㈠ BP神經網路
神經網路能很好地解決不同的機器學習問題。神經網路模型是許多邏輯單元按照不同層級組織起來的網路,每一層的輸出變數都是下一層的輸入變數。
上圖顯示了人工神經網路是一個分層模型,邏輯上可以分為三層:
輸入層 :輸入層接收特徵向量 x
輸出層 :輸出層產出最終的預測 h
隱含層 :隱含層介於輸入層與輸出層之間,之所以稱之為隱含層,是因為當中產生的值並不像輸入層使用的樣本矩陣 X或者輸出層用到的標簽矩陣 y 那樣直接可見。
下面引入一些標記法來幫助描述模型:
!$ a^{(j)}_{i} $ 代表第j層的第i個激活單元。 !$ heta^{(j)} $ 代表從第 j 層映射到第 j+1 層時的權重的矩陣,例如 !$ heta^{(1)} $ 代表從第一層映射到第二層的權重的矩陣。其尺寸為:以第 j+1層的激活單元數量為行數,以第 j 層的激活單元數加一為列數的矩陣。例如:上圖所示的神經網路中 !$ heta^{(1)} $ 的尺寸為 3*4。
對於上圖所示的模型,激活單元和輸出分別表達為:
!$ a^{(2)}_{1} = g( heta^{(1)}_{10}x_0 + heta^{(1)}_{11}x_1 + heta^{(1)}_{12}x_2 + heta^{(1)}_{13}x_3 ) $
!$a^{(2)}_{2} = g( heta^{(1)}_{20}x_0 + heta^{(1)}_{21}x_1 + heta^{(1)}_{22}x_2 + heta^{(1)}_{23}x_3 ) $
!$a^{(2)}_{3} = g( heta^{(1)}_{30}x_0 + heta^{(1)}_{31}x_1 + heta^{(1)}_{32}x_2 + heta^{(1)}_{33}x_3 ) $
!$h_{ heta}{(x)} = g( heta^{(2)}_{10}a^{2}_{0} + heta^{(2)}_{11}a^{2}_{1} + heta^{(2)}_{12}a^{2}_{2} + heta^{(2)}_{13}a^{2}_{3} ) $
下面用向量化的方法以上面的神經網路為例,試著計算第二層的值:
對於多類分類問題來說:
我們可將神經網路的分類定義為兩種情況:二類分類和多類分類。
二類分類: !$ S_{L} = 0,y = 0,y = 1$
多類分類: !$ S_{L} = k, y_{i} = 1表示分到第i類;(k>2)$
在神經網路中,我們可以有很多輸出變數,我們的 !$h_{ heta}{(x)} $ 是一個維度為K的向量,並且我們訓練集中的因變數也是同樣維度的一個向量,因此我們的代價函數會比邏輯回歸更加復雜一些,為: !$ h_{ heta}{(x)} in R^{K}(h_{ heta}{(x)})_{i} = i^{th} output$
我們希望通過代價函數來觀察演算法預測的結果與真實情況的誤差有多大,唯一不同的是,對於每一行特徵,我們都會給出K個預測,基本上我們可以利用循環,對每一行特徵都預測K個不同結果,然後在利用循環在K個預測中選擇可能性最高的一個,將其與y中的實際數據進行比較。
正則化的那一項只是排除了每一層 !$ heta_0$ 後,每一層的 矩陣的和。最里層的循環j循環所有的行(由 +1 層的激活單元數決定),循環i則循環所有的列,由該層( !$ s_l$ 層)的激活單元數所決定。即: !$h_{ heta}{(x)}$ 與真實值之間的距離為每個樣本-每個類輸出的加和,對參數進行 regularization 的 bias 項處理所有參數的平方和。
由於神經網路允許多個隱含層,即各層的神經元都會產出預測,因此,就不能直接利用傳統回歸問題的梯度下降法來最小化 !$J( heta)$ ,而需要逐層考慮預測誤差,並且逐層優化。為此,在多層神經網路中,使用反向傳播演算法(Backpropagation Algorithm)來優化預測,首先定義各層的預測誤差為向量 !$ δ^{(l)} $
訓練過程:
當我們對一個較為復雜的模型(例如神經網路)使用梯度下降演算法時,可能會存在一些不容易察覺的錯誤,意味著,雖然代價看上去在不斷減小,但最終的結果可能並不是最優解。
為了避免這樣的問題,我們採取一種叫做梯度的數值檢驗( Numerical Gradient Checking )方法。這種方法的思想是通過估計梯度值來檢驗我們計算的導數值是否真的是我們要求的。
