Ⅰ 數據包是什麼意思
包(Packet)是TCP/IP協議通信傳輸中的數據單位,一般也稱「數據包」。
TCP/IP協議是工作在OSI模型第三層(網路層)、第四層(傳輸層)上的,幀工作在第二層(數據鏈路層)。上一層的內容由下一層的內容來傳輸,所以在區域網中,「包」是包含在「幀」里的。
包(Packet):在包交換網路里,單個消息被劃分為多個數據塊,這些數據塊稱為包,它包含發送者和接收者的地址信息。這些包然後沿著不同的路徑在一個或多個網路中傳輸,並且在目的地重新組合。
名詞解釋:OSI(Open System Interconnection,開放系統互聯)模型是由國際標准化組織(ISO)定義的標准,它定義了一種分層體系結構,在其中的每一層定義了針對不同通信級別的協議。OSI模型有7層,1到7層分別是:物理層、數據鏈路層、網路層、傳輸層、會話層、表示層、應用層。OSI模型在邏輯上可分為兩個部分:低層的1至3層關注的是原始數據的傳輸;高層的4至7層關注的是網路下的應用程序。
Ⅱ 最早的計算機網路與傳統的通信網路最大的區別是什麼
一、兩者的組成不同:
1、計算機網路的組成:計算機網路的分類與一般的事物分類方法一樣,可以按事物所具有的不同性質特點(即事物的屬性)分類。計算機網路通俗地講就是由多台計算機(或其它計算機網路設備)通過傳輸介質和軟體物理(或邏輯)連接在一起組成的。
總的來說計算機網路的組成基本上包括:計算機、網路操作系統、傳輸介質(可以是有形的,也可以是無形的,如無線網路的傳輸介質就是空間)以及相應的應用軟體四部分。
2、通信網路的組成:傳統的通信網路(即電話交換的網路)是由傳輸、交換和終端三大部分組成。傳輸是傳送信息的媒體;交換主要是指交換機,是各種終端交換信息的中介體;終端是指用戶使用的話機、手機、傳真機和計算機等。
二、兩者的作用不同:
1、計算機網路的作用:數據通信、資源共享、集中管理、實現分布式處理、負荷均衡。
2、通信網路的作用:實現人與人,人與計算機,計算機與計算機之間進行信息交換的鏈路,從而達到資源共享和通信的目的。
三、兩者的概述不同:
1、計算機網路的的概述:計算機網路是指將地理位置不同的具有獨立功能的多台計算機及其外部設備,通過通信線路連接起來,在網路操作系統,網路管理軟體及網路通信協議的管理和協調下,實現資源共享和信息傳遞的計算機系統。
2、通信網路的概述:通信是人與人之間通過某種媒體進行的信息交流與傳遞。網路是用物理鏈路將各個孤立的工作站或主機相連在一起,組成的數據鏈路。
Ⅲ 包交換網路的特點
可能別人覺得簡單,就不原意回答了。
我的理解就是,包交換網路==分組交換網路,其區別於電路交換、ATM交換、幀交換等。
通常沒有包交換網路這個概念。
Ⅳ 數據包交換的無連接網路
數據包交換是一種具備容錯能力的網路體系結構。為了解決容錯能力的問題,網路發展成了包交換無連接網路。在包交換網路里,單個消息被劃分為多個數據塊,這些數據塊稱為包,它包含發送者和接收者的地址信息,在一個或多個網路中傳輸,並且在目的地重新組合。
這些包的傳輸彼此獨立,互不影響,並且通常沿著不同的路由到達目的地。消息通常被劃分為數千個包,通常其中的一些包在傳輸中丟失。協議允許這種情況的發生,並且包含了要求重發在傳輸中丟失的數據包的方法。
包交換技術是無連接的,因為它不需要為呼叫建立一個動態連接。這個比電路交換網路更加高效,因為多個用戶可以使用網路電路。包交換技術具備容錯能力因為它避免了依靠單一電路為服務提供可靠性的危險。如果一條網路路徑失敗,其他線路就能保證傳送,從而使消息完整。
包交換是標準的Internet,但是電路交換網路仍有一部分市場份額,現代電路網路允許電路故障和繪會話回復,並且一些消費者喜歡現代專用電路的可靠性和安全性。但是電路交換連接比數據包交換連接費用更昂貴,但許多機構需要這個持續有效安全的電路並且願意支付額外的價錢。
Ⅳ 網路是怎麼發明出來的啊
1836年
-- 電報誕生。 Cooke和Wheatstone為這個發明申請了專利。這個發明和互聯網有什麼關系呢?
