安全方面。
網路安全態勢感知技術利用數據融合、數據挖掘、智能分析和可視化技術,直觀地顯示和預測網路安全態勢,為網路安全預警和防護提供保障,在不斷自我學習的過程中提高系統的防禦水平。美國公司Invincea開發了基於人工智慧的旗艦產品X,以檢測未知的威脅,而英國公司Darktrace開發了一種企業安全免疫系統。國內偉達安防展示了自主研發的“智能動態防禦”技術,以及“人工智慧”與“動態防禦”六大“魔法”系列產品的整合。其他參與此類研究的初創企業包括LogRhythm、SecBI、Avata Intelligence等。
此外,人工智慧應用場景被廣泛應用於網路安全運行管理、網路系統安全風險自評估、物聯網安全問題等方面。一些公司正在使用人工智慧技術來應對物聯網安全挑戰,包括CyberX、network security、PFP、Dojo-Labs等。
以上就是《人工智慧在網路安全領域的應用是什麼?這個領域才是最關鍵的》,近年來,在網路安全防禦中出現了多智能體系統、神經網路、專家系統、機器學習等人工智慧技術,如果你想知道更多的人工智慧安全的發展,可以點擊本站其他文章進行學習。
C. 為什麼有人說網路安全需要人工智慧的輔助
人工智慧得以普及這就意味著,人工智慧應用不再僅限於微軟,谷歌,蘋果這些大型公司內,任何規模的公司都可以接觸到人工智慧。擺在我們面前 就有一個這樣的機會,無論是對於大型公司,中性公司,還是小型公司來說,可以利用人工智慧重整我們的商業運行模式。
現代人工智慧技術在語音識別,圖像識別等領域都達到了很高的水平,但是它仍有很長的路要走。比如,關於你和你的團隊進行資源分配的問題。你怎樣做才可以得出最優的資源分配決策,同時優化你的資源消耗方式?這樣得話,你將會節省多少開支?下一代人工智慧技術將會給出我們上述問題的答案。
為人工智慧支撐企業建立合法性,網路空間安全將負責搭建和監管人工智慧基礎設施相關的所有內容,甚至那些我們剛剛涉足的方面也要包括進去。我們都聽說過「廢料輸入,廢料輸出」這種說法,但是你有沒有想過如何將這種思想運用到人工智慧的業務支撐中呢?你有沒有建立數據中毒安全策略,來防止攻擊者欺騙人工智慧使其做出錯誤決策?如果你已經基於錯誤數據做出了錯誤決定,那麼你需要多久才會發現它並解決它呢?
數據中毒已經是網路空間空間安全界一個廣受關注的問題了。比如,反病毒軟體的檢查依據來源於廣泛領域的信號和樣本,軟體供應商必須要深刻保持警惕,尤其是當被攻擊者盯上試圖破化其軟體系統的時候。盡管我們的方法論已經成熟到可以將人工智慧安全囊括到保護系統中,我們仍不能鬆懈。想像你是一個專車服務公司的負責人,但一個大事件過後,你僱傭的所有司機在同一時間都聯系不上了。隨之而來的就是,匹配乘客和司機的人工智慧系統會發現道路上沒有專車,進而得出專車缺失的結論。進而它會採取行動,比如因供不應求而提升乘坐的價格。CSO面臨的挑戰將是檢測數據中毒事件,通過調整錯誤決策來保護業務正常運轉,採取適當措施根除問題防止未來復發。
D. 人工智慧和網路安全選哪個好
我個人認為二者各有各的特點,主要看自己內心的想法,人工智慧與網路安全的結合目前還是一個新興產業,但具有發展前途,特別是計算安全領域還有很多尚未解決且具有挑戰性的問題需要人們不斷去探索和追尋答案。以下是我的個人看法,希望能夠對大家有幫助。
生活中就比如說給自己的用戶名設置足夠長度的密碼,最好使用大小寫混合和特殊符號,不要為了貪圖好記而使用純數字密碼,不要使用與自己相關的資料作為個人密碼,如自己或男(女)朋友的生日,電話號碼,身份證號碼等等,這些對於網路安全都是至關重要的。在我們的日常生活中,難免會遇到大大小小的安全問題,安全知識大全可以幫助我們解決安全的一些小問題。所以,積極學習網路安全也是非常有必要的一件事情。