對梯度的估計採用的方法是在代價函數上沿著切線的方向選擇離兩個非常近的點然後計算兩個點的平均值用以估計梯度。即對於某個特定的 ,我們計算出在 !$ heta - epsilon$ 處和 !$ heta + epsilon$ 的代價值(是一個非常小的值,通常選取 0.001),然後求兩個代價的平均,用以估計在 !$ heta$ 處的代價值。
當 !$ heta$ 是一個向量時,我們則需要對偏導數進行檢驗。因為代價函數的偏導數檢驗只針對一個參數的改變進行檢驗,下面是一個只針對 !$ heta_1$ 進行檢驗的示例:
如果上式成立,則證明網路中BP演算法有效,此時關閉梯度校驗演算法(因為梯度的近似計算效率很慢),繼續網路的訓練過程。
㈡ 急問求助。用spss我已經分析好了神經網路模型。如何調用它,輸如其他因變數,輸出自變數的值
你說錯了吧? 應該是輸入自變數,輸出因變數。
如果你想在當前打開的文件中,再輸入數據,進行預測值的輸出,應該先輸入好自變數,保持因變數欄位空缺,再進行一次分析模型(參數不要做任何改變)。
如果你是想在新的文件中進行預測,那就先把模型導出為xml文件。然後打開新數據,然後在『實用程序』下的菜單欄里點擊'評分向導',把原先保存下來的xml文件導入進來,進行預測。--這個做法和其他模型的使用是一樣的。
㈢ matlab神經網路工具箱訓練出來的函數,怎麼輸出得到函數代碼段
這樣:
clear;
%輸入數據矩陣
p1=zeros(1,1000);
p2=zeros(1,1000);
%填充數據
for i=1:1000
p1(i)=rand;
p2(i)=rand;
end
%輸入層有兩個,樣本數為1000
p=[p1;p2];
%目標(輸出)數據矩陣,待擬合的關系為簡單的三角函數
t = cos(pi*p1)+sin(pi*p2);
%對訓練集中的輸入數據矩陣和目標數據矩陣進行歸一化處理
[pn, inputStr] = mapminmax(p);
[tn, outputStr] = mapminmax(t);
%建立BP神經網路
net = newff(pn, tn, [200,10]);
%每10輪回顯示一次結果
net.trainParam.show = 10;
%最大訓練次數
net.trainParam.epochs = 5000;
%網路的學習速率
net.trainParam.lr = 0.05;
%訓練網路所要達到的目標誤差
net.trainParam.goal = 10^(-8);
%網路誤差如果連續6次迭代都沒變化,則matlab會默認終止訓練。為了讓程序繼續運行,用以下命令取消這條設置
net.divideFcn = '';
%開始訓練網路
net = train(net, pn, tn);
%訓練完網路後要求網路的權值w和閾值b
%獲取網路權值、閾值
netiw = net.iw;
netlw = net.lw;
netb = net.b;
w1 = net.iw{1,1}; %輸入層到隱層1的權值
b1 = net.b{1} ; %輸入層到隱層1的閾值
w2 = net.lw{2,1}; %隱層1到隱層2的權值
b2 = net.b{2} ; %隱層1到隱層2的閾值
w3 = net.lw{3,2}; %隱層2到輸出層的權值
b3 = net.b{3} ;%隱層2到輸出層的閾值
%在默認的訓練函數下,擬合公式為,y=w3*tansig(w2*tansig(w1*in+b1)+b2)+b3;
%用公式計算測試數據[x1;x2]的輸出,輸入要歸一化,輸出反歸一化
in = mapminmax('apply',[x1;x2],inputStr);
y=w3*tansig(w2*tansig(w1*in+b1)+b2)+b3;
y1=mapminmax('reverse',y,outputStr);
%用bp神經網路驗證計算結果
out = sim(net,in);
out1=mapminmax('reverse',out,outputStr);
注意事項
一、訓練函數
1、traingd
Name:Gradient descent backpropagation (梯度下降反向傳播演算法 )
Description:triangd is a network training function that updates weight and bias values according to gradient descent.
