導航:首頁 > 網路問題 > 什麼時候可以使用神經網路

什麼時候可以使用神經網路

發布時間:2023-06-11 10:34:39

『壹』 BP神經網路應用問題

神經網路可以用作分類、聚類、預測等。我感覺,你的問題屬於分類問題。
神經網路需要有一定量的歷史數據,通過歷史數據的訓練,網路可以學習到數據中隱含的知識。
在你的問題中,首先要找到某些問題的一些特徵,以及對應的評價數據,用這些數據來訓練神經網路。

『貳』 人工神經網路有什麼應用條件

人工神經網路(Artificial Neural Network,簡稱ANN ),以數學模型模擬神經元活動,是基於模仿大腦神經網路結構和功能而建立的一種信息處理系統。人工神經網路具有自學習、自組織、自適應以及很強的非線性函數逼近能力,擁有強大的容錯性。它可以實現模擬、預測以及模糊控制等功能。是處理非線性系統的有力工具。
它是物流合作夥伴選擇方法中合作夥伴選擇的神經網路演算法的另一種名稱。它是20世界80年代後迅速發展的一門新興學科,ANN可以模擬人腦的某些智能行為,如知覺,靈感和形象思維等,具有自學性,自適應和非線性動態處理等特徵。
將ANN應用於供應鏈管理(SCM)環境下合作合辦的綜合評價選擇,意在建立更加接近於人類思維模式的定性與定量相結合的綜合評價選擇模型。通過對給定樣本模式的學習,獲取評價專家的知識,經驗,主管判斷及對目標重要性的傾向,當對合作夥伴作出綜合評價時,該方法可再現評價專家的經驗,知識和直覺思維,從而實現了定性分析與定量分析的有效結合,也可以較好的保證合作夥伴綜合評價結果的客觀性。
在選定評價指標組合的基礎上,對評價指標作出評價,得到評價值後,因各指標間沒有統一的度量標准,難以進行直接的分析和比較,也不利於輸入神經網路計算。因此,在用神經網路進行綜合評價之前,應首先將輸入的評價值通過隸屬函數的作用轉換為(0,1]之間的值,即對評價值進行標准無綱量化,並作為神經網路的輸入,以使ANN可以處理定量和定性指標。

『叄』 從零開始用Python構建神經網路

從零開始用Python構建神經網路
動機:為了更加深入的理解深度學習,我們將使用 python 語言從頭搭建一個神經網路,而不是使用像 Tensorflow 那樣的封裝好的框架。我認為理解神經網路的內部工作原理,對數據科學家來說至關重要。
這篇文章的內容是我的所學,希望也能對你有所幫助。
神經網路是什麼?
介紹神經網路的文章大多數都會將它和大腦進行類比。如果你沒有深入研究過大腦與神經網路的類比,那麼將神經網路解釋為一種將給定輸入映射為期望輸出的數學關系會更容易理解。
神經網路包括以下組成部分
? 一個輸入層,x
? 任意數量的隱藏層
? 一個輸出層,?
? 每層之間有一組權值和偏置,W and b
? 為隱藏層選擇一種激活函數,σ。在教程中我們使用 Sigmoid 激活函數
下圖展示了 2 層神經網路的結構(注意:我們在計算網路層數時通常排除輸入層)

2 層神經網路的結構
用 Python 可以很容易的構建神經網路類

訓練神經網路
這個網路的輸出 ? 為:

你可能會注意到,在上面的等式中,輸出 ? 是 W 和 b 函數。
因此 W 和 b 的值影響預測的准確率. 所以根據輸入數據對 W 和 b 調優的過程就被成為訓練神經網路。
每步訓練迭代包含以下兩個部分:
? 計算預測結果 ?,這一步稱為前向傳播
? 更新 W 和 b,,這一步成為反向傳播
下面的順序圖展示了這個過程:

前向傳播
正如我們在上圖中看到的,前向傳播只是簡單的計算。對於一個基本的 2 層網路來說,它的輸出是這樣的:

