導航:首頁 > 網路問題 > 神經網路用什麼語言

神經網路用什麼語言

發布時間:2023-02-12 07:47:04

Ⅰ 神經網路如何用單片機實現

用單片機開發神經網路應用主要考慮三個方向:
1)網路本身,神網本質上是一組矩陣,矩陣在單片機中的表現可以通過數組來實現;
2)輸入輸出,神網的應用就是把輸入陣列與網路本身的矩陣點乘叉乘後算術求和,產生輸出矩陣,把輸入輸出的演算法做到單片機里也不是難事;
3)訓練,神網的權值矩陣都是訓練出來的,採用諸如前向或反向的演算法,可以做離線也可以做在線,如果做離線就沒有必要把演算法實現在單片機內,PC上就可以做,然後導入矩陣即可;如果做在線則是相對較難的技術,需要在單片機上實現,對於單片機本身的資源要求也較高。

簡單說,1)是基礎,也最容易;1)+2)就已經是神經網路的應用了,也容易實現;1)+2)+Matlab神經網路離線訓練是易於實現,且富有彈性的應用方式;1)+2)+在線訓練基本上就是具備自己學習能力的機器人,這是學術界一直探索的方向。

希望能給你一些啟發,研究神網對我來說已經是五六年前的過去了,還是很懷念那時候的激情,個人認為這將是二十一世紀後期最有影響力的技術之一。

Ⅱ 神經網路研究與應用這塊用python好還是matlab

若果你是需要使用神經網路去完成某些數據分析,而你的數據又不是很多(只有幾萬個樣本或十幾萬個本樣),那麼建議你使用matlab,裡面有已經搭建好的工具箱,非常齊全(神經網路很多種,而且又有不同的學習演算法,和是否正則化等等).
若果你只是想學習演算法,那麼也是matlab較好,一來語法簡單,二來網上的資料比較好找.

若果你對神經網路已經熟悉是,是打算投入應用,而且你的數據很大,那麼根據你所需要的神經網路,用C或其他你認為性能好的語言,針對你的問題重新編一個演算法,也不會花很大功夫.

Ⅲ 人工智慧是用什麼語言編寫的

人工智慧用的比較多的語言有:Python、JAVA 和相關語言、C/C++、JavaScript、R語言。
從事人工智慧,需要數學基礎:高等數學,線性代數,概率論數理統計和隨機過程,離散數學,數值分析。
需要演算法的積累:人工神經網路,支持向量機,遺傳演算法等等演算法;當然還有各個領域需要的演算法,比如要讓機器人自己在位置環境導航和建圖就需要研究SLAM;總之演算法很多需要時間的積累。
需要掌握至少一門編程語言:畢竟演算法的實現還是要編程的;如果深入到硬體的話,一些電類基礎課必不可少。有的還會需要了解域名比如com、top等等。

Ⅳ 神經網路加智能演算法,寫程序用什麼語言好delphi合適嗎簡單易學的相比較就更好了,謝謝高手

神經網路演算法本身就是智能演算法啊,如果說模擬,那必然是用MATLAB好啊,其中有一個SIMULINK模塊,用里邊的神經網路模塊可以直接進行模擬,不用編程序的,它是模塊化得。當然如果老師要求必須編程,那就推薦一本書<<先進PID演算法及MATLAB模擬》,里邊有神經元網路的已經編好的程序,但這只是只能PID演算法。不算是只能演算法,但是這是一個偷懶的做法。如果真的想系統的學習先進演算法,神經元網路,建議樓主還是要把神經網路的理論知識學透才行。

Ⅳ 神經網路編程序用什麼語言啊

一般用matlab或者scilab來編程,因為輸入輸出是圖像的話,用矩陣計算會更方便。

Ⅵ cnn卷積神經網路用什麼語言來寫pascial

200+
這個是hinton matlab代碼的C++改寫版. convnetjs - Star,SAE,首選的肯定是LIBSVM這個庫;RBM#47. DeepLearn Toolbox - Star,包括了CNN;C++SVM方面,Java。
2。
下面主要一些DeepLearning的GitHub項目吧;SdA#47:2200+
實現了卷積神經網路,還實現了Rasmussen的共軛梯度Conjugate Gradient演算法,DBN,C/CRBM/CDBN#47:Python。
3,CAE等主流模型,實現的模型有DBN#47,可以用來做分類,語言是Python;LR等,從演算法與實現上都比較全:800+
實現了深度學習網路. rbm-mnist - Star,應該是應用最廣的機器學習庫了,強化學習等. Deep Learning(yusugomo) - Star,Scala:1000+
Matlab實現中最熱的庫存,提供了5種語言的實現。
5;dA#47:500+
這是同名書的配套代碼。
4. Neural-Networks-And-Deep-Learning - Star!
1,回歸