2、traingda
Name:Gradient descentwith adaptive learning rate backpropagation(自適應學習率的t梯度下降反向傳播演算法)
Description:triangd is a network training function that updates weight and bias values according to gradient descent with adaptive learning rate.it will return a trained net (net) and the trianing record (tr).
3、traingdx (newelm函數默認的訓練函數)
name:Gradient descent with momentum and adaptive learning rate backpropagation(帶動量的梯度下降的自適應學習率的反向傳播演算法)
Description:triangdx is a network training function that updates weight and bias values according to gradient descent momentumand an adaptive learning rate.it will return a trained net (net) and the trianing record (tr).
4、trainlm
Name:Levenberg-Marquardtbackpropagation(L-M反向傳播演算法)
Description:triangd is a network training function that updates weight and bias values according toLevenberg-Marquardt optimization.it will return a trained net (net) and the trianing record (tr).
註:更多的訓練演算法請用matlab的help命令查看。
二、學習函數
1、learngd
Name:Gradient descent weight and bias learning function(梯度下降的權值和閾值學習函數)
Description:learngd is the gradient descentweight and bias learning function, it willreturn theweight change dWand a new learning state.
2、learngdm
Name:Gradient descentwith momentumweight and bias learning function(帶動量的梯度下降的權值和閾值學習函數)
Description:learngd is the gradient descentwith momentumweight and bias learning function, it willreturn the weight change dW and a new learning state.
註:更多的學習函數用matlab的help命令查看。
三、訓練函數與學習函數的區別
函數的輸出是權值和閾值的增量,訓練函數的輸出是訓練好的網路和訓練記錄,在訓練過程中訓練函數不斷調用學習函數修正權值和閾值,通過檢測設定的訓練步數或性能函數計算出的誤差小於設定誤差,來結束訓練。
或者這么說:訓練函數是全局調整權值和閾值,考慮的是整體誤差的最小。學習函數是局部調整權值和閾值,考慮的是單個神經元誤差的最小。
它的基本思想是學習過程由信號的正向傳播與誤差的反向傳播兩個過程組成。
正向傳播時,輸入樣本從輸入層傳入,經各隱層逐層處理後,傳向輸出層。若輸出層的實際輸出與期望的輸出(教師信號)不符,則轉入誤差的反向傳播階段。
反向傳播時,將輸出以某種形式通過隱層向輸入層逐層反傳,並將誤差分攤給各層的所有單元,從而獲得各層單元的誤差信號,此誤差信號即作為修正各單元權值的依據。
㈣ 使用神經網路用matlab進行建模,最後的權重值要輸出么,怎麼輸出得出的模型怎麼用來驗證和預測
得出的權值要回賦給這個神經網路,權值就好像黑匣子里邊的未知的東西,你通過訓練數據得到最佳權值後把它賦給這個黑匣子,黑匣子就成了已知得了,給它一組輸入運行就會有相應的輸出y,這個輸出是我們預測的,需要跟實際的輸出比較得出誤差,誤差大證明系統模型不好,誤差小說明系統模型更接近真實的系統,至於權值怎麼賦給模型,網上有代碼,粒子群優化bp神經網路,遺傳演算法優化神經網路的都有,我也是看了一段時間,理解的不深刻,建模主要是通過已知的輸入輸出數據訓練網路的權值和閾值,我現在在學習鍋爐系統建模和優化,大家可以一起交流學習qq191991427
㈤ 利用人工神經網路建立模型的步驟
人工神經網路有很多種,我只會最常用的BP神經網路。不同的網路有不同的結構和不同的學習演算法。
簡單點說,人工神經網路就是一個函數。只是這個函數有別於一般的函數。它比普通的函數多了一個學習的過程。
在學習的過程中,它根據正確結果不停地校正自己的網路結構,最後達到一個滿意的精度。這時,它才開始真正的工作階段。
學習人工神經網路最好先安裝MathWords公司出的MatLab軟體。利用該軟體,你可以在一周之內就學會建立你自己的人工神經網路解題模型。
如果你想自己編程實現人工神經網路,那就需要找一本有關的書籍,專門看神經網路學習演算法的那部分內容。因為「學習演算法」是人工神經網路的核心。最常用的BP人工神經網路,使用的就是BP學習演算法。
㈥ torchsummary:計算神經網路模型各層輸出特徵圖尺寸及參數量
【注意】:此工具是針對PyTorch的,需配合PyTorch使用!