我們在 NeuralNetwork 類中增加一個計算前向傳播的函數。為了簡單起見我們假設偏置 b 為0:

但是我們還需要一個方法來評估預測結果的好壞(即預測值和真實值的誤差)。這就要用到損失函數。
損失函數
常用的損失函數有很多種,根據模型的需求來選擇。在本教程中,我們使用誤差平方和作為損失函數。
誤差平方和是求每個預測值和真實值之間的誤差再求和,這個誤差是他們的差值求平方以便我們觀察誤差的絕對值。
訓練的目標是找到一組 W 和 b,使得損失函數最好小,也即預測值和真實值之間的距離最小。
反向傳播
我們已經度量出了預測的誤差(損失),現在需要找到一種方法來傳播誤差,並以此更新權值和偏置。
為了知道如何適當的調整權值和偏置,我們需要知道損失函數對權值 W 和偏置 b 的導數。
回想微積分中的概念,函數的導數就是函數的斜率。

梯度下降法
如果我們已經求出了導數,我們就可以通過增加或減少導數值來更新權值 W 和偏置 b(參考上圖)。這種方式被稱為梯度下降法。
但是我們不能直接計算損失函數對權值和偏置的導數,因為在損失函數的等式中並沒有顯式的包含他們。因此,我們需要運用鏈式求導發在來幫助計算導數。

鏈式法則用於計算損失函數對 W 和 b 的導數。注意,為了簡單起見。我們只展示了假設網路只有 1 層的偏導數。
這雖然很簡陋,但是我們依然能得到想要的結果—損失函數對權值 W 的導數(斜率),因此我們可以相應的調整權值。
現在我們將反向傳播演算法的函數添加到 Python 代碼中

為了更深入的理解微積分原理和反向傳播中的鏈式求導法則,我強烈推薦 3Blue1Brown 的如下教程:
Youtube:https://youtu.be/tIeHLnjs5U8
整合並完成一個實例
既然我們已經有了包括前向傳播和反向傳播的完整 Python 代碼,那麼就將其應用到一個例子上看看它是如何工作的吧。

神經網路可以通過學習得到函數的權重。而我們僅靠觀察是不太可能得到函數的權重的。
讓我們訓練神經網路進行 1500 次迭代,看看會發生什麼。 注意觀察下面每次迭代的損失函數,我們可以清楚地看到損失函數單調遞減到最小值。這與我們之前介紹的梯度下降法一致。

讓我們看看經過 1500 次迭代後的神經網路的最終預測結果:

經過 1500 次迭代訓練後的預測結果
我們成功了!我們應用前向和方向傳播演算法成功的訓練了神經網路並且預測結果收斂於真實值。
注意預測值和真實值之間存在細微的誤差是允許的。這樣可以防止模型過擬合並且使得神經網路對於未知數據有著更強的泛化能力。
下一步是什麼?
幸運的是我們的學習之旅還沒有結束,仍然有很多關於神經網路和深度學習的內容需要學習。例如:
? 除了 Sigmoid 以外,還可以用哪些激活函數
? 在訓練網路的時候應用學習率
? 在面對圖像分類任務的時候使用卷積神經網路
我很快會寫更多關於這個主題的內容,敬請期待!
最後的想法
我自己也從零開始寫了很多神經網路的代碼
雖然可以使用諸如 Tensorflow 和 Keras 這樣的深度學習框架方便的搭建深層網路而不需要完全理解其內部工作原理。但是我覺得對於有追求的數據科學家來說,理解內部原理是非常有益的。
這種練習對我自己來說已成成為重要的時間投入,希望也能對你有所幫助

『肆』 神經網路優缺點,

優點:

(1)具有自學習功能。例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網路,網路就會通過自學習功能,慢慢學會識別類似的圖像。

