導航:首頁 > 網路問題 > 神經網路機理是什麼

神經網路機理是什麼

發布時間:2023-06-12 00:18:55

❶ 神經網路演算法原理

一共有四種演算法及原理,如下所示:

1、自適應諧振理論(ART)網路

自適應諧振理論(ART)網路具有不同的方案。一個ART-1網路含有兩層一個輸入層和一個輸出層。這兩層完全互連,該連接沿著正向(自底向上)和反饋(自頂向下)兩個方向進行。

2、學習矢量量化(LVQ)網路

學習矢量量化(LVQ)網路,它由三層神經元組成,即輸入轉換層、隱含層和輸出層。該網路在輸入層與隱含層之間為完全連接,而在隱含層與輸出層之間為部分連接,每個輸出神經元與隱含神經元的不同組相連接。

3、Kohonen網路

Kohonen網路或自組織特徵映射網路含有兩層,一個輸入緩沖層用於接收輸入模式,另一個為輸出層,輸出層的神經元一般按正則二維陣列排列,每個輸出神經元連接至所有輸入神經元。連接權值形成與已知輸出神經元相連的參考矢量的分量。

4、Hopfield網路

Hopfield網路是一種典型的遞歸網路,這種網路通常只接受二進制輸入(0或1)以及雙極輸入(+1或-1)。它含有一個單層神經元,每個神經元與所有其他神經元連接,形成遞歸結構。

(1)神經網路機理是什麼擴展閱讀:

人工神經網路演算法的歷史背景:

該演算法系統是 20 世紀 40 年代後出現的。它是由眾多的神經元可調的連接權值連接而成,具有大規模並行處理、分布式信息存儲、良好的自組織自學習能力等特點。

BP演算法又稱為誤差反向傳播演算法,是人工神經網路中的一種監督式的學習演算法。BP 神經網路演算法在理論上可以逼近任意函數,基本的結構由非線性變化單元組成,具有很強的非線性映射能力。

而且網路的中間層數、各層的處理單元數及網路的學習系數等參數可根據具體情況設定,靈活性很大,在優化、信號處理與模式識別、智能控制、故障診斷等許 多領域都有著廣泛的應用前景。

❷ rbf神經網路原理是什麼

rbf神經網路原理是用RBF作為隱單元的「基」構成隱含層空間,這樣就可以將輸入矢量直接映射到隱空間,而不需要通過權連接。

當RBF的中心點確定以後,這種映射關系也就確定了。而隱含層空間到輸出空間的映射是線性的,即網路的輸出是隱單元輸出的線性加權和,此處的權即為網路可調參數。其中,隱含層的作用是把向量從低維度的p映射到高維度的h,這樣低維度線性不可分的情況到高維度就可以變得線性可分了,主要就是核函數的思想。

RBF神經網路的隱節點

RBF神經網路的隱節點採用輸入模式與中心向量的距離(如歐式距離)作為函數的自變數,並使用徑向基函數(如Gaussian函數)作為激活函數。神經元的輸入離徑向基函數中心越遠,神經元的激活程度就越低(高斯函數)。

RBF網路的輸出與部分調參數有關,譬如,一個wij值隻影響一個yi的輸出(參考上面第二章網路輸出),RBF神經網路因此具有「局部映射」特性。

❸ 神經網路演算法原理

4.2.1 概述

人工神經網路的研究與計算機的研究幾乎是同步發展的。1943年心理學家McCulloch和數學家Pitts合作提出了形式神經元的數學模型,20世紀50年代末,Rosenblatt提出了感知器模型,1982年,Hopfiled引入了能量函數的概念提出了神經網路的一種數學模型,1986年,Rumelhart及LeCun等學者提出了多層感知器的反向傳播演算法等。

神經網路技術在眾多研究者的努力下,理論上日趨完善,演算法種類不斷增加。目前,有關神經網路的理論研究成果很多,出版了不少有關基礎理論的著作,並且現在仍是全球非線性科學研究的熱點之一。

