導航:首頁 > 網路問題 > 輸入照片用什麼神經網路好

輸入照片用什麼神經網路好

發布時間:2022-11-06 04:16:23

如何通過人工神經網路實現圖像識別

人工神經網路(Artificial Neural Networks)(簡稱ANN)系統從20 世紀40 年代末誕生至今僅短短半個多世紀,但由於他具有信息的分布存儲、並行處理以及自學習能力等優點,已經在信息處理、模式識別、智能控制及系統建模等領域得到越來越廣泛的應用。尤其是基於誤差反向傳播(Error Back Propagation)演算法的多層前饋網路(Multiple-Layer Feedforward Network)(簡稱BP 網路),可以以任意精度逼近任意的連續函數,所以廣泛應用於非線性建模、函數逼近、模式分類等方面。


目標識別是模式識別領域的一項傳統的課題,這是因為目標識別不是一個孤立的問題,而是模式識別領域中大多數課題都會遇到的基本問題,並且在不同的課題中,由於具體的條件不同,解決的方法也不盡相同,因而目標識別的研究仍具有理論和實踐意義。這里討論的是將要識別的目標物體用成像頭(紅外或可見光等)攝入後形成的圖像信號序列送入計算機,用神經網路識別圖像的問題。


一、BP 神經網路


BP 網路是採用Widrow-Hoff 學習演算法和非線性可微轉移函數的多層網路。一個典型的BP 網路採用的是梯度下降演算法,也就是Widrow-Hoff 演算法所規定的。backpropagation 就是指的為非線性多層網路計算梯度的方法。一個典型的BP 網路結構如圖所示。

六、總結

從上述的試驗中已經可以看出,採用神經網路識別是切實可行的,給出的例子只是簡單的數字識別實驗,要想在網路模式下識別復雜的目標圖像則需要降低網路規模,增加識別能力,原理是一樣的。

② 人工智慧:什麼是人工神經網路

許多 人工智慧 計算機系統的核心技術是人工神經網路(ANN),而這種網路的靈感來源於人類大腦中的生物結構。

通過使用連接的「神經元」結構,這些網路可以通過「學習」並在沒有人類參與的情況下處理和評估某些數據。

這樣的實際實例之一是使用人工神經網路(ANN)識別圖像中的對象。在構建一個識別「貓「圖像的一個系統中,將在包含標記為「貓」的圖像的數據集上訓練人工神經網路,該數據集可用作任何進行分析的參考點。正如人們可能學會根據尾巴或皮毛等獨特特徵來識別狗一樣,人工神經網路(ANN)也可以通過將每個圖像分解成不同的組成部分(如顏色和形狀)進行識別。

實際上,神經網路提供了位於託管數據之上的排序和分類級別,可基於相似度來輔助數據的聚類和分組。可以使用人工神經網路(ANN)生成復雜的垃圾郵件過濾器,查找欺詐行為的演算法以及可以精確了解情緒的客戶關系工具。

人工神經網路如何工作

人工神經網路的靈感來自人腦的神經組織,使用類似於神經元的計算節點構造而成,這些節點沿著通道(如神經突觸的工作方式)進行信息交互。這意味著一個計算節點的輸出將影響另一個計算節點的處理。

神經網路標志著人工智慧發展的巨大飛躍,在此之前,人工智慧一直依賴於使用預定義的過程和定期的人工干預來產生所需的結果。人工神經網路可以使分析負載分布在多個互連層的網路中,每個互連層包含互連節點。在處理信息並對其進行場景處理之後,信息將傳遞到下一個節點,然後向下傳遞到各個層。這個想法是允許將其他場景信息接入網路,以通知每個階段的處理。

單個「隱藏」層神經網路的基本結構

就像漁網的結構一樣,神經網路的一個單層使用鏈將處理節點連接在一起。大量的連接使這些節點之間的通信得到增強,從而提高了准確性和數據處理吞吐量。

然後,人工神經網路將許多這樣的層相互疊放以分析數據,從而創建從第一層到最後一層的輸入和輸出數據流。盡管其層數將根據人工神經網路的性質及其任務而變化,但其想法是將數據從一層傳遞到另一層,並隨其添加附加的場景信息。

人腦是用3D矩陣連接起來的,而不是大量堆疊的圖層。就像人類大腦一樣,節點在接收到特定刺激時會在人工神經網路上「發射」信號,並將信號傳遞到另一個節點。但是,對於人工神經網路,輸入信號定義為實數,輸出為各種輸入的總和。

這些輸入的值取決於它們的權重,該權重用於增加或減少與正在執行的任務相對應的輸入數據的重要性。其目標是採用任意數量的二進制數值輸入並將其轉換為單個二進制數值輸出。

更復雜的神經網路提高了數據分析的復雜性

早期的神經網路模型使用淺層結構,其中只使用一個輸入和輸出層。而現代的系統由一個輸入層和一個輸出層組成,其中輸入層首先將數據輸入網路,多個「隱藏」層增加了數據分析的復雜性。

這就是「深度學習」一詞的由來——「深度」部分專門指任何使用多個「隱藏」層的神經網路。

聚會的例子

為了說明人工神經網路在實際中是如何工作的,我們將其簡化為一個實際示例。

想像一下你被邀請參加一個聚會,而你正在決定是否參加,這可能需要權衡利弊,並將各種因素納入決策過程。在此示例中,只選擇三個因素——「我的朋友會去嗎?」、「聚會地點遠嗎?」、「天氣會好嗎?」

通過將這些考慮因素轉換為二進制數值,可以使用人工神經網路對該過程進行建模。例如,我們可以為「天氣」指定一個二進制數值,即『1'代表晴天,『0'代表惡劣天氣。每個決定因素將重復相同的格式。

然而,僅僅賦值是不夠的,因為這不能幫助你做出決定。為此需要定義一個閾值,即積極因素的數量超過消極因素的數量。根據二進制數值,合適的閾值可以是「2」。換句話說,在決定參加聚會之前,需要兩個因素的閾值都是「1」,你才會決定去參加聚會。如果你的朋友要參加聚會(『1'),並且天氣很好(『1'),那麼這就表示你可以參加聚會。

如果天氣不好(『0'),並且聚會地點很遠(『0'),則達不到這一閾值,即使你的朋友參加(『1'),你也不會參加聚會。

神經加權

誠然,這是神經網路基本原理的一個非常基本的例子,但希望它有助於突出二進制值和閾值的概念。然而,決策過程要比這個例子復雜得多,而且通常情況下,一個因素比另一個因素對決策過程的影響更大。

要創建這種變化,可以使用「神經加權」——-通過乘以因素的權重來確定因素的二進制值對其他因素的重要性。

盡管示例中的每個注意事項都可能使你難以決策,但你可能會更重視其中一個或兩個因素。如果你不願意在大雨中出行去聚會,那惡劣的天氣將會超過其他兩個考慮因素。在這一示例中,可以通過賦予更高的權重來更加重視天氣因素的二進制值:

天氣= w5

朋友= w2

距離= w2

如果假設閾值現在已設置為6,則惡劣的天氣(值為0)將阻止其餘輸入達到所需的閾值,因此該節點將不會「觸發」(這意味著你將決定不參加聚會)。

雖然這是一個簡單的示例,但它提供了基於提供的權重做出決策的概述。如果要將其推斷為圖像識別系統,則是否參加聚會(輸入)的各種考慮因素將是給定圖像的折衷特徵,即顏色、大小或形狀。例如,對識別狗進行訓練的系統可以對形狀或顏色賦予更大的權重。

當神經網路處於訓練狀態時,權重和閾值將設置為隨機值。然後,當訓練數據通過網路傳遞時將不斷進行調整,直到獲得一致的輸出為止。

神經網路的好處

神經網路可以有機地學習。也就是說,神經網路的輸出結果並不受輸入數據的完全限制。人工神經網路可以概括輸入數據,使其在模式識別系統中具有價值。

他們還可以找到實現計算密集型答案的捷徑。人工神經網路可以推斷數據點之間的關系,而不是期望數據源中的記錄是明確關聯的。

它們也可以是容錯的。當神經網路擴展到多個系統時,它們可以繞過無法通信的缺失節點。除了圍繞網路中不再起作用的部分進行路由之外,人工神經網路還可以通過推理重新生成數據,並幫助確定不起作用的節點。這對於網路的自診斷和調試非常有用。

但是,深度神經網路提供的最大優勢是能夠處理和聚類非結構化數據,例如圖片、音頻文件、視頻、文本、數字等數據。在分析層次結構中,每一層節點都在前一層的輸出上進行訓練,深層神經網路能夠處理大量的這種非結構化數據,以便在人類處理分析之前找到相似之處。

神經網路的例子

神經網路應用還有許多示例,可以利用它從復雜或不精確數據中獲得見解的能力。

圖像識別人工神經網路可以解決諸如分析特定物體的照片等問題。這種演算法可以用來區分狗和貓。更重要的是,神經網路已經被用於只使用細胞形狀信息來診斷癌症。

近30年來,金融神經網路被用於匯率預測、股票表現和選擇預測。神經網路也被用來確定貸款信用評分,學習正確識別良好的或糟糕的信用風險。而電信神經網路已被電信公司用於通過實時評估網路流量來優化路由和服務質量。

③ 圖神經網路是怎麼煉成的:GNN基本原理簡介

此文算是對Google Research這篇 A Gentle Introction to Graph Neural Networks 神作的閱讀筆記.

十多年來,研究人員開發了一種稱之為圖神經網路(Graph Neural Networks,GNNs)的技術,旨在將如今在深度學習的諸多任務中摧枯拉朽的神經網路,應用到圖結構之上,從而讓神經網路捕捉到更錯綜復雜的交叉特徵,以期待在一些任務上取得更佳的效果。鑒於操作圖數據結構的復雜性,盡管已經發展了十幾年,它在實際應用中卻剛剛起步,即時是google也才開始研究將其被應用到葯品研發、物理模擬、假新聞檢測、交通預測和推薦系統等領域。

盡管GNN是一個新興的研究領域,但圖結構的數據其實在我們身邊無處不在。那麼什麼是圖呢?

這個理科生應該都清楚,圖有點(Vertex)和邊(Edge)兩部分組成,一個圖就代表了各個實體節點(node)之間的關系(edge):

每個節點或者邊都可以包含它的一些屬性信息,比如如果一個節點表示一個人,那麼就可以包含這個人的姓名、性別、身高、體重之類的..我們研究需要的信息。
而這些信息,都可以用通用的向量的形式存入其中:

還有別忘了一點,邊是可以有方向的,按此我們還能分為有向圖或是無向圖。邊的方向代表了信息的傳遞方向,例如a是b的微信好友,那b也是a的微信好友,好友關系自然是沒方向的,而比如a是b的爹,那顯然b就不是a的爹,此時叫爹的關系就是有有方向的。

圖結構的構建是非常靈活的,可以根據個人的設計構建出各種不一樣的圖。而作為開發者顯然要結合實際解決的問題來構建合適的圖。

正如前面所提到的,圖無處不在。你可能已經熟悉例如知識圖譜、社交網路之類的圖數據。當時顯然,圖是一種極其強大的通用數據表示,傳統神經網路中用到的歐式空間的數據,同樣可以用圖來表示,例如可以將圖像和文本建模為圖結構數據。

比如,我們可以將一張圖片的每個像素作為圖的節點,再將相鄰的像素用邊連接起來,就構造了一個該圖像的圖。

如上圖展示了一個5*5的圖片的鄰接矩陣表示和圖表示。

我們將每個單詞作為節點,並將每個節點連接到下一個節點,就得到了一個文本的圖:

當然,在實踐中我們並不會這樣來編碼文本和圖像,因為所有的圖和文本都是非常規則的結構,表示成圖就多此一舉了。
我們再來看一些例子,這些數據的結構更加復雜,除了圖之外很難用其他方式來表達。

分子是構成物質的基石,我們可以用節點來表示它的原子和電子,用邊來表示共價鍵,這樣便將一個分子表示成了一個圖:

不同的圖可以表示出不同的分子結構:

都說社會是一個大熔爐,身處其中的人和事物之間會發生極其復雜的關系。這種關系的表示用普通的表格數據是很難表示的,而圖卻能很好的展現。

下圖是將莎士比亞歌劇《奧賽羅》中的任務關系表示成圖:

怎麼樣,如果沒看過歌劇能推測出那些是主角嗎?

下面是將一個空手道競標賽的對戰關系構建為圖:

類似的可以表示為圖的數據還有很多很多,比如論文的引用之類統統都可以表示為圖,下面是現實世界中不同規模的數據圖表示的統計數據:

可見,各種各樣規模的數據都可以輕松的用圖來表示。

在上面我們列舉了這么多的圖,那麼我們該對這些圖數據執行什麼任務呢?

圖上的預測任務一般分為三類:

下面我們通過具體的示例來說明GNN怎麼來解決上述的三個級別的預測問題。

在圖級別的任務中,我們的目標是預測整個圖的屬性。例如我們通過分子圖,來預測該分子的氣味或是者它是否是與某些疾病有關的受體。
它的輸入是完整的圖:

輸出是圖的分類:

節點級任務一般就是預測每個節點的類型。
一個經典的例子就是Zach的空手道俱樂部。該數據集市一個單一的社交網路圖,猶豫政治分歧,講師Hi先生和管理員John之間不和導致空手道俱樂部分裂,其中的學員一部分效忠於Hi先生,一部分效忠於John。每個節點代表空手道聯系著,邊代表空手道之外這些成員的互動,預測問題就是判斷這些節點是效忠於誰的。

邊級任務其實就是預測每個邊的屬性.
在目標檢測的語義分割任務中,我們也許不止要識別每個目標的類型,還需要預測各個目標之間的關系.我們可以將其描述為邊級別的分類任務:給定表示圖像中的對象的節點,我們希望預測哪些節點共享一條邊,或者該邊的值是多少。如果我們希望發現實體之間的連接,我們可以考慮圖是完全連通的,並根據它們的預測值修剪邊來得到一個稀疏圖。

用圖表示就是這樣的過程:

那麼我們要如何使用神經網路來處理上述各種類型的任務呢?

