導航:首頁 > 網路問題 > 選輯神經網路是什麼

選輯神經網路是什麼

發布時間:2023-04-01 06:43:29

什麼是神經網路

神經網路可以指向兩種,一個是生物神經網路,一個是人工神經網路。
生物神經網路:一般指生物的大腦神經元,細胞,觸點等組成的網路,用於產生生物的意識,幫助生物進行思考和行動。
人工神經網路(Artificial
Neural
Networks,簡寫為ANNs)也簡稱為神經網路(NNs)或稱作連接模型(Connection
Model),它是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
人工神經網路:是一種應用類似於大腦神經突觸聯接的結構進行信息處理的數學模型。在工程與學術界也常直接簡稱為「神經網路」或類神經網路。

⑵ 什麼是神經網路

神經網路是機器學習的一個流派。這是現今最火的一個學派。我們在第一講中,已經知道人學習知識是通過神經元的連接,科學家通過模仿人腦機理發明了人工神經元。技術的進一步發展,多層神經元的連接,就形成了神經網路。那麼神經網路是怎麼搭建起來的呢?神經元是構建神經網路的最基本單位, 這張圖就是一個人工神經元的原理圖,非常簡單,一個神經元由一個加法器和一個門限器組成。加法器有一些輸入,代表從其他神經元來的信號,這些信號分別被乘上一個系數後在加法器里相加,如果相加的結果大於某個值,就「激活」這個神經元,接通到下個神經元,否則就不激活。原理就這么簡單,做起來也很簡單。今天所有的神經網路的基本單元都是這個。輸入信號乘上的系數,我們也叫「權重」,就是網路的參數,玩神經網路就是調整權重,讓它做你想讓它做的事。 一個神經元只能識別一個東西,比如,當你訓練給感知器會「認」數字「8」,你給它看任何一個數字,它就會告訴你,這是「8」還不是「8」。為了讓機器識別更多更復雜的圖像,我們就需要用更多的神經元。人的大腦由 1000 億個神經元構成,人腦神經元組成了一個很復雜的三維立體結構。

⑶ 什麼是神經網路計算機

這個其實你安靜下來查查網路也挺快的,人講的話漏洞還是蠻多的。神經網路可以想像成機器人腦。
盡量簡單講吧,神經網路的初衷是人希望計算機能模擬人的思維方式解決這些問題:
識別物體,識別數據類型——》進而做到預測物體發展,預測數據變化。比如預測股票,電影票房等等。
那人的思維方式是怎樣的呢?是多維的網狀的。比如,識別一個杯子只需要一瞬間,但你判斷的過程是通過杯子的各種特徵綜合反映出來是一個杯子的。這種各種特徵的綜合反映就是神經網路的基本特點。
抽象一點,你輸入一組能代表杯子的特徵,經過神經網路的處理,它能告訴你這是一個杯子。神經網路就算成了。
其中,你輸入的一組特徵就是輸入向量;
神經網路是由你自己設計的,包括層數和節點數,都是模擬人腦復雜程度的。解決什麼樣的問題,就用適當的復雜程度。
處理指的是各種函數。
最後能告訴你是個杯子,就算是輸出了。

當然,神經網路並不是很准確的網路,因為這是和人自己對大腦的研究成正比的。但因為兼容性強,建模方便的特徵,使神經網路的使用范圍還是相當廣的。希望沒有誤導你。

⑷ 深度學習中經常提到的神經網路是什麼

介紹深度學習就必須要介紹神經網路,因為深度學習是基於神經網路演算法的,其實最開始只有神經網路演算法,上文也提到2006年Geoffrey Hinton老爺子提出了Deep Learning,核心還是人工神經網路演算法,換了一個新的叫法,最基本的演算法沒有變。
通過神經元接收外界信號,達到一定閾值,觸發動作電位,通過突觸釋放神經遞質,可以是興奮或抑制,影響突觸後神經元。通過此實現大腦的計算、記憶、邏輯處理等,進行做出一系列行為等。同時不斷地在不同神經元之間構建新的突觸連接和對現有突觸進行改造,來進行調整。有時候不得不感嘆大自然的鬼斧神工,900億神經元組成的神經網路可以讓大腦實現如此復雜的計算和邏輯處理。

