Ⅰ 神經網路具體是什麼
神經網路由大量的神經元相互連接而成。每個神經元接受線性組合的輸入後,最開始只是簡單的線性加權,後來給每個神經元加上了非線性的激活函數,從而進行非線性變換後輸出。每兩個神經元之間的連接代表加權值,稱之為權重(weight)。不同的權重和激活函數,則會導致神經網路不同的輸出。 舉個手寫識別的例子,給定一個未知數字,讓神經網路識別是什麼數字。此時的神經網路的輸入由一組被輸入圖像的像素所激活的輸入神經元所定義。在通過非線性激活函數進行非線性變換後,神經元被激活然後被傳遞到其他神經元。重復這一過程,直到最後一個輸出神經元被激活。從而識別當前數字是什麼字。 神經網路的每個神經元如下
基本wx + b的形式,其中 x1、x2表示輸入向量 w1、w2為權重,幾個輸入則意味著有幾個權重,即每個輸入都被賦予一個權重 b為偏置bias g(z) 為激活函數 a 為輸出 如果只是上面這樣一說,估計以前沒接觸過的十有八九又必定迷糊了。事實上,上述簡單模型可以追溯到20世紀50/60年代的感知器,可以把感知器理解為一個根據不同因素、以及各個因素的重要性程度而做決策的模型。 舉個例子,這周末北京有一草莓音樂節,那去不去呢?決定你是否去有二個因素,這二個因素可以對應二個輸入,分別用x1、x2表示。此外,這二個因素對做決策的影響程度不一樣,各自的影響程度用權重w1、w2表示。一般來說,音樂節的演唱嘉賓會非常影響你去不去,唱得好的前提下 即便沒人陪同都可忍受,但如果唱得不好還不如你上台唱呢。所以,我們可以如下表示: x1:是否有喜歡的演唱嘉賓。x1 = 1 你喜歡這些嘉賓,x1 = 0 你不喜歡這些嘉賓。嘉賓因素的權重w1 = 7 x2:是否有人陪你同去。x2 = 1 有人陪你同去,x2 = 0 沒人陪你同去。是否有人陪同的權重w2 = 3。 這樣,咱們的決策模型便建立起來了:g(z) = g(w1x1 + w2x2 + b ),g表示激活函數,這里的b可以理解成 為更好達到目標而做調整的偏置項。 一開始為了簡單,人們把激活函數定義成一個線性函數,即對於結果做一個線性變化,比如一個簡單的線性激活函數是g(z) = z,輸出都是輸入的線性變換。後來實際應用中發現,線性激活函數太過局限,於是引入了非線性激活函數。
Ⅱ 神經網路到底有什麼作用,具體是用來干什麼的
神經網路(Artificial Neural Networks,簡寫為ANNs)也簡稱為神經網路(NNs)或稱作連接模型(Connection Model),它是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
神經網路可以用於模式識別、信號處理、知識工程、專家系統、優化組合、機器人控制等。隨著神經網路理論本身以及相關理論、相關技術的不斷發展,神經網路的應用定將更加深入。
Ⅲ 神經網路是什麼
神經網路是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
生物神經網路主要是指人腦的神經網路,它是人工神經網路的技術原型。人腦是人類思維的物質基礎,思維的功能定位在大腦皮層,後者含有大約10^11個神經元,每個神經元又通過神經突觸與大約103個其它神經元相連,形成一個高度復雜高度靈活的動態網路。作為一門學科,生物神經網路主要研究人腦神經網路的結構、功能及其工作機制,意在探索人腦思維和智能活動的規律。
人工神經網路是生物神經網路在某種簡化意義下的技術復現,作為一門學科,它的主要任務是根據生物神經網路的原理和實際應用的需要建造實用的人工神經網路模型,設計相應的學習演算法,模擬人腦的某種智能活動,然後在技術上實現出來用以解決實際問題。因此,生物神經網路主要研究智能的機理;人工神經網路主要研究智能機理的實現,兩者相輔相成。
(3)神經網路是什麼擴展閱讀:
神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。主要的研究工作集中在以下幾個方面:
1、生物原型
從生理學、心理學、解剖學、腦科學、病理學等方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。
2、建立模型
根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。
3、演算法
在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機模擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。
神經網路用到的演算法就是向量乘法,並且廣泛採用符號函數及其各種逼近。並行、容錯、可以硬體實現以及自我學習特性,是神經網路的幾個基本優點,也是神經網路計算方法與傳統方法的區別所在。
Ⅳ 什麼是神經網路