首先要考慮的是如何將圖結構數據適配到神經網路.
回想一下啊,傳統的神經網路輸入的往往是矩陣形式的數據,那麼要如何把圖作為輸入呢?
圖表示有四種類型的信息:節點(nodes),邊(edges),全局上下文(global-context),聯通性(connectivity).對於前三種信息,有一個非常簡單的方案,比如將節點排序,然後每個節點表示為一個向量,所有節點就得到了一個節點的矩陣,同理,邊和上下文也可以這么搞.
但是要標識連通性就沒有這么簡單了,也許你會想到用臨街矩陣來表示,但是這樣表示會有明顯的缺陷,因為節點數的規模往往是巨大的,對於一個數百萬節點的圖,那將耗費大量的空間,而且得到的矩陣往往也十分的稀疏,可以說空間利用率會很低.
當然,你也許會想,可以用稀疏矩陣來存儲,這樣就只需要存儲連通的情況,空間利用率將大大提升,但是我們還要考慮到一點,就是稀疏矩陣的高性能計算一直是個艱難的,尤其是在用到GPU的情況.
並且,使用鄰接矩陣還有一個問題就是各種不同的鄰接矩陣可以標識相同的連通性,而這些矩陣並不能保證在神經網路中取的相同的效果.比如,同樣的連通性,通過調換列的順序,就能得到不同的鄰接矩陣:

現在,我們成功的將圖結構成功表示成了置換不變的矩陣格式,終於可以使用圖形神經網路(GNN)來做圖形預測任務了。
GNN是對保持圖對稱性(置換不變性)的圖的所有屬性(節點、邊、全局上下文)的可優化變換。
我們將使用Gilmer等人提出的「消息傳遞神經網路」框架構建GNN,並使用Battaglia等人介紹的圖網路網路架構示意圖。GNNS採用「圖輸入,圖輸出」架構,這意味著這些模型類型接受圖作為輸入,其中包含節點,邊和全局上下文的信息,並逐步地轉換這些圖嵌入,而不會更改輸入的連接圖結構。

我們使用最開始提到的那個圖來構建一個最簡單的GNN,輸入的圖是相應節點,邊,全局信息的向量,我們針對每個向量使用一個MLP層來作變換,於是得到一個新的圖.

針對上述構建的最簡單的GNN,我們如何在上面描述的任何任務中進行預測呢?這里我們僅僅考慮二進制分類的情況,但這個框架可以很容易地擴展到多類或回歸的情況。
如果是對節點分類,我們只要在最後一層接一個線性類器就可以了:

但是上面的預測過程有點過於簡單了,完全沒有用到圖的結構信息,我們在此基礎上增加一個pooling操作,以增加它的邊緣信息:

具體操作是把待預測節點的鄰居節點以及全局的信息進行聚合再做預測,即將這些embedding向量加到一起得到一個新的向量,再輸入到最後的線性分類器.

同理,如果我們只有節點相應邊的信息的話,也可以用類似的方式pooling,然後得到節點的向量表示再輸入分類器:

反之,如果我們只有節點的信息,那麼也可以用邊所連接的兩個節點來pooling出邊的向量,然後將器輸入到分類器預測邊的類型:

顯然,不管是哪種任務,整個GNN的推理過程都是一樣的,可以表示為這樣一個端到端的過程:

不過,顯而易見的,這個簡單的GNN在分類前只是對每個向量進行了一個變換,而沒有用到圖結構的任何信息,雖然在最後做預測的時候做了一些pooling的聚合,但也始終沒有用到adjacency的信息,因此這個GNN的作用相當有限,但是它為我們提供了一個圖結構層變換和堆疊的基本思路.

針對上面最簡單GNN的不足,我們可以在其中根據連通性增加更加復雜的變換從而引入整個圖結構的信息,我們將這個過程稱之為信息傳遞.
信息傳遞包含三個步驟:

這個過程有點類似於卷積操作,每個節點匯聚了其鄰居的節點,經過多個層的變換,它將涵蓋全圖的信息.
於是我們可以將這個節點信息傳遞應用到上述的圖變換過程中:

然後,我們發現它並沒用用上邊的信息,於是可以把邊信息也加上,變成這樣:

既然把邊的信息加上了,那怎麼可以漏掉全局信息呢,於是完整的信息傳遞就可以表示成這樣:

以上,我們梳理了最簡單的GNNs是怎麼完成的,你應該已經對GNN有了一個基本的了解,就像學會了傳統神經網路中最簡單的全連接網路類似,關於GNN還有更多不同種類的更復雜的圖需要取了解和學習,但你只要掌握了以上的思想,學習起來也是十分容易的.

④ 神經網路是如何處理多個圖片的

神經網路可以用batch,一次輸入多個圖片來做處理

⑤ 吳恩達 卷積神經網路 CNN

應用計算機視覺時要面臨的一個挑戰是數據的輸入可能會非常大。例如一張 1000x1000x3 的圖片,神經網路輸入層的維度將高達三百萬,使得網路權重 W 非常龐大。這樣會造成兩個後果:

神經網路結構復雜,數據量相對較少,容易出現過擬合;
所需內存和計算量巨大。
因此,一般的神經網路很難處理蘊含著大量數據的圖像。解決這一問題的方法就是使用卷積神經網路

我們之前提到過,神經網路由淺層到深層,分別可以檢測出圖片的邊緣特徵、局部特徵(例如眼睛、鼻子等),到最後面的一層就可以根據前面檢測的特徵來識別整體面部輪廓。這些工作都是依託卷積神經網路來實現的。

卷積運算(Convolutional Operation)是卷積神經網路最基本的組成部分。我們以邊緣檢測為例,來解釋卷積是怎樣運算的。

圖片最常做的邊緣檢測有兩類:垂直邊緣(Vertical Edges)檢測和水平邊緣(Horizontal Edges)檢測。

比如檢測一張6x6像素的灰度圖片的vertical edge,設計一個3x3的矩陣(稱之為filter或kernel),讓原始圖片和filter矩陣做卷積運算(convolution),得到一個4x4的圖片。 具體的做法是,將filter矩陣貼到原始矩陣上(從左到右從上到下),依次可以貼出4x4種情況。 讓原始矩陣與filter重合的部分做element wise的乘積運算再求和 ,所得的值作為4x4矩陣對應元素的值。如下圖是第一個元素的計算方法,以此類推。

可以看到,卷積運算的求解過程是從左到右,由上到下,每次在原始圖片矩陣中取與濾波器同等大小的一部分,每一部分中的值與濾波器中的值對應相乘後求和,將結果組成一個矩陣。

下圖對應一個垂直邊緣檢測的例子:

如果將最右邊的矩陣當作圖像,那麼中間一段亮一些的區域對應最左邊的圖像中間的垂直邊緣。

下圖3x3濾波器,通常稱為垂直 索伯濾波器 (Sobel filter):

看看用它來處理知名的Lena照片會得到什麼:

現在可以解釋卷積操作的用處了:用輸出圖像中更亮的像素表示原始圖像中存在的邊緣。

你能看出為什麼邊緣檢測圖像可能比原始圖像更有用嗎?