⑸ 神經網路具體是什麼

神經網路由大量的神經元相互連接而成。每個神經元接受線性組合的輸入後,最開始只是簡單的線性加權,後來給每個神經元加上了非線性的激活函數,從而進行非線性變換後輸出。每兩個神經元之間的連接代表加權值,稱之為權重(weight)。不同的權重和激活函數,則會導致神經網路不同的輸出。 舉個手寫識別的例子,給定一個未知數字,讓神經網路識別是什麼數字。此時的神經網路的輸入由一組被輸入圖像的像素所激活的輸入神經元所定義。在通過非線性激活函數進行非線性變換後,神經元被激活然後被傳遞到其他神經元。重復這一過程,直到最後一個輸出神經元被激活。從而識別當前數字是什麼字。 神經網路的每個神經元如下

基本wx + b的形式,其中 x1、x2表示輸入向量 w1、w2為權重,幾個輸入則意味著有幾個權重,即每個輸入都被賦予一個權重 b為偏置bias g(z) 為激活函數 a 為輸出 如果只是上面這樣一說,估計以前沒接觸過的十有八九又必定迷糊了。事實上,上述簡單模型可以追溯到20世紀50/60年代的感知器,可以把感知器理解為一個根據不同因素、以及各個因素的重要性程度而做決策的模型。 舉個例子,這周末北京有一草莓音樂節,那去不去呢?決定你是否去有二個因素,這二個因素可以對應二個輸入,分別用x1、x2表示。此外,這二個因素對做決策的影響程度不一樣,各自的影響程度用權重w1、w2表示。一般來說,音樂節的演唱嘉賓會非常影響你去不去,唱得好的前提下 即便沒人陪同都可忍受,但如果唱得不好還不如你上台唱呢。所以,我們可以如下表示: x1:是否有喜歡的演唱嘉賓。x1 = 1 你喜歡這些嘉賓,x1 = 0 你不喜歡這些嘉賓。嘉賓因素的權重w1 = 7 x2:是否有人陪你同去。x2 = 1 有人陪你同去,x2 = 0 沒人陪你同去。是否有人陪同的權重w2 = 3。 這樣,咱們的決策模型便建立起來了:g(z) = g(w1x1 + w2x2 + b ),g表示激活函數,這里的b可以理解成 為更好達到目標而做調整的偏置項。 一開始為了簡單,人們把激活函數定義成一個線性函數,即對於結果做一個線性變化,比如一個簡單的線性激活函數是g(z) = z,輸出都是輸入的線性變換。後來實際應用中發現,線性激活函數太過局限,於是引入了非線性激活函數。

⑹ 什麼是神經網路,舉例說明神經網路的應用

我想這可能是你想要的神經網路吧!

什麼是神經網路:
人工神經網路(Artificial Neural Networks,簡寫為ANNs)也簡稱為神經網路(NNs)或稱作連接模型(Connection Model),它是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。

神經網路的應用:

應用
在網路模型與演算法研究的基礎上,利用人工神經網路組成實際的應用系統,例如,完成某種信號處理或模式識別的功能、構作專家系統、製成機器人、復雜系統控制等等。
縱觀當代新興科學技術的發展歷史,人類在征服宇宙空間、基本粒子,生命起源等科學技術領域的進程中歷經了崎嶇不平的道路。我們也會看到,探索人腦功能和神經網路的研究將伴隨著重重困難的克服而日新月異。

神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。主要的研究工作集中在以下幾個方面:
生物原型
從生理學、心理學、解剖學、腦科學、病理學等方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。
建立模型
根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。
演算法
在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機模擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。
神經網路用到的演算法就是向量乘法,並且廣泛採用符號函數及其各種逼近。並行、容錯、可以硬體實現以及自我學習特性,是神經網路的幾個基本優點,也是神經網路計算方法與傳統方法的區別所在。

⑺ 神經網路是什麼

神經網路是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。

生物神經網路主要是指人腦的神經網路,它是人工神經網路的技術原型。人腦是人類思維的物質基礎,思維的功能定位在大腦皮層,後者含有大約10^11個神經元,每個神經元又通過神經突觸與大約103個其它神經元相連,形成一個高度復雜高度靈活的動態網路。作為一門學科,生物神經網路主要研究人腦神經網路的結構、功能及其工作機制,意在探索人腦思維和智能活動的規律。