自學習功能對於預測有特別重要的意義。預期未來的人工神經網路計算機將為人類提供經濟預測、市場預測、效益預測,其應用前途是很遠大的。

(2)具有聯想存儲功能。用人工神經網路的反饋網路就可以實現這種聯想。

(3)具有高速尋找優化解的能力。尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網路,發揮計算機的高速運算能力,可能很快找到優化解。

缺點:

(1)最嚴重的問題是沒能力來解釋自己的推理過程和推理依據。

(2)不能向用戶提出必要的詢問,而且當數據不充分的時候,神經網路就無法進行工作。

(3)把一切問題的特徵都變為數字,把一切推理都變為數值計算,其結果勢必是丟失信息。

(4)理論和學習演算法還有待於進一步完善和提高。

(4)什麼時候可以使用神經網路擴展閱讀:

神經網路發展趨勢

人工神經網路特有的非線性適應性信息處理能力,克服了傳統人工智慧方法對於直覺,如模式、語音識別、非結構化信息處理方面的缺陷,使之在神經專家系統、模式識別、智能控制、組合優化、預測等領域得到成功應用。

人工神經網路與其它傳統方法相結合,將推動人工智慧和信息處理技術不斷發展。近年來,人工神經網路正向模擬人類認知的道路上更加深入發展,與模糊系統、遺傳演算法、進化機制等結合,形成計算智能,成為人工智慧的一個重要方向,將在實際應用中得到發展。

將信息幾何應用於人工神經網路的研究,為人工神經網路的理論研究開辟了新的途徑。神經計算機的研究發展很快,已有產品進入市場。光電結合的神經計算機為人工神經網路的發展提供了良好條件。

神經網路在很多領域已得到了很好的應用,但其需要研究的方面還很多。其中,具有分布存儲、並行處理、自學習、自組織以及非線性映射等優點的神經網路與其他技術的結合以及由此而來的混合方法和混合系統,已經成為一大研究熱點。

由於其他方法也有它們各自的優點,所以將神經網路與其他方法相結合,取長補短,繼而可以獲得更好的應用效果。目前這方面工作有神經網路與模糊邏輯、專家系統、遺傳演算法、小波分析、混沌、粗集理論、分形理論、證據理論和灰色系統等的融合。

參考資料:網路-人工神經網路

『伍』 神經網路到底有什麼作用,具體是用來干什麼的

神經網路(Artificial Neural Networks,簡寫為ANNs)也簡稱為神經網路(NNs)或稱作連接模型(Connection Model),它是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
神經網路可以用於模式識別、信號處理、知識工程、專家系統、優化組合、機器人控制等。隨著神經網路理論本身以及相關理論、相關技術的不斷發展,神經網路的應用定將更加深入。

『陸』 神經網路使用范圍

個人感覺在系統或者說被控對象的數學模型是不明確的,或是非線性的、或者是強耦合等用常規方法難以控制的情況下,用一下神經網路還可以。

閱讀全文

與什麼時候可以使用神經網路相關的資料

熱點內容
聯通電腦如何連接網路 瀏覽:524
聯通物聯卡怎麼設置才能用網路 瀏覽:881
cf網路加速密碼會泄露嗎 瀏覽:405
如何使用網路驅動連接wifi 瀏覽:81
手機let是4g網路嗎 瀏覽:770
網路域名侵權有哪些風險 瀏覽:550
蘋果手機如何校正網路套餐 瀏覽:337
網路主線接交換機哪個插口 瀏覽:884
廣東工業大學網路中心修改密碼 瀏覽:637
網路處方葯哪裡買 瀏覽:818
網路的經濟特點有哪些 瀏覽:857
網路售假金額超過多少會坐牢 瀏覽:605
路由器聯系網路供應商 瀏覽:761
電腦網路斷網重啟後正常 瀏覽:555
路由器沒開就有網路 瀏覽:963
路由器與網路連接 瀏覽:841
光貓怎麼更換無線網路 瀏覽:560
網路麻將怎麼打 瀏覽:684
網路用語dgjj什麼意思 瀏覽:914
怎樣找到電腦網路賬號 瀏覽:18

友情鏈接