㈠ 請問如何並行化訓練神經網路模型
各個框架都有自己的方法實現並行計算。
我常用的是pytorch,可通過以下方法實現並行計算(單機多卡):
new_net = nn.DataParallel(net, device_ids=[0, 1])
output = new_net(input)
通過device_ids參數可以指定在哪些GPU上進行優化
㈡ 如何把訓練好的神經網路保存下來
訓練好網路後加上一句 save My-net net; 就可以啦。其中 My-net 是自己給網路命的名字。需要載入網路時採用 load My-net net;
㈢ 如何用matlab訓練BP神經網路
net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)
newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes,
PR - Rx2 matrix of min and max values for R input elements.
Si - Size of ith layer, for Nl layers.
TFi - Transfer function of ith layer, default = 'tansig'.
BTF - Backprop network training function, default = 'trainlm'.
BLF - Backprop weight/bias learning function, default = 'learngdm'.
PF - Performance function, default = 'mse'.
然後train一下就可以了,具體其他參數查閱相關文檔,一般有前四個參數就夠了。
看一個簡單的例子:
有兩個向量或者矩陣,pn和tn:
net=newff(minmax(pn),[3,1],{'tansig','purelin'},'trainlm');
net.trainParam.epochs=1000;
net.trainParam.goal =1e-5;
net=train(net,pn,tn);
照葫蘆畫瓢就行,具體參數意義就不說了,自己查閱matlab幫助。
㈣ 如何訓練一個簡單的分類卷積神經網路
卷積神經網路有以下幾種應用可供研究:
1、基於卷積網路的形狀識別
物體的形狀是人的視覺系統分析和識別物體的基礎,幾何形狀是物體的本質特徵的表現,並具有平移、縮放和旋轉不變等特點,所以在模式識別領域,對於形狀的分析和識別具有十分重要的意義,而二維圖像作為三維圖像的特例以及組成部分,因此二維圖像的識別是三維圖像識別的基礎。
2、基於卷積網路的人臉檢測
卷積神經網路與傳統的人臉檢測方法不同,它是通過直接作用於輸入樣本,用樣本來訓練網路並最終實現檢測任務的。它是非參數型的人臉檢測方法,可以省去傳統方法中建模、參數估計以及參數檢驗、重建模型等的一系列復雜過程。本文針對圖像中任意大小、位置、姿勢、方向、膚色、面部表情和光照條件的人臉。
3、文字識別系統
在經典的模式識別中,一般是事先提取特徵。提取諸多特徵後,要對這些特徵進行相關性分析,找到最能代表字元的特徵,去掉對分類無關和自相關的特徵。然而,這些特徵的提取太過依賴人的經驗和主觀意識,提取到的特徵的不同對分類性能影響很大,甚至提取的特徵的順序也會影響最後的分類性能。同時,圖像預處理的好壞也會影響到提取的特徵。
㈤ 如何訓練深度神經網路
deeplearinig就是神經網路的一類,就是解決的訓練問題的深層神經網路,所以你這問題「深度學習會代替神經網路『就不對,BP么,BP有自己的優勢,也是很成熟的演算法,做手寫識別等等效果已經商用化了,不會被輕易替代。deeplearning遠比BP要復雜,用來解決的問題也不是一個層面,所以也沒有替代的必要。Deeplearning所涉及的問題大多數BP都沒法解決的。
度學習的概念源於人工神經網路的研究。含多隱層的多層感知器就是一種深度學習結構,通過組合低層特徵形成更加抽象的高層表示屬性類別或特徵,以發現數據的分布式特徵表示。深度學習的概念由Hinton等人於2006年提出,基於深信度網(DBN)提出非監督貪心逐層訓練演算法,為解決深層結構相關的優化難題帶來希望,隨後提出多層自動編碼器深層結構。深度學習是機器學習研究中的一個新的領域,其動機在於建立、模擬人腦進行分析學習的神經網路,它模仿人腦的機制來解釋數據,例如圖像,聲音和文本。
系統地論述了神經網路的基本原理、方法、技術和應用,主要內容包括:神經信息處理的基本原理、感知器、反向傳播網路、自組織網路、遞歸網路、徑向基函數網路、核函數方法、神經網路集成、模糊神經網路、概率神經網路、脈沖耦合神經網路、神經場理論、神經元集群以及神經計算機。每章末附有習題,書末附有詳細的參考文獻。神經網路是通過對人腦或生物神經網路的抽象和建模,研究非程序的、適應性的、大腦風格的信息處理的本質和能力。它以腦科學和認知神經科學的研究成果為基礎,拓展智能信息處理的方法,為解決復雜問題和智能控制提供有效的途徑,是智能科學和計算智能的重要部分。
㈥ 如何提高神經網路的外推能力
人工神經網路以其智能性見長,那麼神經網路能真的學到一個映射的本質嗎?也就是說,對一個映射給出一定的必要的訓練樣本訓練後,網路能否對樣本以外的樣本給出較為准確的預測。泛化能力也就是神經網路用於對未知數據預測的能力。神經網路對訓練樣本區間范圍內的樣本有較好的泛化能力,而對於訓練樣本確定的范圍外的樣本不能認為有泛化能力。常規的幾種增強泛化能力的方法,羅列如下:
1、較多的輸入樣本可以提高泛化能力;
但不是太多,過多的樣本導致過度擬合,泛化能力不佳;樣本包括至少一次的轉折點數據。
2、隱含層神經元數量的選擇,不影響性能的前提下,盡量選擇小一點的神經元數量。隱含層節點太多,造成泛化能力下降,造火箭也只要幾十個到幾百個神經元,擬合幾百幾千個數據何必要那麼多神經元?
3、誤差小,則泛化能力好;誤差太小,則會過度擬合,泛化能力反而不佳。
4、學習率的選擇,特別是權值學習率,對網路性能有很大影響,太小則收斂速度很慢,且容易陷入局部極小化;太大則,收斂速度快,但易出現擺動,誤差難以縮小;一般權值學習率比要求誤差稍微稍大一點點;另外可以使用變動的學習率,在誤差大的時候增大學習率,等誤差小了再減小學習率,這樣可以收斂更快,學習效果更好,不易陷入局部極小化。
5、訓練時可以採用隨時終止法,即是誤差達到要求即終止訓練,以免過度擬合;可以調整局部權值,使局部未收斂的加快收斂。
㈦ 能不能訓練一個神經網路,讓它去訓練神經網路
你用的是matlab的神經網路工具箱吧。那是因為權值和閾值每次都是隨機初始化的,所以結果就會不一樣,
你可以把隨機種子固定,即在代碼前面加上setdemorandstream(pi); 這樣每次訓練出來的結果都是一樣的了。
看來樓主是剛開始學習神經網路的,推薦一些資料給樓主:
神經網路之家 (專講神經網路的網站,有視頻下載)
matlab中文論壇的神經網路專區
數學中國的神經網路專區
較好的書:
MATLAB神經網路原理與實例精解