使用順序可概括如下:
(1)導入torchsummary中的summary對象;
(2)建立神經網路模型;
(3)輸入 模型(model)、輸入尺寸(input_size)、批次大小(batch_size)、運行平台(device) 信息,運行後即可得到summary函數的返回值。
4個參數在(3)中已進行了解釋, 其中device是指cpu或gpu .
輸出如下:
可以看出, batch_size可以不指定,默認為-1 。summary函數會對模型中的每層輸出特徵圖尺寸進行計算,並計算每層含有的參數量以及模型的參數總量等信息,對於逐層統計計算和分析非常直觀和簡潔。
㈦ matlab神經網路工具箱怎麼效果好
導入數據:選擇合適的數據,一定要選數值矩陣形式
在這里插入圖片描述在這里插入圖片描述
進行訓練
在這里插入圖片描述
接下來就點next,選擇輸入輸出,Sample are是選擇以行還是列放置矩陣的,注意調整
在這里插入圖片描述
接下來一直next,在這兒點train
在這里插入圖片描述
查看結果
在這里插入圖片描述
導出代碼:再點next,直到這個界面,先勾選下面的,再點Simple Script生成代碼
在這里插入圖片描述
使用訓練好的神經網路進行預測
使用下方命令,z是需要預測的輸入變數,net就是訓練好的模型
在這里插入圖片描述
再將結果輸出成excel就行啦
在這里插入圖片描述
打開CSDN,閱讀體驗更佳
使用MATLAB載入訓練好的caffe模型進行識別分類_IT遠征軍的博客-CSDN...
在進行下面的實驗前,需要先對數據進行訓練得到caffemodel,然後再進行分類識別 c_demo.m function [scores, maxlabel] = c_demo(im, use_gpu) % Add caffe/matlab to you Matlab search PATH to use matcaffe if exist('/home/...
繼續訪問
MATLAB調用訓練好的KERAS模型_LzQuarter的博客
下載了鏈接中的「kerasimporter.mlpkginstall」文件後,在matlab內用左側的文件管理系統打開會進入一個頁面,在該頁面的右上角有安裝的按鈕,如果之前安裝一直失敗,可以通過這個安裝按鈕的下拉選項選擇僅下載 下載還是有可能要用到VPN,但是相比...
繼續訪問
最新發布 matlab神經網路預測數據,matlab神經網路工具箱
Matlab語言是MathWorks公司推出的一套高性能計算機編程語言,集數學計算、圖形顯示、語言設計於一體,其強大的擴展功能為用戶提供了廣闊的應用空問。它附帶有30多個工具箱,神經網路工具箱就是其中之一。谷歌人工智慧寫作項目:神經網路偽原創。
繼續訪問
matlab神經網路工具箱系統預測
matlab神經網路工具箱系統預測 有原始數據 根據原始數據預測未來十年內的數據
matlab預測控制工具箱
matlab預測控制工具箱,在學習預測控制的過程中翻譯的matlab自帶的示例,希望對大家有所幫助 matlab預測控制工具箱,在學習預測控制的過程中翻譯的matlab自帶的示例,希望對大家有所幫助
用matlab做bp神經網路預測,神經網路預測matlab代碼
我覺得一個很大的原因是你預測給的輸入范圍(2014-)超出了訓練數據的輸入范圍(2006-2013),神經網路好像是具有內插值特性,不能超出,你可以把輸入變數-時間換成其他的變數,比如經過理論分析得出的某些影響因素,然後訓練數據要包括大范圍的情況,這樣可以保證預測其他年份的運量的時候,輸入變數不超出范圍,最後預測的時候給出這幾個影響因素的值,效果會好一點。輸出層是個purelin,線性組合後的輸出層輸出當然也全是幾乎相同的了。輸出層是個purelin,線性組合後的輸出層輸出當然也全是幾乎相同的了。