她在人類的遠程通訊歷史上走出了第一步。
採用了用一系列點、線在不同人之間傳遞信息的Morse碼,雖然速度還比較慢,但這和當今計算機通訊中的二進制比特流已經相差不遠了。
1858年-1866年
-- 跨海電纜誕生。允許大西洋兩岸之間實現直接快速的通訊。她的重要性體現在:
當今聯系各大洲的樞紐仍然是海底光纜。
1876年
-- 電話誕生。Alexander Graham Bell 向世人展示了這個新發明。
她的意義在於:
當今的Internet網路依然有很大程度上是架構在電話交換系統之上的。
Modem具有數模信號轉換的功能,實現了計算機接入互聯網的功能。
1957年
-- USSR(前蘇聯)發射了的一顆人造衛星,她的重要性在於:
在全球通訊領域邁出了第一步。今天許多信息實際上都在通過衛星傳輸。
美國設立了與之競爭的ARPA機構(高級研究規劃署),並作為國防部的一部分,為美國軍方科技應用打下基礎。
1962年 - 1968年
-- 包交換網路(Packet-switching (PS) networks)誕生,她的意義在於:
互聯網就是基於包交換來傳輸信息的,這一點後面我們將會清楚地看到。
為實現網路信息傳輸安全提供了最大可能,這正是美國軍方的本意。
數據被分成一個個小包傳輸,可以讓他們經過不同路由到達目的地。
增加了對數據的竊聽的困難(因為數據被分割成了包)。
路由冗餘,提高可靠性。即使某個路由中斷,通訊依然可以保持。
網路可以經得起大規模的破壞(比如核子攻擊,可以這也是冷戰的產物)。
1969年
-- 互聯網誕生
美國國防部授權ARPANET進行互聯網的試驗。
這件事的意義在於:
先後建立了四個主Internet節點:UCLA大學(洛杉磯),緊接著是斯坦福研究所、UCSB(聖巴巴拉)和U(猶他州立)。
1971年
-- 人們開始通過互聯網交流。
在ARPANET網上建立了15個節點(共23台主機)
電子郵件——一個通過分布網路傳送信息的程序——被發明了,這個發明和互聯網的關系是:
電子郵件今天依然是互聯網上人與人溝通的主要方式。
本文後面會用一小段文字解釋如何收發電子郵件。
在以後的生活中,電子郵件將與你息息相關。
1972年
-- 計算機可以更加簡便的接入互聯網
第一個展示ARPANET功能的公開演示網建立,共接入了40台主機。
互聯網工作組(INWG)建立,並開始討論建立各種協議的問題。
這個工作組對互聯網產生的影響在於:
起草了Telnet協議規范。
Telnet協議是當今大多數主機之間互操作的主要方式。
1973年
-- 全球性的互聯網開始浮現
首批連入ARPANET的其他國主機出現,他們是:英國倫敦大學和挪威的皇家雷達機構。
乙太網的最初模樣被勾畫出來——這就是現在區域網聯網的最早形式。
互聯網思想開始流傳。
舊金山的一家大酒店第一次架設了具有網關結構的網路。網關結構明確了一個網路規模究竟能有多大(網路內部可以是異構的)
文件傳輸協議(FTP)被制定,使得聯網計算機可以收發文檔數據。
1974年
-- 包交換網路傳輸成為主流
傳輸控制協議(TCP)被制定,互聯網的基石——包交換網路奠定。
Telenet,ARPANET的商業化運作網路向社會開放,這是第一次向社會提供包數據傳輸服務。
1976年
-- 網路規模迅速膨脹
伊麗莎白女王進行了發送電子郵件的嘗試。
UUCP(Unix to Unix CoPy)協議由AT&T的貝爾實驗室開發並在UNIX群體中發布。