人工神經網路是生物神經網路在某種簡化意義下的技術復現,作為一門學科,它的主要任務是根據生物神經網路的原理和實際應用的需要建造實用的人工神經網路模型,設計相應的學習演算法,模擬人腦的某種智能活動,然後在技術上實現出來用以解決實際問題。因此,生物神經網路主要研究智能的機理;人工神經網路主要研究智能機理的實現,兩者相輔相成。

(7)選輯神經網路是什麼擴展閱讀:

神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。主要的研究工作集中在以下幾個方面:

1、生物原型

從生理學、心理學、解剖學、腦科學、病理學等方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。

2、建立模型

根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。

3、演算法

在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機模擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。

神經網路用到的演算法就是向量乘法,並且廣泛採用符號函數及其各種逼近。並行、容錯、可以硬體實現以及自我學習特性,是神經網路的幾個基本優點,也是神經網路計算方法與傳統方法的區別所在。

⑻ 神經網路模型-27種神經網路模型們的簡介

​ 

【1】Perceptron(P) 感知機

【1】感知機 

感知機是我們知道的最簡單和最古老的神經元模型,它接收一些輸入,然後把它們加總,通過激活函數並傳遞到輸出層。

【2】Feed Forward(FF)前饋神經網路

 【2】前饋神經網路

前饋神經網路(FF),這也是一個很古老的方法——這種方法起源於50年代。它的工作原理通常遵循以下規則:

1.所有節點都完全連接

2.激活從輸入層流向輸出,無回環

3.輸入和輸出之間有一層(隱含層)

在大多數情況下,這種類型的網路使用反向傳播方法進行訓練。

【3】Radial Basis Network(RBF) RBF神經網路

 【3】RBF神經網路

RBF 神經網路實際上是 激活函數是徑向基函數 而非邏輯函數的FF前饋神經網路(FF)。兩者之間有什麼區別呢?

邏輯函數--- 將某個任意值映射到[0 ,... 1]范圍內來,回答「是或否」問題。適用於分類決策系統,但不適用於連續變數。

相反, 徑向基函數--- 能顯示「我們距離目標有多遠」。 這完美適用於函數逼近和機器控制(例如作為PID控制器的替代)。

簡而言之,RBF神經網路其實就是, 具有不同激活函數和應用方向的前饋網路 。

【4】Deep Feed Forword(DFF)深度前饋神經網路

【4】DFF深度前饋神經網路 

DFF深度前饋神經網路在90年代初期開啟了深度學習的潘多拉盒子。 這些依然是前饋神經網路,但有不止一個隱含層 。那麼,它到底有什麼特殊性?

在訓練傳統的前饋神經網路時,我們只向上一層傳遞了少量的誤差信息。由於堆疊更多的層次導致訓練時間的指數增長,使得深度前饋神經網路非常不實用。 直到00年代初,我們開發了一系列有效的訓練深度前饋神經網路的方法; 現在它們構成了現代機器學習系統的核心 ,能實現前饋神經網路的功能,但效果遠高於此。

【5】Recurrent Neural Network(RNN) 遞歸神經網路

【5】RNN遞歸神經網路 

RNN遞歸神經網路引入不同類型的神經元——遞歸神經元。這種類型的第一個網路被稱為約旦網路(Jordan Network),在網路中每個隱含神經元會收到它自己的在固定延遲(一次或多次迭代)後的輸出。除此之外,它與普通的模糊神經網路非常相似。

當然,它有許多變化 — 如傳遞狀態到輸入節點,可變延遲等,但主要思想保持不變。這種類型的神經網路主要被使用在上下文很重要的時候——即過去的迭代結果和樣本產生的決策會對當前產生影響。最常見的上下文的例子是文本——一個單詞只能在前面的單詞或句子的上下文中進行分析。

【6】Long/Short Term Memory (LSTM) 長短時記憶網路

【6】LSTM長短時記憶網路 

LSTM長短時記憶網路引入了一個存儲單元,一個特殊的單元,當數據有時間間隔(或滯後)時可以處理數據。遞歸神經網路可以通過「記住」前十個詞來處理文本,LSTM長短時記憶網路可以通過「記住」許多幀之前發生的事情處理視頻幀。 LSTM網路也廣泛用於寫作和語音識別。

存儲單元實際上由一些元素組成,稱為門,它們是遞歸性的,並控制信息如何被記住和遺忘。

【7】Gated Recurrent Unit (GRU)