Ⅶ 從零開始用Python構建神經網路

從零開始用Python構建神經網路
動機:為了更加深入的理解深度學習,我們將使用 python 語言從頭搭建一個神經網路,而不是使用像 Tensorflow 那樣的封裝好的框架。我認為理解神經網路的內部工作原理,對數據科學家來說至關重要。
這篇文章的內容是我的所學,希望也能對你有所幫助。
神經網路是什麼?
介紹神經網路的文章大多數都會將它和大腦進行類比。如果你沒有深入研究過大腦與神經網路的類比,那麼將神經網路解釋為一種將給定輸入映射為期望輸出的數學關系會更容易理解。
神經網路包括以下組成部分
? 一個輸入層,x
? 任意數量的隱藏層
? 一個輸出層,?
? 每層之間有一組權值和偏置,W and b
? 為隱藏層選擇一種激活函數,σ。在教程中我們使用 Sigmoid 激活函數
下圖展示了 2 層神經網路的結構(注意:我們在計算網路層數時通常排除輸入層)

2 層神經網路的結構
用 Python 可以很容易的構建神經網路類

訓練神經網路
這個網路的輸出 ? 為:

你可能會注意到,在上面的等式中,輸出 ? 是 W 和 b 函數。
因此 W 和 b 的值影響預測的准確率. 所以根據輸入數據對 W 和 b 調優的過程就被成為訓練神經網路。
每步訓練迭代包含以下兩個部分:
? 計算預測結果 ?,這一步稱為前向傳播
? 更新 W 和 b,,這一步成為反向傳播
下面的順序圖展示了這個過程:

前向傳播
正如我們在上圖中看到的,前向傳播只是簡單的計算。對於一個基本的 2 層網路來說,它的輸出是這樣的:

我們在 NeuralNetwork 類中增加一個計算前向傳播的函數。為了簡單起見我們假設偏置 b 為0:

但是我們還需要一個方法來評估預測結果的好壞(即預測值和真實值的誤差)。這就要用到損失函數。
損失函數
常用的損失函數有很多種,根據模型的需求來選擇。在本教程中,我們使用誤差平方和作為損失函數。
誤差平方和是求每個預測值和真實值之間的誤差再求和,這個誤差是他們的差值求平方以便我們觀察誤差的絕對值。
訓練的目標是找到一組 W 和 b,使得損失函數最好小,也即預測值和真實值之間的距離最小。
反向傳播
我們已經度量出了預測的誤差(損失),現在需要找到一種方法來傳播誤差,並以此更新權值和偏置。
為了知道如何適當的調整權值和偏置,我們需要知道損失函數對權值 W 和偏置 b 的導數。
回想微積分中的概念,函數的導數就是函數的斜率。

梯度下降法
如果我們已經求出了導數,我們就可以通過增加或減少導數值來更新權值 W 和偏置 b(參考上圖)。這種方式被稱為梯度下降法。
但是我們不能直接計算損失函數對權值和偏置的導數,因為在損失函數的等式中並沒有顯式的包含他們。因此,我們需要運用鏈式求導發在來幫助計算導數。

鏈式法則用於計算損失函數對 W 和 b 的導數。注意,為了簡單起見。我們只展示了假設網路只有 1 層的偏導數。
這雖然很簡陋,但是我們依然能得到想要的結果—損失函數對權值 W 的導數(斜率),因此我們可以相應的調整權值。
現在我們將反向傳播演算法的函數添加到 Python 代碼中

為了更深入的理解微積分原理和反向傳播中的鏈式求導法則,我強烈推薦 3Blue1Brown 的如下教程:
Youtube:https://youtu.be/tIeHLnjs5U8
整合並完成一個實例
既然我們已經有了包括前向傳播和反向傳播的完整 Python 代碼,那麼就將其應用到一個例子上看看它是如何工作的吧。

