導航:首頁 > 網路問題 > 神經網路輸入量怎麼設置

神經網路輸入量怎麼設置

發布時間:2024-12-29 10:38:33

A. 神經網路對輸入變數個數有沒有要求,六十個可以嗎

可以,但是網路規模太大,很臃腫,需要調整的參數過多,影響收斂速度。

關於隱層節點數:在BP 網路中,隱層節點數的選擇非常重要,它不僅對建立的神經網路模型的性能影響很大,而且是訓練時出現「過擬合」的直接原因,但是目前理論上還沒有一種科學的和普遍的確定方法。 目前多數文獻中提出的確定隱層節點數的計算公式都是針對訓練樣本任意多的情況,而且多數是針對最不利的情況,一般工程實踐中很難滿足,不宜採用。事實上,各種計算公式得到的隱層節點數有時相差幾倍甚至上百倍。為盡可能避免訓練時出現「過擬合」現象,保證足夠高的網路性能和泛化能力,確定隱層節點數的最基本原則是:在滿足精度要求的前提下取盡可能緊湊的結構,即取盡可能少的隱層節點數。研究表明,隱層節點數不僅與輸入/輸出層的節點數有關,更與需解決的問題的復雜程度和轉換函數的型式以及樣本數據的特性等因素有關。
在確定隱層節點數時必須滿足下列條件:
(1)隱層節點數必須小於N-1(其中N為訓練樣本數),否則,網路模型的系統誤差與訓練樣本的特性無關而趨於零,即建立的網路模型沒有泛化能力,也沒有任何實用價值。同理可推得:輸入層的節點數(變數數)必須小於N-1。
(2) 訓練樣本數必須多於網路模型的連接權數,一般為2~10倍,否則,樣本必須分成幾部分並採用「輪流訓練」的方法才可能得到可靠的神經網路模型。
總之,若隱層節點數太少,網路可能根本不能訓練或網路性能很差;若隱層節點數太多,雖然可使網路的系統誤差減小,但一方面使網路訓練時間延長,另一方面,訓練容易陷入局部極小點而得不到最優點,也是訓練時出現「過擬合」的內在原因。因此,合理隱層節點數應在綜合考慮網路結構復雜程度和誤差大小的情況下用節點刪除法和擴張法確定。

B. BP神經網路輸入層和訓練次數怎樣選擇

輸入層就是看你研究的結果影響因子的數目,而訓練次數是程序自己計算的,因為你要設定誤差目標,模型誤差到達你設定的目標誤差時訓練結束,這時的訓練次數就是最終訓練次數。

閱讀全文

與神經網路輸入量怎麼設置相關的資料

熱點內容
公司電腦來賓網路 瀏覽:669
蘋果手機為什麼老是顯示連接網路 瀏覽:333
聯通導航網路怎麼設置 瀏覽:485
網路配置異常無法登錄 瀏覽:716
連接網路但顯示無互聯網連接 瀏覽:473
診所怎麼做網路營銷 瀏覽:873
圖標顯示無法連接網路 瀏覽:424
沒有網路情況下網頁設置主頁 瀏覽:286
網路安全的審查性 瀏覽:418
網路路由器蹭網 瀏覽:714
網路錯誤651光信號紅燈 瀏覽:870
寬頻怎麼連接無線網路連接 瀏覽:648
方正寬頻屬於哪個網路 瀏覽:784
手機有費用但是沒有網路怎麼回事 瀏覽:517
流量網路強度多少為正常 瀏覽:683
整車網路系統應用有哪些 瀏覽:42
移動網路服務稅率 瀏覽:738
java網路哪個好用 瀏覽:682
不用密碼直接連通網路 瀏覽:396
網路營銷用的什麼軟體 瀏覽:201

友情鏈接