 【7】GRU是具有不同門的LSTM

GRU是具有不同門的LSTM。

聽起來很簡單,但缺少輸出門可以更容易基於具體輸入重復多次相同的輸出,目前此模型在聲音(音樂)和語音合成中使用得最多。

實際上的組合雖然有點不同:但是所有的LSTM門都被組合成所謂的更新門(Update Gate),並且復位門(Reset Gate)與輸入密切相關。

它們比LSTM消耗資源少,但幾乎有相同的效果。

【8】Auto Encoder (AE) 自動編碼器

 【8】AE自動編碼器

Autoencoders自動編碼器用於分類,聚類和特徵壓縮。

當您訓練前饋(FF)神經網路進行分類時,您主要必須在Y類別中提供X個示例,並且期望Y個輸出單元格中的一個被激活。 這被稱為「監督學習」。

另一方面,自動編碼器可以在沒有監督的情況下進行訓練。它們的結構 - 當隱藏單元數量小於輸入單元數量(並且輸出單元數量等於輸入單元數)時,並且當自動編碼器被訓練時輸出盡可能接近輸入的方式,強制自動編碼器泛化數據並搜索常見模式。

【9】Variational AE (VAE)  變分自編碼器

 【9】VAE變分自編碼器

變分自編碼器,與一般自編碼器相比,它壓縮的是概率,而不是特徵。

盡管如此簡單的改變,但是一般自編碼器只能回答當「我們如何歸納數據?」的問題時,變分自編碼器回答了「兩件事情之間的聯系有多強大?我們應該在兩件事情之間分配誤差還是它們完全獨立的?」的問題。

【10】Denoising AE (DAE) 降噪自動編碼器

 【10】DAE降噪自動編碼器

雖然自動編碼器很酷,但它們有時找不到最魯棒的特徵,而只是適應輸入數據(實際上是過擬合的一個例子)。

降噪自動編碼器(DAE)在輸入單元上增加了一些雜訊 - 通過隨機位來改變數據,隨機切換輸入中的位,等等。通過這樣做,一個強制降噪自動編碼器從一個有點嘈雜的輸入重構輸出,使其更加通用,強制選擇更常見的特徵。

【11】Sparse AE (SAE) 稀疏自編碼器

【11】SAE稀疏自編碼器 

稀疏自編碼器(SAE)是另外一個有時候可以抽離出數據中一些隱藏分組樣試的自動編碼的形式。結構和AE是一樣的,但隱藏單元的數量大於輸入或輸出單元的數量。

【12】Markov Chain (MC) 馬爾科夫鏈

 【12】Markov Chain (MC) 馬爾科夫鏈

馬爾可夫鏈(Markov Chain, MC)是一個比較老的圖表概念了,它的每一個端點都存在一種可能性。過去,我們用它來搭建像「在單詞hello之後有0.0053%的概率會出現dear,有0.03551%的概率出現you」這樣的文本結構。

這些馬爾科夫鏈並不是典型的神經網路,它可以被用作基於概率的分類(像貝葉斯過濾),用於聚類(對某些類別而言),也被用作有限狀態機。

【13】Hopfield Network (HN) 霍普菲爾網路

【13】HN霍普菲爾網路 

霍普菲爾網路(HN)對一套有限的樣本進行訓練,所以它們用相同的樣本對已知樣本作出反應。

在訓練前,每一個樣本都作為輸入樣本,在訓練之中作為隱藏樣本,使用過之後被用作輸出樣本。

在HN試著重構受訓樣本的時候,他們可以用於給輸入值降噪和修復輸入。如果給出一半圖片或數列用來學習,它們可以反饋全部樣本。

【14】Boltzmann Machine (BM) 波爾滋曼機

【14】 BM 波爾滋曼機 

波爾滋曼機(BM)和HN非常相像,有些單元被標記為輸入同時也是隱藏單元。在隱藏單元更新其狀態時,輸入單元就變成了輸出單元。(在訓練時,BM和HN一個一個的更新單元,而非並行)。

這是第一個成功保留模擬退火方法的網路拓撲。

多層疊的波爾滋曼機可以用於所謂的深度信念網路,深度信念網路可以用作特徵檢測和抽取。

【15】Restricted BM (RBM) 限制型波爾滋曼機

【15】 RBM 限制型波爾滋曼機 

在結構上,限制型波爾滋曼機(RBM)和BM很相似,但由於受限RBM被允許像FF一樣用反向傳播來訓練(唯一的不同的是在反向傳播經過數據之前RBM會經過一次輸入層)。