隱層節點數在BP 網路中,隱層節點數的選擇非常重要,它不僅對建立的神經網路模型的性能影響很大,而且是訓練時出現「過擬合」的直接原因,但是目前理論上還沒有一種科學的和普遍的確定方法。 目前多數文獻中提出的確定隱層節點數的計算公式都是針對訓練樣本任意多的情況,而且多數是針對最不利的情況,一般工程實踐中很難滿足,不宜採用。事實上,各種計算公式得到的隱層節點數有時相差幾倍甚至上百倍。為盡可能避免訓練時出現「過擬合」現象,保證足夠高的網路性能和泛化能力,確定隱層節點數的最基本原則是:在滿足精度要求的前提下取盡可能緊湊的結構,即取盡可能少的隱層節點數。研究表明,隱層節點數不僅與輸入/輸出層的節點數有關,更與需解決的問題的復雜程度和轉換函數的型式以及樣本數據的特性等因素有關。在確定隱層節點數時必須滿足下列條件:(1)隱層節點數必須小於N-1(其中N為訓練樣本數),否則,網路模型的系統誤差與訓練樣本的特性無關而趨於零,即建立的網路模型沒有泛化能力,也沒有任何實用價值。同理可推得:輸入層的節點數(變數數)必須小於N-1。(2) 訓練樣本數必須多於網路模型的連接權數,一般為2~10倍,否則,樣本必須分成幾部分並採用「輪流訓練」的方法才可能得到可靠的神經網路模型。 總之,若隱層節點數太少,網路可能根本不能訓練或網路性能很差;若隱層節點數太多,雖然可使網路的系統誤差減小,但一方面使網路訓練時間延長,另一方面,訓練容易陷入局部極小點而得不到最優點,也是訓練時出現「過擬合」的內在原因。因此,合理隱層節點數應在綜合考慮網路結構復雜程度和誤差大小的情況下用節點刪除法和擴張法確定。
Ⅳ 什麼是BP神經網路
BP演算法的基本思想是:學習過程由信號正向傳播與誤差的反向回傳兩個部分組成;正向傳播時,輸入樣本從輸入層傳入,經各隱層依次逐層處理,傳向輸出層,若輸出層輸出與期望不符,則將誤差作為調整信號逐層反向回傳,對神經元之間的連接權矩陣做出處理,使誤差減小。經反復學習,最終使誤差減小到可接受的范圍。具體步驟如下:
1、從訓練集中取出某一樣本,把信息輸入網路中。
2、通過各節點間的連接情況正向逐層處理後,得到神經網路的實際輸出。
3、計算網路實際輸出與期望輸出的誤差。
4、將誤差逐層反向回傳至之前各層,並按一定原則將誤差信號載入到連接權值上,使整個神經網路的連接權值向誤差減小的方向轉化。
5、対訓練集中每一個輸入—輸出樣本對重復以上步驟,直到整個訓練樣本集的誤差減小到符合要求為止。
Ⅵ 什麼叫神經網路
楓舞給出基本的概念:
一.一些基本常識和原理
[什麼叫神經網路?]
人的思維有邏輯性和直觀性兩種不同的基本方式。邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:1.信息是通過神經元上的興奮模式分布儲在網路上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。
人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。
[人工神經網路的工作原理]
人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對手寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。
所以網路學習的准則應該是:如果網路作出錯誤的的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。
如果輸出為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在於使網路下次再遇到「A」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網路輪番輸入若干個手寫字母「A」、「B」後,經過網路按以上學習方法進行若干次學習後,網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識別的模式也就越多。
=================================================
楓舞推薦一個小程序:
關於一個神經網路模擬程序的下載
人工神經網路實驗系統(BP網路) V1.0 Beta 作者:沈琦
http://emuch.net/html/200506/de24132.html
作者關於此程序的說明:
從輸出結果可以看到,前3條"學習"指令,使"輸出"神經元收斂到了值 0.515974。而後3條"學習"指令,其收斂到了值0.520051。再看看處理4和11的指令結果 P *Out1: 0.520051看到了嗎? "大腦"識別出了4和11是屬於第二類的!怎麼樣?很神奇吧?再打show指令看看吧!"神經網路"已經形成了!你可以自己任意的設"模式"讓這個"大腦"學習分辯哦!只要樣本數據量充分(可含有誤差的樣本),如果能夠在out數據上收斂地話,那它就能分辨地很准哦!有時不是絕對精確,因為它具有"模糊處理"的特性.看Process輸出的值接近哪個Learning的值就是"大腦"作出的"模糊性"判別!