以上就是我的個人見解,希望能夠對大家有用。
E. 為什麼人工智慧對網路安全需求程度高於互聯網
人工智慧是基於網路和大數據的,保護網路和數據安全是發展人工智慧的前提,網路信息安全是人工智慧的保鏢。從產業周期角度看,科技越來越深入經濟和社會,從簡單的信息傳遞、游戲娛樂到為生活、工作做出決策。人工智慧的角色從配角到主角,再到主演,對主演的保護要遠勝配角。
F. 人工智慧在安全中的應用
人工智慧在網路安全領域有以下具體應用(包括但不限於):
(1)防範網路攻擊
AI技術可以輔助人類搜索並修復軟體錯誤和漏洞,以防禦潛在的網路攻擊。目前,麻省理工學院(CSAIL)和機器學習初創公司PatternEx已經研發出了名為A12的人工智慧平台,該平台整合了人類專家的輸入及AI系統連續循環反饋,進行了主動式的上下文建模學習,使得A12演算法系統比僅使用機器學習的演算法系統攻擊檢測率提高了10倍。
(2)犯罪預防
AI技術可以協助預測恐怖分子或其他威脅何時會襲擊目標,可以利用包括載客數量和交通變化的數據來源,動態增加警察的數目來保證安全等。
(3)隱私保護
通過AI技術可以進行差異隱私,對不同的用戶提供定製化的隱私保護體驗。例如,差異化的隱私保護讓蘋果可以在不損害任何個人隱私的情況下,從大量用戶那裡收集數據。
G. 日本防衛省研發人工智慧用深度學習防禦網路攻擊
據日本《產經新聞》1月7日報道稱,日本防衛省於6日宣布:為強化對網路攻擊的應對能力,已經確定要將人工智慧(AI)引入日本自衛隊信息通信網路的防禦系統中。預計將於明年開始為期兩年的調查研究,於2020年著手進行軟體開發,2022年實際運用,並且也開始考慮在日本政府全體的網路防禦系統中應用AI。
目前,軍方人員介入網路安全戰場早已成為常態,美國著名的網路安全公司Cybereason其創辦人正是來自以色列國防部下屬精英網路部隊8200部隊。值得注意的是,2015年該公司接受了來自日本軟銀的為數1億美元的融資,不知《產經新聞》提到的「以色列技術」是否來自該公司呢?
H. 人工智慧對網路安全造成了什麼影響
人工智慧可以高度的提高網路的安全性,但是也會有一些黑客用它來進行網路犯罪。
I. 網路空間安全還是人工智慧
人工智慧得以普及這就意味著人工智慧應用不再僅限於微軟、谷歌、蘋果這些大型公司內,任何規模的公司都可以接觸到人工智慧。擺在面前就有一個這樣的機會,無論是對於大型公司、中性公司、還是小型公司來說,可以利用人工智慧重整商業運行模式。
現代人工智慧技術在語音識別,圖像識別等領域都達到了很高的水平,但是仍有很長的路要走。比如,關於團隊進行資源分配的問題。怎樣做才可以得出最優的資源分配決策,同時優化你的資源消耗方式,會節省開支,下一代人工智慧技術將會給出上述問題的答案。
《人工智慧的未來》:
詮釋了智能的內涵,闡述了大腦工作的原理,並告訴我們如何才能製造出真正意義上的智能機器,不僅是對人類大腦的簡單模仿,在許多方面會遠遠超過人腦。霍金斯認為從人工智慧到神經網路,早先復制人類智能的努力無一成功,都是由於人們並未真正了解智能的內涵和人類大腦。
所謂智能,就是人腦比較過去、預測未來的能力。大腦不是計算機,不會亦步亦趨、按部就班的根據輸入產生輸出。大腦是一個龐大的記憶系統,它儲存著在某種程度上反映世界真實結構的經驗,能夠記憶事件的前後順序及其相互關系,並依據記憶做出預測。
以上內容參考:網路--人工智慧
J. 網路安全和人工智慧那個發展的更好
就目前的前景來看,人工智慧的發展應該會更好一些,近些年人工智慧是比較火的