【16】Deep Belief Network (DBN) 深度信念網路

【16】DBN 深度信念網路 

像之前提到的那樣,深度信念網路(DBN)實際上是許多波爾滋曼機(被VAE包圍)。他們能被連在一起(在一個神經網路訓練另一個的時候),並且可以用已經學習過的樣式來生成數據。

【17】Deep Convolutional Network (DCN) 深度卷積網路

【17】 DCN 深度卷積網路

當今,深度卷積網路(DCN)是人工神經網路之星。它具有卷積單元(或者池化層)和內核,每一種都用以不同目的。

卷積核事實上用來處理輸入的數據,池化層是用來簡化它們(大多數情況是用非線性方程,比如max),來減少不必要的特徵。

他們通常被用來做圖像識別,它們在圖片的一小部分上運行(大約20x20像素)。輸入窗口一個像素一個像素的沿著圖像滑動。然後數據流向卷積層,卷積層形成一個漏斗(壓縮被識別的特徵)。從圖像識別來講,第一層識別梯度,第二層識別線,第三層識別形狀,以此類推,直到特定的物體那一級。DFF通常被接在卷積層的末端方便未來的數據處理。

【18】Deconvolutional Network (DN) 去卷積網路

 【18】 DN 去卷積網路

去卷積網路(DN)是將DCN顛倒過來。DN能在獲取貓的圖片之後生成像(狗:0,蜥蜴:0,馬:0,貓:1)一樣的向量。DNC能在得到這個向量之後,能畫出一隻貓。

【19】Deep Convolutional Inverse Graphics Network (DCIGN) 深度卷積反轉圖像網路

【19】 DCIGN 深度卷積反轉圖像網路

深度卷積反轉圖像網路(DCIGN),長得像DCN和DN粘在一起,但也不完全是這樣。

事實上,它是一個自動編碼器,DCN和DN並不是作為兩個分開的網路,而是承載網路輸入和輸出的間隔區。大多數這種神經網路可以被用作圖像處理,並且可以處理他們以前沒有被訓練過的圖像。由於其抽象化的水平很高,這些網路可以用於將某個事物從一張圖片中移除,重畫,或者像大名鼎鼎的CycleGAN一樣將一匹馬換成一個斑馬。

【20】Generative Adversarial Network (GAN) 生成對抗網路

 【20】 GAN 生成對抗網路

生成對抗網路(GAN)代表了有生成器和分辨器組成的雙網路大家族。它們一直在相互傷害——生成器試著生成一些數據,而分辨器接收樣本數據後試著分辨出哪些是樣本,哪些是生成的。只要你能夠保持兩種神經網路訓練之間的平衡,在不斷的進化中,這種神經網路可以生成實際圖像。

【21】Liquid State Machine (LSM) 液體狀態機

 【21】 LSM 液體狀態機

液體狀態機(LSM)是一種稀疏的,激活函數被閾值代替了的(並不是全部相連的)神經網路。只有達到閾值的時候,單元格從連續的樣本和釋放出來的輸出中積累價值信息,並再次將內部的副本設為零。

這種想法來自於人腦,這些神經網路被廣泛的應用於計算機視覺,語音識別系統,但目前還沒有重大突破。

【22】Extreme  Learning Machine (ELM) 極端學習機

【22】ELM 極端學習機 

極端學習機(ELM)是通過產生稀疏的隨機連接的隱藏層來減少FF網路背後的復雜性。它們需要用到更少計算機的能量,實際的效率很大程度上取決於任務和數據。

【23】Echo State Network (ESN) 回聲狀態網路

【23】 ESN 回聲狀態網路

回聲狀態網路(ESN)是重復網路的細分種類。數據會經過輸入端,如果被監測到進行了多次迭代(請允許重復網路的特徵亂入一下),只有在隱藏層之間的權重會在此之後更新。

據我所知,除了多個理論基準之外,我不知道這種類型的有什麼實際應用。。。。。。。

【24】Deep Resial Network (DRN) 深度殘差網路

​【24】 DRN 深度殘差網路 

深度殘差網路(DRN)是有些輸入值的部分會傳遞到下一層。這一特點可以讓它可以做到很深的層級(達到300層),但事實上它們是一種沒有明確延時的RNN。

【25】Kohonen Network (KN) Kohonen神經網路

​ 【25】 Kohonen神經網路

Kohonen神經網路(KN)引入了「單元格距離」的特徵。大多數情況下用於分類,這種網路試著調整它們的單元格使其對某種特定的輸入作出最可能的反應。當一些單元格更新了, 離他們最近的單元格也會更新。