神經網路是一種通過模擬人的大腦神經結構去實現人腦智能活動功能的信息處理系統,它具有人腦的基本功能,但又不是人腦的真實寫照。它是人腦的一種抽象、簡化和模擬模型,故稱之為人工神經網路(邊肇祺,2000)。

人工神經元是神經網路的節點,是神經網路的最重要組成部分之一。目前,有關神經元的模型種類繁多,最常用最簡單的模型是由閾值函數、Sigmoid 函數構成的模型(圖 4-3)。

儲層特徵研究與預測

以上演算法是對每個樣本作權值修正,也可以對各個樣本計算δj後求和,按總誤差修正權值。

❹ 神經網路原理

神經網路是一種受到人類神經系統啟發而設計的機器學習模型。它由多個稱為神經元的單元組成,這些神經元通過連接權重相互連接。神經網路利用輸入數據和這些連接權重來進行信息處理和模式識別。以下是神經網路的基本原理:


❺ 神經網路原理及應用

神經網路原理及應用
1. 什麼是神經網路?
神經網路是一種模擬動物神經網路行為特徵,進行分布式並行信息處理的演算法。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
人類的神經網路

2. 神經網路基礎知識
構成:大量簡單的基礎元件——神經元相互連接
工作原理:模擬生物的神經處理信息的方式
功能:進行信息的並行處理和非線性轉化
特點:比較輕松地實現非線性映射過程,具有大規模的計算能力
神經網路的本質:

神經網路的本質就是利用計算機語言模擬人類大腦做決定的過程。
3. 生物神經元結構

4. 神經元結構模型

xj為輸入信號,θi為閾值,wij表示與神經元連接的權值,yi表示輸出值
判斷xjwij是否大於閾值θi
5. 什麼是閾值?
臨界值。
神經網路是模仿大腦的神經元,當外界刺激達到一定的閾值時,神經元才會受刺激,影響下一個神經元。

6. 幾種代表性的網路模型
單層前向神經網路——線性網路
階躍網路
多層前向神經網路(反推學習規則即BP神經網路)
Elman網路、Hopfield網路、雙向聯想記憶網路、自組織競爭網路等等
7. 神經網路能幹什麼?
運用這些網路模型可實現函數逼近、數據聚類、模式分類、優化計算等功能。因此,神經網路廣泛應用於人工智慧、自動控制、機器人、統計學等領域的信息處理中。雖然神經網路的應用很廣,但是在具體的使用過程中到底應當選擇哪種網路結構比較合適是值得考慮的。這就需要我們對各種神經網路結構有一個較全面的認識。
8. 神經網路應用