回想一下MNIST手寫數字分類問題。在MNIST上訓練的CNN可以找到某個特定的數字。比如發現數字1,可以通過使用邊緣檢測發現圖像上兩個突出的垂直邊緣。

通常,卷積有助於我們找到特定的局部圖像特徵(如邊緣),用在後面的網路中。

假設輸入圖片的大小為 n×n,而濾波器的大小為 f×f,則卷積後的輸出圖片大小為 (n−f+1)×(n−f+1)。

這樣就有兩個問題:

為了解決這些問題,可以在進行卷積操作前,對原始圖片在邊界上進行填充(Padding),以增加矩陣的大小。通常將 0 作為填充值。

設每個方向擴展像素點數量為 p,則填充後原始圖片的大小為 (n+2p)×(n+2p),濾波器大小保持 f×f不變,則輸出圖片大小為 (n+2p−f+1)×(n+2p−f+1)。

因此,在進行卷積運算時,我們有兩種選擇:

在計算機視覺領域,f通常為奇數。原因包括 Same 卷積中 p=(f−1)/ 2 能得到自然數結果,並且濾波器有一個便於表示其所在位置的中心點。

卷積過程中,有時需要通過填充來避免信息損失,有時也需要通過設置 步長(Stride) 來壓縮一部分信息。

步長表示濾波器在原始圖片的水平方向和垂直方向上每次移動的距離。之前,步長被默認為 1。而如果我們設置步長為 2,則卷積過程如下圖所示:

設步長為 s,填充長度為p, 輸入圖片大小為n x n, 濾波器大小為f x f, 則卷積後圖片的尺寸為:

注意公式中有一個向下取整的符號,用於處理商不為整數的情況。向下取整反映著當取原始矩陣的圖示藍框完全包括在圖像內部時,才對它進行運算。

如果我們想要對三通道的 RGB 圖片進行卷積運算,那麼其對應的濾波器組也同樣是三通道的。過程是將每個單通道(R,G,B)與對應的濾波器進行卷積運算求和,然後再將三個通道的和相加,將 27 個乘積的和作為輸出圖片的一個像素值。

如果想同時檢測垂直和水平邊緣,或者更多的邊緣檢測,可以增加更多的濾波器組。例如設置第一個濾波器組實現垂直邊緣檢測,第二個濾波器組實現水平邊緣檢測。設輸入圖片的尺寸為 n×n×nc(nc為通道數),濾波器尺寸為 f×f×nc,則卷積後的輸出圖片尺寸為 (n−f+1)×(n−f+1)×n′c,n′c為濾波器組的個數。

與之前的卷積過程相比較,卷積神經網路的單層結構多了激活函數和偏移量;而與標准神經網路相比,濾波器的數值對應著權重 W[l],卷積運算對應著 W[l]與 A[l−1]的乘積運算,所選的激活函數變為 ReLU。

對於一個 3x3x3 的濾波器,包括偏移量 b(27+1)在內共有 28 個參數。不論輸入的圖片有多大,用這一個濾波器來提取特徵時,參數始終都是 28 個,固定不變。即選定濾波器組後,參數的數目與輸入圖片的尺寸無關。因此,卷積神經網路的參數相較於標准神經網路來說要少得多。這是 CNN 的優點之一。

圖像中的相鄰像素傾向於具有相似的值,因此通常卷積層相鄰的輸出像素也具有相似的值。這意味著,卷積層輸出中包含的大部分信息都是冗餘的。如果我們使用邊緣檢測濾波器並在某個位置找到強邊緣,那麼我們也可能會在距離這個像素1個偏移的位置找到相對較強的邊緣。但是它們都一樣是邊緣,我們並沒有找到任何新東西。池化層解決了這個問題。這個網路層所做的就是通過減小輸入的大小降低輸出值的數量。池化一般通過簡單的最大值、最小值或平均值操作完成。以下是池大小為2的最大池層的示例:

在計算神經網路的層數時,通常只統計具有權重和參數的層,因此池化層通常和之前的卷積層共同計為一層。

圖中的 FC3 和 FC4 為全連接層,與標準的神經網路結構一致。

個人推薦 一個直觀感受卷積神經網路的網站 。

相比標准神經網路,對於大量的輸入數據,卷積過程有效地減少了 CNN 的參數數量,原因有以下兩點:

-參數共享(Parameter sharing):特徵檢測如果適用於圖片的某個區域,那麼它也可能適用於圖片的其他區域。即在卷積過程中,不管輸入有多大,一個特徵探測器(濾波器)就能對整個輸入的某一特徵進行探測。

-稀疏連接(Sparsity of connections):在每一層中,由於濾波器的尺寸限制,輸入和輸出之間的連接是稀疏的,每個輸出值只取決於輸入在局部的一小部分值。

池化過程則在卷積後很好地聚合了特徵,通過降維來減少運算量。

由於 CNN 參數數量較小,所需的訓練樣本就相對較少,因此在一定程度上不容易發生過擬合現象。並且 CNN 比較擅長捕捉區域位置偏移。即進行物體檢測時,不太受物體在圖片中位置的影響,增加檢測的准確性和系統的健壯性。

在神經網路可以收斂的前提下,隨著網路深度增加,網路的表現先是逐漸增加至飽和,然後迅速下降

需要注意,網路退化問題不是過擬合導致的,即便在模型訓練過程中,同樣的訓練輪次下,退化的網路也比稍淺層的網路的訓練錯誤更高,如下圖所示。

這一點並不符合常理:如果存在某個 K層網路是當前F的最優的網路,我們構造更深的網路。那麼K之後的層數可以擬合成恆等映射,就可以取得和F一直的結果。如果K不是最佳層數,那麼我們比K深,可以訓練出的一定會不差於K的。總而言之,與淺層網路相比,更深的網路的表現不應該更差。因此,一個合理的猜測就是, 對神經網路來說,恆等映射並不容易擬合。

也許我們可以對網路單元進行一定的改造,來改善退化問題?這也就引出了殘差網路的基本思路

既然神經網路不容易擬合一個恆等映射,那麼一種思路就是構造天然的恆等映射。

實驗表明,殘差網路 很好地解決了深度神經網路的退化問題 ,並在ImageNet和CIFAR-10等圖像任務上取得了非常好的結果,同等層數的前提下殘差網路也 收斂得更快 。這使得前饋神經網路可以採用更深的設計。除此之外, 去除個別神經網路層,殘差網路的表現不會受到顯著影響 ,這與傳統的前饋神經網路大相徑庭。

2018年的一篇論文,The Shattered Gradients Problem: If resnets are the answer, then what is the question,指出了一個新的觀點,盡管殘差網路提出是為了解決梯度彌散和網路退化的問題, 它解決的實際上是梯度破碎問題

作者通過可視化的小型實驗(構建和訓練一個神經網路發現,在淺層神經網路中,梯度呈現為棕色雜訊(brown noise),深層神經網路的梯度呈現為白雜訊。在標准前饋神經網路中,隨著深度增加, 神經元梯度的相關性(corelation)按指數級減少 (1 / 2^L) ;同時, 梯度的空間結構也隨著深度增加被逐漸消除 。這也就是梯度破碎現象。