像SVM一樣,這些網路總被認為不是「真正」的神經網路。

【26】Support Vector Machine (SVM)

​【26】 SVM 支持向量機 

支持向量機(SVM)用於二元分類工作,無論這個網路處理多少維度或輸入,結果都會是「是」或「否」。

SVM不是所有情況下都被叫做神經網路。

【27】Neural Turing Machine (NTM) 神經圖靈機

​【27】NTM 神經圖靈機 

神經網路像是黑箱——我們可以訓練它們,得到結果,增強它們,但實際的決定路徑大多數我們都是不可見的。

神經圖靈機(NTM)就是在嘗試解決這個問題——它是一個提取出記憶單元之後的FF。一些作者也說它是一個抽象版的LSTM。

記憶是被內容編址的,這個網路可以基於現狀讀取記憶,編寫記憶,也代表了圖靈完備神經網路。

⑼ 有人可以介紹一下什麼是"神經網路"嗎

由於神經網路是多學科交叉的產物,各個相關的學科領域對神經網路
都有各自的看法,因此,關於神經網路的定義,在科學界存在許多不同的
見解。目前使用得最廣泛的是T.Koholen的定義,即"神經網路是由具有適
應性的簡單單元組成的廣泛並行互連的網路,它的組織能夠模擬生物神經
系統對真實世界物體所作出的交互反應。"

如果我們將人腦神經信息活動的特點與現行馮·諾依曼計算機的工作方
式進行比較,就可以看出人腦具有以下鮮明特徵:

1. 巨量並行性。
在馮·諾依曼機中,信息處理的方式是集中、串列的,即所有的程序指
令都必須調到CPU中後再一條一條地執行。而人在識別一幅圖像或作出一項
決策時,存在於腦中的多方面的知識和經驗會同時並發作用以迅速作出解答。
據研究,人腦中約有多達10^(10)~10^(11)數量級的神經元,每一個神經元
具有103數量級的連接,這就提供了巨大的存儲容量,在需要時能以很高的
反應速度作出判斷。

2. 信息處理和存儲單元結合在一起。
在馮·諾依曼機中,存儲內容和存儲地址是分開的,必須先找出存儲器的
地址,然後才能查出所存儲的內容。一旦存儲器發生了硬體故障,存儲器中
存儲的所有信息就都將受到毀壞。而人腦神經元既有信息處理能力又有存儲
功能,所以它在進行回憶時不僅不用先找存儲地址再調出所存內容,而且可
以由一部分內容恢復全部內容。當發生"硬體"故障(例如頭部受傷)時,並
不是所有存儲的信息都失效,而是僅有被損壞得最嚴重的那部分信息丟失。

3. 自組織自學習功能。
馮·諾依曼機沒有主動學習能力和自適應能力,它只能不折不扣地按照
人們已經編制好的程序步驟來進行相應的數值計算或邏輯計算。而人腦能夠
通過內部自組織、自學習的能力,不斷地適應外界環境,從而可以有效地處
理各種模擬的、模糊的或隨機的問題。

神經網路研究的主要發展過程大致可分為四個階段:

1. 第一階段是在五十年代中期之前。

西班牙解剖學家Cajal於十九世紀末創立了神經元學說,該學說認為神經
元的形狀呈兩極,其細胞體和樹突從其他神經元接受沖動,而軸索則將信號
向遠離細胞體的方向傳遞。在他之後發明的各種染色技術和微電極技術不斷
提供了有關神經元的主要特徵及其電學性質。

1943年,美國的心理學家W.S.McCulloch和數學家W.A.Pitts在論文《神經
活動中所蘊含思想的邏輯活動》中,提出了一個非常簡單的神經元模型,即
M-P模型。該模型將神經元當作一個功能邏輯器件來對待,從而開創了神經
網路模型的理論研究。