神經網路可以通過學習得到函數的權重。而我們僅靠觀察是不太可能得到函數的權重的。
讓我們訓練神經網路進行 1500 次迭代,看看會發生什麼。 注意觀察下面每次迭代的損失函數,我們可以清楚地看到損失函數單調遞減到最小值。這與我們之前介紹的梯度下降法一致。

讓我們看看經過 1500 次迭代後的神經網路的最終預測結果:

經過 1500 次迭代訓練後的預測結果
我們成功了!我們應用前向和方向傳播演算法成功的訓練了神經網路並且預測結果收斂於真實值。
注意預測值和真實值之間存在細微的誤差是允許的。這樣可以防止模型過擬合並且使得神經網路對於未知數據有著更強的泛化能力。
下一步是什麼?
幸運的是我們的學習之旅還沒有結束,仍然有很多關於神經網路和深度學習的內容需要學習。例如:
? 除了 Sigmoid 以外,還可以用哪些激活函數
? 在訓練網路的時候應用學習率
? 在面對圖像分類任務的時候使用卷積神經網路
我很快會寫更多關於這個主題的內容,敬請期待!
最後的想法
我自己也從零開始寫了很多神經網路的代碼
雖然可以使用諸如 Tensorflow 和 Keras 這樣的深度學習框架方便的搭建深層網路而不需要完全理解其內部工作原理。但是我覺得對於有追求的數據科學家來說,理解內部原理是非常有益的。
這種練習對我自己來說已成成為重要的時間投入,希望也能對你有所幫助

Ⅷ 什麼是matlab神經網路

Matlab語言是MathWorks公司推出的一套高性能計算機編程語言,集數學計算、圖形顯示、語言設計於一體,其強大的擴展功能為用戶提供了廣闊的應用空問。它附帶有30多個工具箱,神經網路工具箱就是其中之一。

Ⅸ 請問高手,神經網路模型與學習演算法用什麼語言編程比較好JAVA 、C語言還是C++等。謝謝!

個人建議,用Java,畢竟它對網路的針對性較強,而學習演算法可以從C開始再到java因為從小到大比較好…

Ⅹ 神經網路研究與應用這塊用python好還是matlab

這兩者主要還是需要自己用著順手。

用matlab的集成開發環境很好,跟蹤代碼是非常方便也會檢查你的錯誤代碼,你不需要像碼農一樣產品做單元測試代碼,基本代碼運行幾次這完全沒有什麼問題。如果你只是想學習演算法,那麼matlab更好,語法簡單。如果你已經熟悉了神經網路,需要進行研究想投入應用,數據非常大,還要大量自行設計的模型時,就會容易理解python是多麼方便。python語言本身的靈活性為自主設計的模型提供了極大的便利,你想為你的問題編一個演算法,也不會花太多的時間,matlab可以做到這一點,但這是非常困難的。在大項目、多人協作等方面比matlab更有優勢。

兩者各有各的優勢,孰強孰弱不好判斷,煩這個產品這個東西,自己用著舒心用著順手就好啦,只要用的是正版的其他不用考慮太多。

閱讀全文

與神經網路用什麼語言相關的資料

熱點內容
網路連接列印機顯示11b錯誤 瀏覽:996
世界上第一個網路出現在哪個國家 瀏覽:574
移動網路的分層覆蓋 瀏覽:814
中公研究生網路課程如何 瀏覽:36
怎樣設置網路高級 瀏覽:195
蘇州網路設備軟體 瀏覽:92
華為手機網路制式4g是什麼意思 瀏覽:657
請問網路電視怎麼樣看衛視 瀏覽:3
網路持續連接 瀏覽:229
2021網路安全專業高校 瀏覽:943
福田電腦網路布線 瀏覽:292
網安大隊網路安全排查整改報告 瀏覽:558
機頂盒外部網路設置 瀏覽:57
網路游戲大全免費下載手機版 瀏覽:944
受限制或無連接網路圖標 瀏覽:628
網路盒光信號跳紅色是怎麼回事 瀏覽:432
安卓微信網路設置在哪裡打開 瀏覽:835
網路安全總隊培訓 瀏覽:82
無線網路未來十年十大產業 瀏覽:560
圍棋ai用的什麼神經網路 瀏覽:174

友情鏈接