梯度破碎為什麼是一個問題呢?這是因為許多優化方法假設梯度在相鄰點上是相似的,破碎的梯度會大大減小這類優化方法的有效性。另外,如果梯度表現得像白雜訊,那麼某個神經元對網路輸出的影響將會很不穩定。

相較標准前饋網路, 殘差網路中梯度相關性減少的速度從指數級下降到亞線性級 ) (1 / sqrt(L)) ,深度殘差網路中,神經元梯度介於棕色雜訊與白雜訊之間(參見上圖中的c,d,e);殘差連接可以 極大地保留梯度的空間結構 。殘差結構緩解了梯度破碎問題。

1x1 卷積指濾波器的尺寸為 1。當通道數為 1 時,1x1 卷積意味著卷積操作等同於乘積操作。
而當通道數更多時,1x1 卷積的作用實際上類似全連接層的神經網路結構,從而降低(或升高,取決於濾波器組數)數據的維度。

池化能壓縮數據的高度(nH)及寬度(nW),而 1×1 卷積能壓縮數據的通道數(nC)。在如下圖所示的例子中,用 filters個大小為 1×1×32 的濾波器進行卷積,就能使原先數據包含的 32個通道壓縮為 filters 個。

在這之前,網路大都是這樣子的:

也就是卷積層和池化層的順序連接。這樣的話,要想提高精度,增加網路深度和寬度是一個有效途徑,但也面臨著參數量過多、過擬合等問題。(當然,改改超參數也可以提高性能)

有沒有可能在同一層就可以提取不同(稀疏或不稀疏)的特徵呢(使用不同尺寸的卷積核)?於是,2014年,在其他人都還在一味的增加網路深度時(比如vgg),GoogleNet就率先提出了卷積核的並行合並(也稱Bottleneck Layer),如下圖。

和卷積層、池化層順序連接的結構(如VGG網路)相比,這樣的結構主要有以下改進:

按照這樣的結構來增加網路的深度,雖然可以提升性能,但是還面臨計算量大(參數多)的問題。為改善這種現象,GooLeNet借鑒Network-in-Network的思想,使用1x1的卷積核實現降維操作(也間接增加了網路的深度),以此來減小網路的參數量(這里就不對兩種結構的參數量進行定量比較了),如圖所示。

最後實現的inception v1網路是上圖結構的順序連接

由於卷積這門課的其他內容和計算機視覺關系比較密切。對我理解推薦系統幫助不大。所以這個系列就到這里。吳恩達的課還是很好的,作業和課和測驗我都認真做啦。

⑥ 哪些神經網路可以用在圖像特徵提取上

BP神經網路、離散Hopfield網路、LVQ神經網路等等都可以。

1.BP(Back Propagation)神經網路是1986年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播演算法訓練的多層前饋網路,是目前應用最廣泛的神經網路模型之一。BP網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。BP神經網路模型拓撲結構包括輸入層(input)、隱層(hidden layer)和輸出層(output layer)。
2.Hopfiled神經網路是一種遞歸神經網路,由約翰·霍普菲爾德在1982年發明。Hopfield網路是一種結合存儲系統和二元系統的神經網路。它保證了向局部極小的收斂,但收斂到錯誤的局部極小值(local minimum),而非全局極小(global minimum)的情況也可能發生。Hopfiled網路也提供了模擬人類記憶的模型。
3.LVQ神經網路由三層組成,即輸入層、隱含層和輸出層,網路在輸入層與隱含層間為完全連接,而在隱含層與輸出層間為部分連接,每個輸出層神經元與隱含層神經元的不同組相連接。隱含層和輸出層神經元之間的連接權值固定為1。輸入層和隱含層神經元間連接的權值建立參考矢量的分量(對每個隱含神經元指定一個參考矢量)。在網路訓練過程中,這些權值被修改。隱含層神經元(又稱為Kohnen神經元)和輸出神經元都具有二進制輸出值。當某個輸入模式被送至網路時,參考矢量最接近輸入模式的隱含神經元因獲得激發而贏得競爭,因而允許它產生一個「1」,而其它隱含層神經元都被迫產生「0」。與包含獲勝神經元的隱含層神經元組相連接的輸出神經元也發出「1」,而其它輸出神經元均發出「0」。產生「1」的輸出神經元給出輸入模式的類,由此可見,每個輸出神經元被用於表示不同的類。

⑦ 卷積神經網路(Convolutional Neural Networks, CNN)——更有效率地提取特徵

卷積神經網路(Convolutional Neural Networks, CNN)——更有效率地提取特徵

圖像識別問題本質上就是分類問題,比如我們要區分貓和狗,那麼我們就需要構建一個模型,將照片丟進去後,模型能輸出貓或者狗的概率有多大。在做圖像識別時首要的就是要提取圖片的特徵,那麼如何提取圖片的特徵呢?前面講到了前向全連接網路,我們可以嘗試用前向全連接網路提取。假設圖片的像素是100*100,如果如片是彩色的,每個像素都有RGB三種顏色的數值。因此,一張圖片是有一個三維向量構成的,一維是長100,一維是寬100,還有一維是R、G、B 3個通道(channels)。把這個三維向量拉直作為一個一維向量,長度就是100*100*3。

我們在區分一張圖片時,我們觀察的往往是圖片的局部的、最重要的特徵。 比如圖片上是一隻鳥,我們可能通過嘴巴、眼睛、爪子等就可以判斷出是一隻鳥了。因此,輸入層的每一個神經元沒有必要看圖片的全局,只需要看一個局部就行了。

在兩張不同的圖片上,同一個特徵區域可能處於不同位置。 比如鳥嘴的局部特徵區域在下面這兩張圖上就處在不同的位置上。那麼如何才能讓兩個不同的神經元在看到這兩個不同的感受野時,能產生一致的特徵值呢?

對上面的內容進行一個總結:
(1)我們設置一個局部感受野,假設感受野的大小為W*H*C,其中W表示感受野的寬度,H表示感受野的高度,C表示感受野的通道數。那麼對應的神經元的參數的個數就為:W*H*C個權值加1個偏置。在卷積神經網路中,我們稱這樣一個神經元為一個 濾波器(filter)
(3)我們通過滑動的方式讓感受野鋪滿整個圖片,假設圖片的尺寸是W1*H1*C,滑動步長為S,零填充的數量為P。假設感受野的個數是W2*H2,其中,
(4)我們讓所有感受野的觀測濾波器參數進行共享,即相當於一個濾波器通過滑動掃描的方式掃描了所有感受野。
(5)我們設置多個濾波器,假設濾波器的個數為K,這K個濾波器都通過滑動掃描的方式掃過整個圖片。此時參數的個數為:(W*H*C+1)*K。
(6)由於每個濾波器每經過一個感受野都會進行一次計算輸出一個值,所以輸出的維度為:W2*H2*K。我們將這個輸出稱為特徵圖,所以特徵圖寬度為W2,高度為H2,通道數C2=K。
舉個例子: 假設某個圖片的大小是100*100*3,設置濾波器的大小為3*3*3,濾波器的個數為64,設置步長S=1,設置零填充的數量為P=0。那麼卷積神經網路的參數為, 相比前向全連接 個參數,參數的個數縮小了幾個數量級。
輸出特徵圖的寬度和高度均為, 輸出特徵圖的通道數為, 所以輸出特徵圖的維度為98*98*64。
如果在上面輸出的基礎上再疊加一層卷積神經網路,濾波器的設置寬和高可以不變,但是通道數不再是3了,而是變成64了,因為輸入特徵圖的通道數已經變64了。假設濾波器的大小為3*3*64,濾波器的個數為32,設置步長S=1,設置零填充的數量為P=0。可以計算出來,新的輸出特徵圖的維度是96*96*32。