1949年,心理學家D.O. Hebb寫了一本題為《行為的組織》的書,在這本
書中他提出了神經元之間連接強度變化的規則,即後來所謂的Hebb學習法則。
Hebb寫道:"當神經細胞A的軸突足夠靠近細胞B並能使之興奮時,如果A重
復或持續地激發B,那麼這兩個細胞或其中一個細胞上必然有某種生長或代
謝過程上的變化,這種變化使A激活B的效率有所增加。"簡單地說,就是
如果兩個神經元都處於興奮狀態,那麼它們之間的突觸連接強度將會得到增
強。

五十年代初,生理學家Hodykin和數學家Huxley在研究神經細胞膜等效電
路時,將膜上離子的遷移變化分別等效為可變的Na+電阻和K+電阻,從而建
立了著名的Hodykin-Huxley方程。

這些先驅者的工作激發了許多學者從事這一領域的研究,從而為神經計
算的出現打下了基礎。

2. 第二階段從五十年代中期到六十年代末。

1958年,F.Rosenblatt等人研製出了歷史上第一個具有學習型神經網路
特點的模式識別裝置,即代號為Mark I的感知機(Perceptron),這一重
大事件是神經網路研究進入第二階段的標志。對於最簡單的沒有中間層的
感知機,Rosenblatt證明了一種學習演算法的收斂性,這種學習演算法通過迭代
地改變連接權來使網路執行預期的計算。

稍後於Rosenblatt,B.Widrow等人創造出了一種不同類型的會學習的神經
網路處理單元,即自適應線性元件Adaline,並且還為Adaline找出了一種有
力的學習規則,這個規則至今仍被廣泛應用。Widrow還建立了第一家神經計
算機硬體公司,並在六十年代中期實際生產商用神經計算機和神經計算機軟
件。

除Rosenblatt和Widrow外,在這個階段還有許多人在神經計算的結構和
實現思想方面作出了很大的貢獻。例如,K.Steinbuch研究了稱為學習矩陣
的一種二進制聯想網路結構及其硬體實現。N.Nilsson於1965年出版的
《機器學習》一書對這一時期的活動作了總結。

3. 第三階段從六十年代末到八十年代初。

第三階段開始的標志是1969年M.Minsky和S.Papert所著的《感知機》一書
的出版。該書對單層神經網路進行了深入分析,並且從數學上證明了這種網
絡功能有限,甚至不能解決象"異或"這樣的簡單邏輯運算問題。同時,他們
還發現有許多模式是不能用單層網路訓練的,而多層網路是否可行還很值得
懷疑。

由於M.Minsky在人工智慧領域中的巨大威望,他在論著中作出的悲觀結論
給當時神經網路沿感知機方向的研究潑了一盆冷水。在《感知機》一書出版
後,美國聯邦基金有15年之久沒有資助神經網路方面的研究工作,前蘇聯也
取消了幾項有前途的研究計劃。

但是,即使在這個低潮期里,仍有一些研究者繼續從事神經網路的研究工
作,如美國波士頓大學的S.Grossberg、芬蘭赫爾辛基技術大學的T.Kohonen
以及日本東京大學的甘利俊一等人。他們堅持不懈的工作為神經網路研究的
復興開辟了道路。

4. 第四階段從八十年代初至今。

1982年,美國加州理工學院的生物物理學家J.J.Hopfield採用全互連型
神經網路模型,利用所定義的計算能量函數,成功地求解了計算復雜度為
NP完全型的旅行商問題(Travelling Salesman Problem,簡稱TSP)。這
項突破性進展標志著神經網路方面的研究進入了第四階段,也是蓬勃發展
的階段。

Hopfield模型提出後,許多研究者力圖擴展該模型,使之更接近人腦的
功能特性。1983年,T.Sejnowski和G.Hinton提出了"隱單元"的概念,並且
研製出了Boltzmann機。日本的福島邦房在Rosenblatt的感知機的基礎上,
增加隱層單元,構造出了可以實現聯想學習的"認知機"。Kohonen應用3000
個閾器件構造神經網路實現了二維網路的聯想式學習功能。1986年,
D.Rumelhart和J.McClelland出版了具有轟動性的著作《並行分布處理-認知
微結構的探索》,該書的問世宣告神經網路的研究進入了高潮。