這個協議的重要性在於:
UNIX當今依舊是各個大學和科研究構的主流操作系統。
這些UNIX主機可以透過互聯網「交談」。
網路開始向全球用戶開放。
1977年
-- 電子郵件服務蓬勃興起,互聯網正在變為現實
聯網主機數量突破100。
THEORYNET網為100多名計算機領域的研究人員提供了電子郵件服務,這個系統使用了一個自己開發的電郵系統和TELENET接入網路為用戶提供服務。
起草電子郵件標准
第一個在 ARPANET/無線網/SATNET 互聯的演示網通過網關和互聯網協議連接的演示網。
1979年
-- 新聞組誕生
旨在研究計算機網路的計算機科學部在美國建立。
基於UUCP協議的USENET網建立。
她的意義在於:
USENET今天依然非常興旺。
產生了各種討論組、新聞組。
當年年末建立了3個新聞組。
現在幾乎所有的話題都有相應的新聞組。
1979年 (續)
第一個MUD(多用戶土牢)多人交互操作站點建立。這個站點包含了各種冒險游戲、棋類游戲和豐富詳盡的資料庫。
ARPA建立了互聯網配置白板(ICCB)
包交換無線電網(PRNET)在ARPA的資助下開始試驗。許多無線電愛好者在這個網路上進行了無數的通訊實驗。
1981年
-- 各種網路重新融合
誕生於紐約城市大學的BITNET(Because It's Time NETwork)開始運行,並與耶魯大學進行了首次連接。
除了文件傳輸服務(FTP)以外,他們還提供電子郵件和郵件組的服務。
CSNET(Computer Scienc NETwork)項目開始啟動,並向那些不能連入ARPANET的各大學的科學家們提供電子郵件服務。CSNET實際上就是後來的計算機科學網的前身。
1982年
-- TCP/IP締造了未來的網路通訊模式
DCA和ARPA網制訂了網路傳輸控制協議(TCP)和網際協議(IP),這個協議組一般被簡稱為TCP/IP協議。
這個協議的重要意義在於:
首先將互聯網定義為使用TCP/IP協議互聯的一個網路集合,互聯網就是通過TCP/IP互聯的一個大網路。
1982年 (續)
由EUUG創建的EUnet(歐洲UNIX網)開始提供電子郵件服務和新聞組服務。並實現了最初的荷蘭、丹麥、瑞典和英國之間的互聯。
外部網關協議(EGP)的草案被制訂,並開始運用在各種不同體系結構的網間互聯上。
1983年
-- 互聯網越來越壯大了
開發出了域名服務系統
她的重要意義在於:
滿足了大量網路節點的需要
避免了各種難以記憶的地址
採用了人們習慣中易於記憶的名稱
桌面工作站開始成為現實
她的意義在於:
許多基於Berkerley的UNIX系統都內建有IP網路的相關軟體
促使從用單個分時的超級計算機連入Internet的模式過渡為通過區域網連入Internet。
1983年 (續)
作為ICCB的替代物,IAB(Internet Activities Board)開始建立。
Berkeley發布了他們最新的4.2版的BSD UNIX系統,其中內建了TCP/IP的實現。
歐洲科研網(EARN)採用與BITNET類似的線路開始運營。
1984年
-- 互聯網繼續保持增長
主機數量突破1,000台
域名服務系統(DNS)正式啟用
代替了點分十進制的地址,如 123.456.789.10
域名更容易為大家記憶
www.myuniversity.mydept.mynetwork.mycountry( e.g. www.cs.cf.ac.uk).