❻ 神經網路的工作原理

「人腦是如何工作的?」
「人類能否製作模擬人腦的人工神經元?」
多少年以來,人們從醫學、生物學、生理學、哲學、信息學、計算機科學、認知學、組織協同學等各個角度企圖認識並解答上述問題。在尋找上述問題答案的研究過程中,逐漸形成了一個新興的多學科交叉技術領域,稱之為「神經網路」。神經網路的研究涉及眾多學科領域,這些領域互相結合、相互滲透並相互推動。不同領域的科學家又從各自學科的興趣與特色出發,提出不同的問題,從不同的角度進行研究。
人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對於寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。
所以網路學習的准則應該是:如果網路作出錯誤的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。
普通計算機的功能取決於程序中給出的知識和能力。顯然,對於智能活動要通過總結編製程序將十分困難。
人工神經網路也具有初步的自適應與自組織能力。在學習或訓練過程中改變突觸權重值,以適應周圍環境的要求。同一網路因學習方式及內容不同可具有不同的功能。人工神經網路是一個具有學習能力的系統,可以發展知識,以致超過設計者原有的知識水平。通常,它的學習訓練方式可分為兩種,一種是有監督或稱有導師的學習,這時利用給定的樣本標准進行分類或模仿;另一種是無監督學習或稱無為導師學習,這時,只規定學習方式或某些規則,則具體的學習內容隨系統所處環境 (即輸入信號情況)而異,系統可以自動發現環境特徵和規律性,具有更近似人腦的功能。
神經網路就像是一個愛學習的孩子,您教她的知識她是不會忘記而且會學以致用的。我們把學習集(Learning Set)中的每個輸入加到神經網路中,並告訴神經網路輸出應該是什麼分類。在全部學習集都運行完成之後,神經網路就根據這些例子總結出她自己的想法,到底她是怎麼歸納的就是一個黑盒了。之後我們就可以把測試集(Testing Set)中的測試例子用神經網路來分別作測試,如果測試通過(比如80%或90%的正確率),那麼神經網路就構建成功了。我們之後就可以用這個神經網路來判斷事務的分類了。
神經網路是通過對人腦的基本單元——神經元的建模和聯接,探索模擬人腦神經系統功能的模型,並研製一種具有學習、聯想、記憶和模式識別等智能信息處理功能的人工系統。神經網路的一個重要特性是它能夠從環境中學習,並把學習的結果分布存儲於網路的突觸連接中。神經網路的學習是一個過程,在其所處環境的激勵下,相繼給網路輸入一些樣本模式,並按照一定的規則(學習演算法)調整網路各層的權值矩陣,待網路各層權值都收斂到一定值,學習過程結束。然後我們就可以用生成的神經網路來對真實數據做分類。
人工神經網路早期的研究工作應追溯至20世紀40年代。下面以時間順序,以著名的人物或某一方面突出的研究成果為線索,簡要介紹

❼ BP神經網路原理

人工神經網路有很多模型,但是日前應用最廣、基本思想最直觀、最容易被理解的是多層前饋神經網路及誤差逆傳播學習演算法(Error Back-Prooaeation),簡稱為BP網路。

在1986年以Rumelhart和McCelland為首的科學家出版的《Parallel Distributed Processing》一書中,完整地提出了誤差逆傳播學習演算法,並被廣泛接受。多層感知網路是一種具有三層或三層以上的階層型神經網路。典型的多層感知網路是三層、前饋的階層網路(圖4.1),即:輸入層、隱含層(也稱中間層)、輸出層,具體如下:

圖4.1 三層BP網路結構

(1)輸入層

輸入層是網路與外部交互的介面。一般輸入層只是輸入矢量的存儲層,它並不對輸入矢量作任何加工和處理。輸入層的神經元數目可以根據需要求解的問題和數據表示的方式來確定。一般而言,如果輸入矢量為圖像,則輸入層的神經元數目可以為圖像的像素數,也可以是經過處理後的圖像特徵數。

(2)隱含層

1989年,Robert Hecht Nielsno證明了對於任何在閉區間內的一個連續函數都可以用一個隱層的BP網路來逼近,因而一個三層的BP網路可以完成任意的n維到m維的映射。增加隱含層數雖然可以更進一步的降低誤差、提高精度,但是也使網路復雜化,從而增加了網路權值的訓練時間。誤差精度的提高也可以通過增加隱含層中的神經元數目來實現,其訓練效果也比增加隱含層數更容易觀察和調整,所以一般情況應優先考慮增加隱含層的神經元個數,再根據具體情況選擇合適的隱含層數。

(3)輸出層

輸出層輸出網路訓練的結果矢量,輸出矢量的維數應根據具體的應用要求來設計,在設計時,應盡可能減少系統的規模,使系統的復雜性減少。如果網路用作識別器,則識別的類別神經元接近1,而其它神經元輸出接近0。