以上就是卷積神經網路(CNN)的解析。但是CNN一般不是單獨用的,因為一般提取圖片的特徵是為了分類,還需要進一步處理,常見的形式如下圖所示。

⑧ 用哪種神經網路進行圖像識別好

圖像識別,是指利用計算機對圖像進行處理、分析和理解,以識別各種不同模式的目標和對像的技術。一般工業使用中,採用工業相機拍攝圖片,然後再利用軟體根據圖片灰階差做進一步識別處理。


附件是一個基於matlab的車牌識別的源程序(可以實現),其中包括車牌定位,車牌矯正,字元分割,字元識別4部分。還有已訓練好的BP神經網路用於字元識別。可以對你的圖像識別起一定參考作用。

⑨ 理解神經網路卷積層、全連接層

https://zhuanlan.hu.com/p/32472241

卷積神經網路,這玩意兒乍一聽像是生物和數學再帶點計算機技術混合起來的奇怪東西。奇怪歸奇怪,不得不說,卷積神經網路是計算機視覺領域最有影響力的創造之一。

2012年是卷積神經網路崛起之年。這一年,Alex Krizhevsky帶著卷積神經網路參加了ImageNet競賽(其重要程度相當於奧運會)並一鳴驚人,將識別錯誤率從26%降到了15%,。從那開始,很多公司開始使用深度學習作為他們服務的核心。比如,Facebook在他們的自動標記演算法中使用了它,Google在照片搜索中使用了,Amazon在商品推薦中使用,Printerst應用於為他們的家庭飼養服務提供個性化定製,而Instagram應用於他們的搜索引擎。

然而,神經網路最開始也是最多的應用領域是圖像處理。那我們就挑這塊來聊聊,怎樣使用卷積神經網路(下面簡稱CNN)來進行圖像分類。

圖像分類是指,向機器輸入一張圖片,然後機器告訴我們這張圖片的類別(一隻貓,一條狗等等),或者如果它不確定的話,它會告訴我們屬於某個類別的可能性(很可能是條狗但是我不太確定)。對我們人類來說,這件事情簡單的不能再簡單了,從出生起,我們就可以很快地識別周圍的物體是什麼。當我們看到一個場景,我們總能快速地識別出所有物體,甚至是下意識的,沒有經過有意的思考。但這種能力,機器並不具有。所以我們更加要好好珍惜自己的大腦呀! (:зゝ∠)

電腦和人看到的圖片並不相同。當我們輸入一張圖片時,電腦得到的只是一個數組,記錄著像素的信息。數組的大小由圖像的清晰度和大小決定。假設我們有一張jpg格式的480 480大小的圖片,那麼表示它的數組便是480 480*3大小的。數組中所有數字都描述了在那個位置處的像素信息,大小在[0,255]之間。

這些數字對我們來說毫無意義,但這是電腦們可以得到的唯一的信息(也足夠了)。抽象而簡單的說,我們需要一個接受數組為輸入,輸出一個數組表示屬於各個類別概率的模型。

既然問題我們已經搞明白了,現在我們得想想辦法解決它。我們想讓電腦做的事情是找出不同圖片之間的差別,並可以識別狗狗(舉個例子)的特徵。

我們人類可以通過一些與眾不同的特徵來識別圖片,比如狗狗的爪子和狗有四條腿。同樣地,電腦也可以通過識別更低層次的特徵(曲線,直線)來進行圖像識別。電腦用卷積層識別這些特徵,並通過更多層卷積層結合在一起,就可以像人類一樣識別出爪子和腿之類的高層次特徵,從而完成任務。這正是CNN所做的事情的大概脈絡。下面,我們進行更具體的討論。

在正式開始之前,我們先來聊聊CNN的背景故事。當你第一次聽說卷積神經網路的時候,你可能就會聯想到一些與神經學或者生物學有關的東西,不得不說,卷積神經網路還真的與他們有某種關系。

CNN的靈感的確來自大腦中的視覺皮層。視覺皮層某些區域中的神經元只對特定視野區域敏感。1962年,在一個Hubel與Wiesel進行的試驗( 視頻 )中,這一想法被證實並且拓展了。他們發現,一些獨立的神經元只有在特定方向的邊界在視野中出現時才會興奮。比如,一些神經元在水平邊出現時興奮,而另一些只有垂直邊出現時才會。並且所有這種類型的神經元都在一個柱狀組織中,並且被認為有能力產生視覺。

在一個系統中,一些特定的組件發揮特定的作用(視覺皮層中的神經元尋找各自特定的特徵)。這一想法應用於很多機器中,並且也是CNN背後的基本原理。 (譯者註:作者沒有說清楚。類比到CNN中,應是不同的卷積核尋找圖像中不同的特徵)

回到主題。

更詳細的說,CNN的工作流程是這樣的:你把一張圖片傳遞給模型,經過一些卷積層,非線性化(激活函數),池化,以及全連層,最後得到結果。就像我們之前所說的那樣,輸出可以是單獨的一個類型,也可以是一組屬於不同類型的概率。現在,最不容易的部分來了:理解各個層的作用。

首先,你要搞清楚的是,什麼樣的數據輸入了卷積層。就像我們之前提到的那樣,輸入是一個32 × 32 × 3(打個比方)的記錄像素值的數組。現在,讓我來解釋卷積層是什麼。解釋卷積層最好的方法,是想像一個手電筒照在圖片的左上角。讓我們假設手電筒的光可以招到一個5 × 5的區域。現在,讓我們想像這個手電筒照過了圖片的所有區域。在機器學習術語中,這樣一個手電筒被稱為卷積核(或者說過濾器,神經元) (kernel, filter, neuron) 。而它照到的區域被稱為感知域 (receptive field) 。卷積核同樣也是一個數組(其中的數被稱為權重或者參數)。很重要的一點就是卷積核的深度和輸入圖像的深度是一樣的(這保證可它能正常工作),所以這里卷積核的大小是5 × 5 × 3。

現在,讓我們拿卷積核的初始位置作為例子,它應該在圖像的左上角。當卷積核掃描它的感知域(也就是這張圖左上角5 × 5 × 3的區域)的時候,它會將自己保存的權重與圖像中的像素值相乘(或者說,矩陣元素各自相乘,注意與矩陣乘法區分),所得的積會相加在一起(在這個位置,卷積核會得到5 × 5 × 3 = 75個積)。現在你得到了一個數字。然而,這個數字只表示了卷積核在圖像左上角的情況。現在,我們重復這一過程,讓卷積核掃描完整張圖片,(下一步應該往右移動一格,再下一步就再往右一格,以此類推),每一個不同的位置都產生了一個數字。當掃描完整張圖片以後,你會得到一組新的28 × 28 × 1的數。 (譯者註:(32 - 5 + 1) × (32 - 5 + 1) × 1) 。這組數,我們稱為激活圖或者特徵圖 (activation map or feature map) 。