英國建立了JANET(Joint Academic Network)(聯合科研網)
可控的新聞組服務被引入
1986年
-- 互聯網的威力開始顯現
連入了5,000台主機,建立了241個新聞組。
主幹有56K速率的NSFNET建立
NSF建設了5個地區網路中心,都由超級計算機向用戶提供高性能的服務。——這促使了網路連接數的爆漲,特別是在大學。
新聞傳輸協議(NNTP)被設計以提高基於TCP/IP的新聞組服務性能。
1987
-- 商業化的互聯網誕生
聯網主機數量達到28,000台
在Usenix的資助下,UUNET創立並著手提供商業化的UUCP和Usenet接入服務。
1988年
USFNET主幹升級到T1級(即1.533M)
網路中繼聊天服務(IRC)被開發出來
1989年
-- 互聯網獲得巨大的增長
接入主機數突破10萬台
出現了第一個在商業電子郵件運營商和互聯網之間的中繼服務
互聯網工程任務組(IETF)和互聯網研究任務組(IRTF)在IAB中成立了
1990年
-- 互聯網的膨脹在繼續
30萬台主機接入量,1千個新聞組
ARPANET退出歷史舞台
FTP服務中的文檔開始可以根據名稱檢索和獲取。
World comes on-line公司(world.std.com)成為第一個商業性的經營電話接入的ISP。
1991年
-- 現代互聯網模式開始形成
商業互聯網信息交換協會(CIX)成立並繼NSF之後進一步突破了網路中商業運作的種種障礙。
廣域網中的信息服務誕生(WAIS) ,她的重要性在於:
提供了一套互聯網中信息檢索和獲取得機制
大量知識在網路中出現:電子郵件信息、文本信息、電子書籍、各種帖子、代碼、圖片、聲音甚至資料庫。
這些信息就是我們今天在互聯網中檢索信息的基礎。
關鍵字檢索,這種強有力的檢索技術被逐步完善。
1991年 (續)
-- WWW方式的友好用戶界面開始出現
明尼蘇達州大學的Paul Lindner和Mark P. McCahill發布了他們的Gopher工具。她的重要意義在於:
基於文本、菜單驅動的界面簡化了互聯網中資源獲取的方法
不用用戶去記憶繁瑣的操作命令,用戶界面更為友好。
這個方式今天已被現在更為方便的WWW瀏覽所代替。
1991年 (續)
-- 目前看來依然意義重大的發明
由Berners 和 Lee開發的WWW瀏覽器在CERN發布。她的重要意義在於:
這個工具最初被用於提供分布多媒體服務
方便用戶更快捷的訪問世界各地的信息。
開始是非圖形的界面(1993年後,隨著MOSAIC的出現開始有了圖形支持)
使得我們的生活方式和通信方式發生了革命。
USFNET的主幹帶寬提高到T3級(即44.736M)。NSFNET的主幹上每個月有1萬億位元組,或者說100億的包流量。
英國的JANEAT開始基於TCP/IP提供IP服務
1992年
-- 多媒體改變了互聯網的模樣
聯網主機數突破100萬,新聞組達到4千個
特許成立了互聯網協會(ISOC)
3月實現了網上的音頻多播,11月實現了視頻多播。
「網上沖浪」一詞由Jean Armour Polly首次使用。
1993年
-- WWW革命真的開始了
聯網主機數突破2百萬,出現了600個WWW站點。
NSF建立的InterNIC機構開始提供以下服務:
目錄資料庫服務
注冊服務
信息查找服務
商業和媒體開始關注互聯網
白宮和聯邦政府開始在互聯網上安家
Mosaic給互聯網帶來一場風暴,她的意義在於:
用戶友好的圖形用戶界面成為互聯網的最前端。
基於此開始設計日後風靡一時的Netscape瀏覽器。
促使WWW用戶激增
1994年
-- 商業化運作正式開始
聯網主機數達到3百萬,建立了1萬個WWW站點,1萬個新聞組。
ARPANET/Internet慶祝誕辰25周年
社區開始通過線纜連入了英特網
美國參議院和國會開始在互聯網上提供信息服務
超市、銀行開始步入互聯網
開始建立一種新的生活模式
在美國人們可以在線訂購必勝客的Pizza餅了。
第一個虛擬數字銀行開始運營
NSFNET每月的網路流量超過10萬億位元組
WWW超過Telnet,仍遜於FTP,成為第二位的網路流行服務(這是根據NSFNET發布的流量數據統計結果分析得出的結論)。
英國的HM Treasury在線網站運營(http://www.hm-treasury.gov.uk/)
1995年
-- 商業介入互聯網進展神速
650萬聯網主機,10萬WWW站點
NSFNET恢復為一個科研網路,整個主幹網的運行依賴各大網路之間的互聯合路由。
根據包流量,三月WWW服務首次超過FTP服務,成為網上流量最大的服務;而若根據位元組流量,到四月的時候,WWW服務也超過了FTP。
傳統的撥號入網系統(如Compuserve、美國在線、Prodigy公司等)開始提供網路接入服務。
許多網路相關公司在Netscape的帶動下紛紛公開上市。
域名注冊服務不再免費
網路技術年:WAIS開發了WWW、搜索引擎等技術
新的WWW技術開始浮現:
分布環境運行技術(Java、Javascript、ActiveX)
虛擬環境技術(VRML)
網際協作工具技術(CU-SeeMe)
1996年
-- 微軟進入互聯網產業
1千2百萬主機接入互聯網,50萬WWW站點建立
網路電話業務受到美國電話公司的關注,甚至上訴到國會要求禁止此技術以保證傳統業務的利潤。
WWW瀏覽器的戰斗主要在Netscape和Microsoft之間展開,在用戶迫不及待的需求下兩個軟體不斷地發布新版本並相互進行競爭。
1997年
-- 未來將會怎樣
1千9百50萬主機連入,1百萬WWW站點,71,618個新聞組。
Ⅵ 網路中的"包交換"是什麼意思
指網路架構中的第三層即網路層的數據交換..