以上三層網路的相鄰層之間的各神經元實現全連接,即下一層的每一個神經元與上一層的每個神經元都實現全連接,而且每層各神經元之間無連接,連接強度構成網路的權值矩陣W。

BP網路是以一種有教師示教的方式進行學習的。首先由教師對每一種輸入模式設定一個期望輸出值。然後對網路輸入實際的學習記憶模式,並由輸入層經中間層向輸出層傳播(稱為「模式順傳播」)。實際輸出與期望輸出的差即是誤差。按照誤差平方最小這一規則,由輸出層往中間層逐層修正連接權值,此過程稱為「誤差逆傳播」(陳正昌,2005)。所以誤差逆傳播神經網路也簡稱BP(Back Propagation)網。隨著「模式順傳播」和「誤差逆傳播」過程的交替反復進行。網路的實際輸出逐漸向各自所對應的期望輸出逼近,網路對輸入模式的響應的正確率也不斷上升。通過此學習過程,確定下各層間的連接權值後。典型三層BP神經網路學習及程序運行過程如下(標志淵,2006):

(1)首先,對各符號的形式及意義進行說明:

網路輸入向量Pk=(a1,a2,...,an);

網路目標向量Tk=(y1,y2,...,yn);

中間層單元輸入向量Sk=(s1,s2,...,sp),輸出向量Bk=(b1,b2,...,bp);

輸出層單元輸入向量Lk=(l1,l2,...,lq),輸出向量Ck=(c1,c2,...,cq);

輸入層至中間層的連接權wij,i=1,2,...,n,j=1,2,...p;

中間層至輸出層的連接權vjt,j=1,2,...,p,t=1,2,...,p;

中間層各單元的輸出閾值θj,j=1,2,...,p;

輸出層各單元的輸出閾值γj,j=1,2,...,p;

參數k=1,2,...,m。

(2)初始化。給每個連接權值wij、vjt、閾值θj與γj賦予區間(-1,1)內的隨機值。

(3)隨機選取一組輸入和目標樣本

提供給網路。

(4)用輸入樣本

、連接權wij和閾值θj計算中間層各單元的輸入sj,然後用sj通過傳遞函數計算中間層各單元的輸出bj

基坑降水工程的環境效應與評價方法

bj=f(sj) j=1,2,...,p (4.5)

(5)利用中間層的輸出bj、連接權vjt和閾值γt計算輸出層各單元的輸出Lt,然後通過傳遞函數計算輸出層各單元的響應Ct

基坑降水工程的環境效應與評價方法

Ct=f(Lt) t=1,2,...,q (4.7)

(6)利用網路目標向量

,網路的實際輸出Ct,計算輸出層的各單元一般化誤差

基坑降水工程的環境效應與評價方法

(7)利用連接權vjt、輸出層的一般化誤差dt和中間層的輸出bj計算中間層各單元的一般化誤差

基坑降水工程的環境效應與評價方法

(8)利用輸出層各單元的一般化誤差

與中間層各單元的輸出bj來修正連接權vjt和閾值γt

基坑降水工程的環境效應與評價方法

(9)利用中間層各單元的一般化誤差

,輸入層各單元的輸入Pk=(a1,a2,...,an)來修正連接權wij和閾值θj

基坑降水工程的環境效應與評價方法

(10)隨機選取下一個學習樣本向量提供給網路,返回到步驟(3),直到m個訓練樣本訓練完畢。

(11)重新從m個學習樣本中隨機選取一組輸入和目標樣本,返回步驟(3),直到網路全局誤差E小於預先設定的一個極小值,即網路收斂。如果學習次數大於預先設定的值,網路就無法收斂。

(12)學習結束。

可以看出,在以上學習步驟中,(8)、(9)步為網路誤差的「逆傳播過程」,(10)、(11)步則用於完成訓練和收斂過程。

通常,經過訓練的網路還應該進行性能測試。測試的方法就是選擇測試樣本向量,將其提供給網路,檢驗網路對其分類的正確性。測試樣本向量中應該包含今後網路應用過程中可能遇到的主要典型模式(宋大奇,2006)。這些樣本可以直接測取得到,也可以通過模擬得到,在樣本數據較少或者較難得到時,也可以通過對學習樣本加上適當的雜訊或按照一定規則插值得到。為了更好地驗證網路的泛化能力,一個良好的測試樣本集中不應該包含和學習樣本完全相同的模式(董軍,2007)。