1987年,首屆國際神經網路大會在聖地亞哥召開,國際神經網路聯合會
(INNS)成立。隨後INNS創辦了刊物《Journal Neural Networks》,其他
專業雜志如《Neural Computation》,《IEEE Transactions on Neural
Networks》,《International Journal of Neural Systems》等也紛紛
問世。世界上許多著名大學相繼宣布成立神經計算研究所並制訂有關教育
計劃,許多國家也陸續成立了神經網路學會,並召開了多種地區性、國際性
會議,優秀論著、重大成果不斷涌現。

今天,在經過多年的准備與探索之後,神經網路的研究工作已進入了決
定性的階段。日本、美國及西歐各國均制訂了有關的研究規劃。

日本制訂了一個"人類前沿科學計劃"。這項計劃為期15-20年,僅
初期投資就超過了1萬億日元。在該計劃中,神經網路和腦功能的研究佔有
重要地位,因為所謂"人類前沿科學"首先指的就是有關人類大腦以及通過
借鑒人腦而研製新一代計算機的科學領域。

在美國,神經網路的研究得到了軍方的強有力的支持。美國國防部投資
4億美元,由國防部高級研究計劃局(DAPRA)制訂了一個8年研究計劃,
並成立了相應的組織和指導委員會。同時,海軍研究辦公室(ONR)、空軍
科研辦公室(AFOSR)等也紛紛投入巨額資金進行神經網路的研究。DARPA認
為神經網路"看來是解決機器智能的唯一希望",並認為"這是一項比原子彈
工程更重要的技術"。美國國家科學基金會(NSF)、國家航空航天局(NASA)
等政府機構對神經網路的發展也都非常重視,它們以不同的形式支持了眾多
的研究課題。

歐共體也制訂了相應的研究計劃。在其ESPRIT計劃中,就有一個項目是
"神經網路在歐洲工業中的應用",除了英、德兩國的原子能機構外,還有多
個歐洲大公司卷進這個研究項目,如英國航天航空公司、德國西門子公司等。
此外,西歐一些國家還有自己的研究計劃,如德國從1988年就開始進行一個
叫作"神經資訊理論"的研究計劃。

我國從1986年開始,先後召開了多次非正式的神經網路研討會。1990年
12月,由中國計算機學會、電子學會、人工智慧學會、自動化學會、通信學
會、物理學會、生物物理學會和心理學會等八個學會聯合在北京召開了"中
國神經網路首屆學術會議",從而開創了我國神經網路研究的新紀元。

⑽ 什麼叫神經網路

神經網路是新技術領域中的一個時尚詞彙。很多人聽過這個詞,但很少人真正明白它是什麼。本文的目的是介紹所有關於神經網路的基本包括它的功能、一般結構、相關術語、類型及其應用。
「神經網路」這個詞實際是來自於生物學,而我們所指的神經網路正確的名稱應該是「人工神經網路(ANNs)」。在本文,我會同時使用這兩個互換的術語。
一個真正的神經網路是由數個至數十億個被稱為神經元的細胞(組成我們大腦的微小細胞)所組成,它們以不同方式連接而型成網路。人工神經網路就是嘗試模擬這種生物學上的體系結構及其操作。在這里有一個難題:我們對生物學上的神經網路知道的不多!因此,不同類型之間的神經網路體系結構有很大的不同,我們所知道的只是神經元基本的結構

閱讀全文

與選輯神經網路是什麼相關的資料

熱點內容
寧德羅江科目三預約老是網路異常 瀏覽:208
珠海網路營銷服務費 瀏覽:132
馬來西亞無線通信網路有限公司 瀏覽:462
計算機網路isr是什麼意思 瀏覽:545
山西省網路安全知識答題答案 瀏覽:272
東台手機電信4g網路 瀏覽:403
上海匯豐名都哪個運營商網路好 瀏覽:702
手機沒移動網路能發朋友圈怎麼辦 瀏覽:204
搶券網路異常 瀏覽:97
蘋果6怎麼樣連上自家的網路 瀏覽:680
服裝公司網路營銷方案 瀏覽:397
計算機網路基礎結構辯論 瀏覽:755
會計人員網路教育哪個培訓機構好 瀏覽:350
網路安全預防措施英文 瀏覽:532
有哪些網路游戲可以種地 瀏覽:979
長春推廣軟體百度網路推廣 瀏覽:352
世界網路通信軟體 瀏覽:221
網路時間在哪裡設置vivox9 瀏覽:700
電信信號滿了盒子網路不快 瀏覽:798
怎麼設置允許在移動網路下緩存 瀏覽:897

友情鏈接