如果增加卷積核的數目,比如,我們現在有兩個卷積核,那麼我們就會得到一個28 × 28 × 2的數組。通過使用更多的卷積核,我們可以更好的保留數據的空間尺寸。

在數學層面上說,這就是卷積層所做的事情。

讓我們來談談,從更高角度來說,卷積在做什麼。每一個卷積核都可以被看做特徵識別器。我所說的特徵,是指直線、簡單的顏色、曲線之類的東西。這些都是所有圖片共有的特點。拿一個7 × 7 × 3的卷積核作為例子,它的作用是識別一種曲線。(在這一章節,簡單起見,我們忽略卷積核的深度,只考慮第一層的情況)。作為一個曲線識別器,這個卷積核的結構中,曲線區域內的數字更大。(記住,卷積核是一個數組)

現在我們來直觀的看看這個。舉個例子,假設我們要把這張圖片分類。讓我們把我們手頭的這個卷積核放在圖片的左上角。

記住,我們要做的事情是把卷積核中的權重和輸入圖片中的像素值相乘。

(譯者註:圖中最下方應是由於很多都是0所以把0略過不寫了。)

基本上,如果輸入圖像中有與卷積核代表的形狀很相似的圖形,那麼所有乘積的和會很大。現在我們來看看,如果我們移動了卷積核呢?

可以看到,得到的值小多了!這是因為感知域中沒有與卷積核表示的相一致的形狀。還記得嗎,卷積層的輸出是一張激活圖。所以,在單卷積核卷積的簡單情況下,假設卷積核是一個曲線識別器,那麼所得的激活圖會顯示出哪些地方最有可能有曲線。在這個例子中,我們所得激活圖的左上角的值為6600。這樣大的數字表明很有可能這片區域中有一些曲線,從而導致了卷積核的激活 (譯者註:也就是產生了很大的數值。) 而激活圖中右上角的數值是0,因為那裡沒有曲線來讓卷積核激活(簡單來說就是輸入圖像的那片區域沒有曲線)。

但請記住,這只是一個卷積核的情況,只有一個找出向右彎曲的曲線的卷積核。我們可以添加其他卷積核,比如識別向左彎曲的曲線的。卷積核越多,激活圖的深度就越深,我們得到的關於輸入圖像的信息就越多。

在傳統的CNN結構中,還會有其他層穿插在卷積層之間。我強烈建議有興趣的人去閱覽並理解他們。但總的來說,他們提供了非線性化,保留了數據的維度,有助於提升網路的穩定度並且抑制過擬合。一個經典的CNN結構是這樣的:

網路的最後一層很重要,我們稍後會講到它。

現在,然我們回頭看看我們已經學到了什麼。

我們講到了第一層卷積層的卷積核的目的是識別特徵,他們識別像曲線和邊這樣的低層次特徵。但可以想像,如果想預測一個圖片的類別,必須讓網路有能力識別高層次的特徵,例如手、爪子或者耳朵。讓我們想想網路第一層的輸出是什麼。假設我們有5個5 × 5 × 3的卷積核,輸入圖像是32 × 32 × 3的,那麼我們會得到一個28 × 28 × 5的數組。來到第二層卷積層,第一層的輸出便成了第二層的輸入。這有些難以可視化。第一層的輸入是原始圖片,可第二層的輸入只是第一層產生的激活圖,激活圖的每一層都表示了低層次特徵的出現位置。如果用一些卷積核處理它,得到的會是表示高層次特徵出現的激活圖。這些特徵的類型可能是半圓(曲線和邊的組合)或者矩形(四條邊的組合)。隨著卷積層的增多,到最後,你可能會得到可以識別手寫字跡、粉色物體等等的卷積核。

如果,你想知道更多關於可視化卷積核的信息,可以看這篇 研究報告 ,以及這個 視頻 。

還有一件事情很有趣,當網路越來越深,卷積核會有越來越大的相對於輸入圖像的感知域。這意味著他們有能力考慮來自輸入圖像的更大范圍的信息(或者說,他們對一片更大的像素區域負責)。

到目前為止,我們已經識別出了那些高層次的特徵吧。網路最後的畫龍點睛之筆是全連層。

簡單地說,這一層接受輸入(來自卷積層,池化層或者激活函數都可以),並輸出一個N維向量,其中,N是所有有可能的類別的總數。例如,如果你想寫一個識別數字的程序,那麼N就是10,因為總共有10個數字。N維向量中的每一個數字都代表了屬於某個類別的概率。打個比方,如果你得到了[0 0.1 0.1 0.75 0 0 0 0 0 0.05],這代表著這張圖片是1的概率是10%,是2的概率是10%,是3的概率是75%,是9的概率5%(小貼士:你還有其他表示輸出的方法,但現在我只拿softmax (譯者註:一種常用於分類問題的激活函數) 來展示)。全連層的工作方式是根據上一層的輸出(也就是之前提到的可以用來表示特徵的激活圖)來決定這張圖片有可能屬於哪個類別。例如,如果程序需要預測哪些圖片是狗,那麼全連層在接收到一個包含類似於一個爪子和四條腿的激活圖時輸出一個很大的值。同樣的,如果要預測鳥,那麼全連層會對含有翅膀和喙的激活圖更感興趣。

基本上,全連層尋找那些最符合特定類別的特徵,並且具有相應的權重,來使你可以得到正確的概率。

現在讓我們來說說我之前有意沒有提到的神經網路的可能是最重要的一個方面。剛剛在你閱讀的時候,可能會有一大堆問題想問。第一層卷積層的卷積核們是怎麼知道自己該識別邊還是曲線的?全連層怎麼知道該找哪一種激活圖?每一層中的參數是怎麼確定的?機器確定參數(或者說權重)的方法叫做反向傳播演算法。

在講反向傳播之前,我們得回頭看看一個神經網路需要什麼才能工作。我們出生的時候並不知道一條狗或者一隻鳥長什麼樣。同樣的,在CNN開始之前,權重都是隨機生成的。卷積核並不知道要找邊還是曲線。更深的卷積層也不知道要找爪子還是喙。

等我們慢慢長大了,我們的老師和父母給我們看不同的圖片,並且告訴我們那是什麼(或者說,他們的類別)。這種輸入一幅圖像以及這幅圖像所屬的類別的想法,是CNN訓練的基本思路。在細細講反向傳播之前,我們先假設我們有一個包含上千張不同種類的動物以及他們所屬類別的訓練集。

反向傳播可以被分成四個不同的部分。前向傳播、損失函數、反向傳播和權重更新。

在前向傳播的階段,我們輸入一張訓練圖片,並讓它通過整個神經網路。對於第一個輸入圖像,由於所有權重都是隨機生成的,網路的輸出很有可能是類似於[.1 .1 .1 .1 .1 .1 .1 .1 .1 .1]的東西,一般來說並不對任一類別有偏好。具有當前權重的網路並沒有能力找出低層次的特徵並且總結出可能的類別。