繼續訪問
BP神經網路預測實例(matlab代碼,神經網路工具箱)
目錄辛烷值的預測matlab代碼實現工具箱實現 參考學習b站: 數學建模學習交流 bp神經網路預測matlab代碼實現過程 辛烷值的預測 【改編】辛烷值是汽油最重要的品質指標,傳統的實驗室檢測方法存在樣品用量大,測試周期長和費用高等問題,不適用於生產控制,特別是在線測試。近年發展起來的近紅外光譜分析方法(NIR),作為一種快速分析方法,已廣泛應用於農業、制葯、生物化工、石油產品等領域。其優越性是無損檢測、低成本、無污染,能在線分析,更適合於生產和控制的需要。實驗採集得到50組汽油樣品(辛烷值已通過其他方法測
繼續訪問
用matlab做bp神經網路預測,matlab人工神經網路預測
ylabel('函數輸出','fontsize',12);%畫出預測結果誤差圖figureplot(error,'-*')title('BP網路預測誤差','fontsize',12)ylabel('誤差','fontsize',12)xlabel('樣本','fontsize',12)。三、訓練函數與學習函數的區別函數的輸出是權值和閾值的增量,訓練函數的輸出是訓練好的網路和訓練記錄,在訓練過程中訓練函數不斷調用學習函數修正權值和閾值,通過檢測設定的訓練步數或性能函數計算出的誤差小於設定誤差,來結束訓練。.
繼續訪問
matlab訓練神經網路模型並導入simulink詳細步驟
之前的神經網路相關文章: Matlab-RBF神經網路擬合數據 Matlab RBF神經網路及其實例 4.深度學習(1) --神經網路編程入門 本文介紹一下怎麼把訓練好的神經網路導入到simulink並使用,假定有兩個變數,一個輸出變數,隨機生成一點數據 x1 = rand(1000,1);x2 = rand(1000,1);x = [x1 x2];y = rand(1000,1); 在App裡面找到神經網路工具箱 點擊Next 選擇對應的數據,注意選擇好對應的輸入和輸出,還
繼續訪問
用matlab做bp神經網路預測,matlab神經網路怎麼預測
它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。Network可以看出,你的網路結構是兩個隱含層,2-3-1-1結構的網路,演算法是traindm,顯示出來的誤差變化為均方誤差值mse。達到設定的網路精度0.001的時候,誤差下降梯度為0.0046,遠大於默認的1e-5,說明此時的網路誤差仍在快速下降,所以可以把訓練精度目標再提高一些,比如設為0.0001或者1e-5。如果你所選用的激活函數是線性函數,那麼就可以先把輸出的表達式寫出來,即權向量和輸入的矩陣乘積。
繼續訪問
matlab訓練模型、導出模型及VC調用模型過程詳解
MATLAB是美國MathWorks公司出品的商業數學軟體,為演算法開發、數據可視化、數據分析以及數值計算等提供了高級計算語言和互動式環境。隨著人工智慧的崛起,MATLAB也添加了自己的機器學習工具包,只需要很少的代碼或命令就能完成模型訓練和測試的過程,訓練好的模型也能方便的導出,供VC等調用。本文主要介紹模型訓練、導出和調用的整個過程。 軟體版本: VC2015,matlab2018a ...