Ⅶ 什麼是包交換機
哎呀,時代變得真快,有問題不問老師跑問問。兄弟你的網路基礎看來學得不扎實阿,據你的描述個人感覺應該是指通訊範例。 在計算機網路和通訊中,分組交換(英文packet switching)分組(消息或消息碎片)在結點間單獨路由,不需要先前建立的通信路徑。 分組交換是數據通信中一種新的且重要的概念,現在是世界上數據和語音通信中最重要的基礎。先前,數據通信是基於電路交換的想法,就像在傳統的電話電路一樣,在通話中需要佔用專有的電路,通信雙方要在電路的兩端。 我估計所謂的包交換換機就是只Packet switching。這個你要聯繫上下文的意思來確定中文名稱,最快捷明了的方法就是問老師吧。
Ⅷ 交換網路是什麼意思通俗地解釋下
這四個字已經很通俗了。
傳統的交換網路指 電路交換網路,就是電信的電路交換機組成的核心網;
現在還包括分組交換網,指路由器、交換機堆積的網路。
Ⅸ 什麼是包交換技術
是這個嗎?
---------------
分組交換技術
分組交換也稱包交換,它是將用戶傳送的數據劃分成一定的長度,每個部分叫做一個分組。在每個分組的前面加上一個分組頭,用以指明該分組發往何地址,然後由交換機根據每個分組的地址標志,將他們轉發至目的地,這一過程稱為分組交換。進行分組交換的通信網稱為分組交換網。從交換技術的發展歷史看,數據交換經歷了電路交換、報文交換、分組交換和綜合業務數字交換的發展過程。分組交換實質上是在「存儲—轉發」基礎上發展起來的。它兼有電路交換和報文交換的優點。分組交換在線路上採用動態復用技術傳送按一定長度分割為許多小段的數據—分組。每個分組標識後,在一條物理線路上採用動態復用的技術,同時傳送多個數據分組。把來自用戶發端的數據暫存在交換機的存儲器內,接著在網內轉發。到達接收端,再去掉分組頭將各數據欄位按順序重新裝配成完整的報文。分組交換比電路交換的電路利用率高,比報文交換的傳輸時延小,交互性好。
-----------------------
交換技術
網路技術發展迅猛,乙太網占據了統治地位。為了適應網路應用深化帶來的挑戰,網路的規模和速度都在急劇發展,區域網的速度已從最初的10Mbit/s提高到100Mbit/s,千兆乙太網技術也已得到了普遍應用。
對於用戶來說,在減低成本的前提下,保證網路的高可靠性、高性能、易維護、易擴展,與採用何種組網技術密切相關;對於設備廠商來說,在保證用戶網路功能實現的基礎上,如何能夠取得更為可觀的利潤,採用組網技術的優劣,成為提高利潤的一個手段。
在具體的組網過程中,是使用已經日趨成熟的傳統的第2層交換技術,還是使用具有路由功能的第3層交換技術,或者是使用具有高網路服務水平的第7層交換技術呢?
在這些技術選擇的權衡中,2層交換、3層交換和7層交換這三種技術究竟孰優孰劣,它們各自又適用於什麼樣的環境呢?