=================================================
楓舞推薦神經網路研究社區:
人工神經網路論壇
http://www.youngfan.com/forum/index.php
http://www.youngfan.com/nn/index.html(舊版,楓舞推薦)
國際神經網路學會(INNS)(英文)
http://www.inns.org/
歐洲神經網路學會(ENNS)(英文)
http://www.snn.kun.nl/enns/
亞太神經網路學會(APNNA)(英文)
http://www.cse.cuhk.e.hk/~apnna
日本神經網路學會(JNNS)(日文)
http://www.jnns.org
國際電氣工程師協會神經網路分會
http://www.ieee-nns.org/
研學論壇神經網路
http://bbs.matwav.com/post/page?bid=8&sty=1&age=0
人工智慧研究者俱樂部
http://www.souwu.com/
2nsoft人工神經網路中文站
http://211.156.161.210:8888/2nsoft/index.jsp
=================================================
楓舞推薦部分書籍:
人工神經網路技術入門講稿(PDF)
http://www.youngfan.com/nn/ann.pdf
神經網路FAQ(英文)
http://www.youngfan.com/nn/FAQ/FAQ.html
數字神經網路系統(電子圖書)
http://www.youngfan.com/nn/nnbook/director.htm
神經網路導論(英文)
http://www.shef.ac.uk/psychology/gurney/notes/contents.html
===============================================
楓舞還找到一份很有參考價值的講座
<前向網路的敏感性研究>
http://www.youngfan.com/nn/mgx.ppt
是Powerpoint文件,比較大,如果網速不夠最好用滑鼠右鍵下載另存.
=========================================================
楓舞添言:很久之前,楓舞夢想智能機器人從自己手中誕生,SO在學專業的時候也有往這方面發展...考研的時候亦是朝著人工智慧的方向發展..但是很不幸的是楓舞考研失敗...SO 只好放棄這個美好的願望,為生活奔波.希望你能夠成為一個好的智能計算機工程師..楓舞已經努力的在給你提供條件資源哦~~
Ⅶ 什麼是神經網路計算機
神經網路計算機具有模仿人的大腦判斷能力和適應能力,可並行處理多種數據功能的神經網路計算機,可以判斷對象的性質與狀態,並能採取相應的行動,而且可同時並行處理實時變化的大量數據,並引出結論。以往的信息處理系統只能處理條理清晰、經絡分明的數據。而人的大腦卻具有能處理支離破碎、含糊不清信息的靈活性,因而第六代計算機將在較大程度上類似人腦的智慧和靈活性。人腦有140億神經元及10億多神經鍵,人腦總體運行速度相當於每秒1000萬億次的電腦功能。用許多微處理機模仿人腦的神經元結構,採用大量的並行分布式網路就構成了神經電腦。
神經電腦除有許多處理器外,還有類似神經的節點,每個節點與許多點相連。若把每一步運算分配給每台微處理器,它們同時運算,其信息處理速度和智能會大大提高。神經電子計算機的信息不是存在存儲器中,而是存儲在神經元之間的聯絡網中。若有節點斷裂,電腦仍有重建資料的能力,它還具有聯想記憶、視覺和聲音識別能力。神經電子計算機將會廣泛應用於各領域。它能識別文字、符號、圖形、語言以及聲納和雷達收到的信號,判讀支票,對市場進行估計,分析新產品,進行醫學診斷,控制智能機器人,實現汽車自動駕駛和飛行器的自動駕駛,發現、識別軍事目標,進行智能決策和智能指揮等。
日本科學家開發的神經電子計算機用的大規模集成電路晶元,在1.5厘米正方的矽片上可設置400個神經元和40000個神經鍵,這種晶元能實現每秒2億次的運算速度。美國研究出由左腦和右腦兩個神經塊連接而成的神經電子計算機。右腦為經驗功能部分,有1萬多個神經元,適於圖像識別;左腦為識別功能部分,含有100萬個神經元,用於存儲單詞和語法規則。
Ⅷ 什麼是神經網路計算機
許多新型電子計算機不僅擁有高速的計算功能,而且還能模擬人腦的某種思維活動,就是說,擁有某些智能化的功能。然後,如果嚴格來鑒定一下,它們離真正的人腦思維功能實在差得太遠了,而且有許多本質的差異。主要表現在人腦擁有高度的自我學習和聯想、創造的能力,以及更高級的尋找最優方案和各種理性的、情感的功能。
神經網路計算機就是通過人工神經網路,模仿人的大腦判斷能力和適應能力、可並行處理多種數據功能的計算機。它可以判斷對象的性質與狀態,並能採取相應的行動,而且可同時並行處理實時變化的大量數據,並引出結論。
Ⅸ 什麼是神經網路學習呢
神經網路學習由稱為神經元的基本處理單元互連而成的平行工作的復雜網路系統,簡稱神經網路。當已知訓練樣本的數據加到網路輸入端時,網路的學習機制一遍又一遍地調整各神經元的權值,使其輸出端達到預定的目標。這就是訓練(學習、記憶)過程。