❽ 機器學習之人工神經網路演算法

機器學習中有一個重要的演算法,那就是人工神經網路演算法,聽到這個名稱相信大家能夠想到人體中的神經。其實這種演算法和人工神經有一點點相似。當然,這種演算法能夠解決很多的問題,因此在機器學習中有著很高的地位。下面我們就給大家介紹一下關於人工神經網路演算法的知識。
1.神經網路的來源
我們聽到神經網路的時候也時候近一段時間,其實神經網路出現有了一段時間了。神經網路的誕生起源於對大腦工作機理的研究。早期生物界學者們使用神經網路來模擬大腦。機器學習的學者們使用神經網路進行機器學習的實驗,發現在視覺與語音的識別上效果都相當好。在BP演算法誕生以後,神經網路的發展進入了一個熱潮。
2.神經網路的原理
那麼神經網路的學習機理是什麼?簡單來說,就是分解與整合。一個復雜的圖像變成了大量的細節進入神經元,神經元處理以後再進行整合,最後得出了看到的是正確的結論。這就是大腦視覺識別的機理,也是神經網路工作的機理。所以可以看出神經網路有很明顯的優點。
3.神經網路的邏輯架構
讓我們看一個簡單的神經網路的邏輯架構。在這個網路中,分成輸入層,隱藏層,和輸出層。輸入層負責接收信號,隱藏層負責對數據的分解與處理,最後的結果被整合到輸出層。每層中的一個圓代表一個處理單元,可以認為是模擬了一個神經元,若干個處理單元組成了一個層,若干個層再組成了一個網路,也就是」神經網路」。在神經網路中,每個處理單元事實上就是一個邏輯回歸模型,邏輯回歸模型接收上層的輸入,把模型的預測結果作為輸出傳輸到下一個層次。通過這樣的過程,神經網路可以完成非常復雜的非線性分類。
4.神經網路的應用。
圖像識別領域是神經網路中的一個著名應用,這個程序是一個基於多個隱層構建的神經網路。通過這個程序可以識別多種手寫數字,並且達到很高的識別精度與擁有較好的魯棒性。可以看出,隨著層次的不斷深入,越深的層次處理的細節越低。但是進入90年代,神經網路的發展進入了一個瓶頸期。其主要原因是盡管有BP演算法的加速,神經網路的訓練過程仍然很困難。因此90年代後期支持向量機演算法取代了神經網路的地位。
在這篇文章中我們大家介紹了關於神經網路的相關知識,具體的內容就是神經網路的起源、神經網路的原理、神經網路的邏輯架構和神經網路的應用,相信大家看到這里對神經網路知識有了一定的了解,希望這篇文章能夠幫助到大家。

閱讀全文

與神經網路機理是什麼相關的資料

熱點內容
聯通物聯卡怎麼設置才能用網路 瀏覽:880
cf網路加速密碼會泄露嗎 瀏覽:404
如何使用網路驅動連接wifi 瀏覽:80
手機let是4g網路嗎 瀏覽:769
網路域名侵權有哪些風險 瀏覽:549
蘋果手機如何校正網路套餐 瀏覽:336
網路主線接交換機哪個插口 瀏覽:883
廣東工業大學網路中心修改密碼 瀏覽:636
網路處方葯哪裡買 瀏覽:817
網路的經濟特點有哪些 瀏覽:857
網路售假金額超過多少會坐牢 瀏覽:605
路由器聯系網路供應商 瀏覽:761
電腦網路斷網重啟後正常 瀏覽:555
路由器沒開就有網路 瀏覽:963
路由器與網路連接 瀏覽:840
光貓怎麼更換無線網路 瀏覽:560
網路麻將怎麼打 瀏覽:684
網路用語dgjj什麼意思 瀏覽:914
怎樣找到電腦網路賬號 瀏覽:18
蘋果手機打開軟體網路特別卡 瀏覽:721

友情鏈接