傳統的第2層交換技術
2層交換技術可以識別數據幀中的MAC地址信息,根據MAC地址進行轉發,並將這些MAC地址與對應的埠,記錄在自己內部的一個MAC地址表中。
談到交換,從廣義上講,任何數據的轉發都可以叫做交換。但是,傳統的、狹義的第2層交換技術,僅包括數據鏈路層的轉發。
目前,第2層交換技術已經成熟。從硬體上看,第2層交換機的介面模塊都是通過高速背板/匯流排(速率可高達幾十Gbps)交換數據的,2層交換機一般都含有專門用於處理數據包轉發的ASIC (Application specific Integrated Circuit)晶元,因此轉發速度可以做到非常快。
2層交換機主要用在小型區域網中,機器數量在二、三十台以下,這樣的網路環境下,廣播包影響不大,2層交換機的快速交換功能、多個接入埠和低廉價格,為小型網路用戶提供了完善的解決方案。
總之,交換式區域網技術使專用的帶寬為用戶所獨享,極大地提高了區域網傳輸的效率。可以說,在網路系統集成的技術中,直接面向用戶的第2層交換技術,已得到了令人滿意的答案。
具有路由功能的第3層交換技術
第3層交換技術是1997年前後才開始出現的一種交換技術,最初是為了解決廣播域的問題。經過多年發展,第3層交換技術已經成為構建多業務融合網路的主要力量。
在大規模區域網中,為了減小廣播風暴的危害,必須把大型區域網按功能或地域等因素劃分成多個小區域網,這樣必然導致不同子網間的大量互訪,而單純使用第2層交換技術,卻無法實現子網間的互訪。
為了從技術上解決這個問題,網路廠商利用第3層交換技術開發了3層交換機,也叫做路由交換機,它是傳統交換機與路由器的智能結合。
簡單地說,可以處理網路第3層數據轉發的交換技術就是第3層交換技術。
從硬體上看,在第3層交換機中,與路由器有關的第3層路由硬體模塊,也插接在高速背板/匯流排上。這種方式使得路由模塊可以與需要路由的其它模塊間,高速交換數據,從而突破了傳統的外接路由器介面速率的限制。
3層交換機是為IP設計的,介面類型簡單,擁有很強的3層包處理能力,價格又比相同速率的路由器低得多,非常適用於大規模區域網絡。
第3層交換技術到今天已經相當成熟,同時,3層交換機也從來沒有停止過發展。第3層交換技術及3層交換設備的發展,必將在更深層次上推動整個社會的信息化變革,並在整個網路中獲得越來越重要的地位。
具有網路服務功能的第7層交換技術
第7層交換技術通過逐層解開每一個數據包的每層封裝,並識別出應用層的信息,以實現對內容的識別。
充分利用帶寬資源,對互聯網上的應用、內容進行管理,日益成為服務提供商關注的焦點。如何解決傳輸層到應用層的問題,專門針對傳輸層到應用層進行管理的網路技術變得非常重要,這就是目前第7層交換技術發展的最根本原因。
簡單地說,可以處理網路應用層數據轉發的交換技術就是第7層交換技術。其主要目的是在帶寬應用的情況下,網路層以下不再是問題的關鍵,取而代之的是提高網路服務水平,完成互聯網向智能化的轉變。
第7層交換技術通過應用層交換機實現了所有高層網路的功能,使網路管理者能夠以更低的成本,更好地分配網路資源。
從硬體上看,7層交換機將所有功能集中在一個專用的特殊應用集成電路或ASIC上。ASIC比傳統路由器的CPU便宜,而且通常分布在網路埠上,在單一設備中包括了50個ASIC,可以支持數以百計的介面。新的ASIC允許智能交換機/路由器在所有的埠上以極快的速度轉發數據,第7層交換技術可以有效地實現數據流優化和智能負載均衡。
在Internet網、Intranet網和Extranet網,7層交換機都大有施展抱負的用武之地。比如企業到消費者的電子商務、聯機客戶支持,人事規劃與建設、市場銷售自動化,客戶服務,防火牆負載均衡,內容過濾和帶寬管理等。
交換技術正朝著智能化的方向演進,從最初的第2層交換發展到第3層交換,目前已經演進到網路的第7層應用層的交換。其根本目的就是在降低成本的前提下,保證網路的高可靠性、高性能、易維護、易擴展,最終達到網路的智能化管理。