繼續訪問
matlab神經網路預測模型,matlab人工神經網路預測
谷歌人工智慧寫作項目:小發貓matlab帶有神經網路工具箱,可直接調用,建議找本書看看,或者MATLAB論壇找例子常見的神經網路結構。核心調用語句如下:%數據輸入%選連樣本輸入輸出數據歸一化[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);%%BP網路訓練%%初始化網路結構net=newff(inputn,outputn,[88]);net.trainParam.epochs=100;=0.0
繼續訪問
在Matlab中調用pytorch上訓練好的網路模型
在Matlab中調用pytorch上訓練好的網路模型
繼續訪問
MATLAB_第二篇神經網路學習_BP神經網路
BP神經網路代碼實現1. BP神經網路的簡介和結構參數1.1 BP神經網路的結構組成1.2 BP神經網路訓練界面的參數解讀 非常感謝博主wishes61的分享. 1. BP神經網路的簡介和結構參數 一種按照誤差逆向傳播演算法訓練的多層前饋神經網路用於預測BP神經網路的計算過程:由正向計算過程和反向計算過程組成。 正向傳播過程,輸入模式從輸入層經隱單元層逐層處理,並轉向輸出層,每一層神經元的狀態隻影響下一層神經元的狀態。 如果在輸出層不能得到期望的輸出,則轉入反向傳播,將誤差信號沿原來的連接通路返回,通過修改各
繼續訪問
MATLAB神經網路擬合回歸工具箱Neural Net Fitting的使用方法
本文介紹MATLAB軟體中神經網路擬合(Neural Net Fitting)工具箱的具體使用方法~
繼續訪問
灰色預測工具箱matlab,Matlab灰色預測工具箱——走過數模
2009-07-02 23:05灰色預測幾乎是每年數模培訓必不可少的內容,相對來說也是比較簡單,這里寫了四個函數,方便在Matlab裡面調用,分別是GM(1,1),殘差GM(1,1),新陳代謝GM(1,1),Verhust自己寫得難免有所疏忽,需要的朋友自己找本書本來試驗一下。。Gm(1,1)function [px0,ab,rel]=gm11(x0,number)%[px0,ab,rel]=gm...
繼續訪問
matlab利用訓練好的BP神經網路來預測新數據(先保存網路,再使用網路)
1,保存網路。save ('net') % net為已訓練好的網路,這里把他從workspace保存到工作目錄,顯示為net.mat文檔。 2,使用網路。load ('net') % net為上面保存的網路,這里把他下載到workspace。y_predict = sim(...
繼續訪問
數學建模學習(79):Matlab神經網路工具箱使用,實現多輸入多輸出預測
Matlab神經網路工具箱實現,實現多輸入多輸出預測
繼續訪問
熱門推薦 如何利用matlab做BP神經網路分析(包括利用matlab神經網路工具箱)
利用MATLAB 進行BP神經網路的預測(含有神經網路工具箱) 最近一段時間在研究如何利用預測其銷量個數,在網上搜索了一下,發現了很多模型來預測,比如利用回歸模型、時間序列模型,GM(1,1)模型,可是自己在結合實際的工作內容,發現這幾種模型預測的精度不是很高,於是再在網上進行搜索,發現神經網路模型可以來預測,並且有很多是結合時間序列或者SVM(支持向量機)等組合模型來進...
繼續訪問
bp神經網路預測案例python_詳細BP神經網路預測演算法及實現過程實例
1.具體應用實例。根據表2,預測序號15的跳高成績。表2國內男子跳高運動員各項素質指標序號跳高成績()30行進跑(s)立定三級跳遠()助跑摸高()助跑4—6步跳高()負重深蹲杠鈴()杠鈴半蹲系數100(s)抓舉()12.243.29.63.452.151402.811.05022.333.210.33.752.21203.410.97032.243.09.03.52.21403.511.4504...
繼續訪問
如何調用MATLAB訓練神經網路生成的網路進行預測
如何調用MATLAB訓練神經網路生成的網路問題引出知識准備代碼註解 問題引出 如何存儲和調用已經訓練好的神經網路。 本人前幾天在智能控制學習的過程中也遇到了這樣的問題,在論壇中看了大家的回復,雖然都提到了關鍵的兩個函數「save」和「load」,但或多或少都簡潔了些,讓人摸不著頭腦(呵呵,當然也可能是本人太菜)。通過不斷調試,大致弄明白這兩個函數對神經網路的存儲。下面附上實例給大家做個說明,希望對跟我有一樣問題的朋友有所幫助。 知識准備 如果只是需要在工作目錄下保到當前訓練好的網路,可以在命令窗口 輸入:s
繼續訪問
matlab訓練好的模型怎麼用
神經網路