下一步,是損失函數部分。注意,我們現在使用的是訓練數據。這些數據又有圖片又有類別。打個比方,第一張輸入的圖片是數字「3」。那麼它的標簽應該是[0 0 0 1 0 0 0 0 0 0]。一個損失函數可以有很多定義的方法,但比較常見的是MSE(均方誤差)。被定義為(實際−預測)22(實際−預測)22。

記變數L為損失函數的值。正如你想像的那樣,在第一組訓練圖片輸入的時候,損失函數的值可能非常非常高。來直觀地看看這個問題。我們想到達CNN的預測與數據標簽完全一樣的點(這意味著我們的網路預測的很對)。為了到達那裡,我們想要最小化誤差。如果把這個看成一個微積分問題,那我們只要找到哪些權重與網路的誤差關系最大。

這就相當於數學中的δLδWδLδW (譯者註:對L關於W求導) ,其中,W是某個層的權重。現在,我們要對網路進行 反向傳播 。這決定了哪些權重與誤差的關系最大,並且決定了怎樣調整他們來讓誤差減小。計算完這些導數以後,我們就來到了最後一步: 更新權重 。在這里,我們以與梯度相反的方向調整層中的權重。

學習率是一個有程序員決定的參數。一個很高的學習率意味著權重調整的幅度會很大,這可能會讓模型更快的擁有一組優秀的權重。然而,一個太高的學習率可能會讓調整的步伐過大,而不能精確地到達最佳點。

前向傳播、損失函數、反向傳播和更新權重,這四個過程是一次迭代。程序會對每一組訓練圖片重復這一過程(一組圖片通常稱為一個batch)。當對每一張圖片都訓練完之後,很有可能你的網路就已經訓練好了,權重已經被調整的很好。

最後,為了驗證CNN是否工作的很好,我們還有另一組特殊的數據。我們把這組數據中的圖片輸入到網路中,得到輸出並和標簽比較,這樣就能看出網路的表現如何了。

⑩ 卷積神經網路的 卷積層、激活層、池化層、全連接層

數據輸入的是一張圖片(輸入層),CONV表示卷積層,RELU表示激勵層,POOL表示池化層,Fc表示全連接層

全連接神經網路需要非常多的計算資源才能支撐它來做反向傳播和前向傳播,所以說全連接神經網路可以存儲非常多的參數,如果你給它的樣本如果沒有達到它的量級的時候,它可以輕輕鬆鬆把你給他的樣本全部都記下來,這會出現過擬合的情況。

所以我們應該把神經元和神經元之間的連接的權重個數降下來,但是降下來我們又不能保證它有較強的學習能力,所以這是一個糾結的地方,所以有一個方法就是 局部連接+權值共享 ,局部連接+權值共享不僅權重參數降下來了,而且學習能力並沒有實質的降低,除此之外還有其它的好處,下來看一下,下面的這幾張圖片:

一個圖像的不同表示方式

這幾張圖片描述的都是一個東西,但是有的大有的小,有的靠左邊,有的靠右邊,有的位置不同,但是我們構建的網路識別這些東西的時候應該是同一結果。為了能夠達到這個目的,我們可以讓圖片的不同位置具有相同的權重(權值共享),也就是上面所有的圖片,我們只需要在訓練集中放一張,我們的神經網路就可以識別出上面所有的,這也是 權值共享 的好處。

而卷積神經網路就是局部連接+權值共享的神經網路。

現在我們對卷積神經網路有一個初步認識了,下面具體來講解一下卷積神經網路,卷積神經網路依舊是層級結構,但層的功能和形式做了改變,卷積神經網路常用來處理圖片數據,比如識別一輛汽車:

在圖片輸出到神經網路之前,常常先進行圖像處理,有 三種 常見的圖像的處理方式:

均值化和歸一化

去相關和白化

圖片有一個性質叫做局部關聯性質,一個圖片的像素點影響最大的是它周邊的像素點,而距離這個像素點比較遠的像素點二者之間關系不大。這個性質意味著每一個神經元我們不用處理全局的圖片了(和上一層全連接),我們的每一個神經元只需要和上一層局部連接,相當於每一個神經元掃描一小區域,然後許多神經元(這些神經元權值共享)合起來就相當於掃描了全局,這樣就構成一個特徵圖,n個特徵圖就提取了這個圖片的n維特徵,每個特徵圖是由很多神經元來完成的。

在卷積神經網路中,我們先選擇一個局部區域(filter),用這個局部區域(filter)去掃描整張圖片。 局部區域所圈起來的所有節點會被連接到下一層的 一個節點上 。我們拿灰度圖(只有一維)來舉例:

局部區域

圖片是矩陣式的,將這些以矩陣排列的節點展成了向量。就能更好的看出來卷積層和輸入層之間的連接,並不是全連接的,我們將上圖中的紅色方框稱為filter,它是2*2的,這是它的尺寸,這不是固定的,我們可以指定它的尺寸。

我們可以看出來當前filter是2*2的小窗口,這個小窗口會將圖片矩陣從左上角滑到右下角,每滑一次就會一下子圈起來四個,連接到下一層的一個神經元,然後產生四個權重,這四個權重(w1、w2、w3、w4)構成的矩陣就叫做卷積核。

卷積核是演算法自己學習得到的,它會和上一層計算,比如,第二層的0節點的數值就是局部區域的線性組合(w1 0+w2 1+w3 4+w4 5),即被圈中節點的數值乘以對應的權重後相加。

卷積核計算

卷積操作

我們前面說過圖片不用向量表示是為了保留圖片平面結構的信息。 同樣的,卷積後的輸出若用上圖的向量排列方式則丟失了平面結構信息。 所以我們依然用矩陣的方式排列它們,就得到了下圖所展示的連接,每一個藍色結點連接四個黃色的結點。

卷積層的連接方式

圖片是一個矩陣然後卷積神經網路的下一層也是一個矩陣,我們用一個卷積核從圖片矩陣左上角到右下角滑動,每滑動一次,當然被圈起來的神經元們就會連接下一層的一個神經元,形成參數矩陣這個就是卷積核,每次滑動雖然圈起來的神經元不同,連接下一層的神經元也不同,但是產生的參數矩陣確是一樣的,這就是 權值共享

卷積核會和掃描的圖片的那個局部矩陣作用產生一個值,比如第一次的時候,(w1 0+w2 1+w3 4+w4 5),所以,filter從左上到右下的這個過程中會得到一個矩陣(這就是下一層也是一個矩陣的原因),具體過程如下所示:

卷積計算過程

上圖中左邊是圖矩陣,我們使用的filter的大小是3 3的,第一次滑動的時候,卷積核和圖片矩陣作用(1 1+1 0+1 1+0 0+1 1+1 0+0 1+0 0+1 1)=4,會產生一個值,這個值就是右邊矩陣的第一個值,filter滑動9次之後,會產生9個值,也就是說下一層有9個神經元,這9個神經元產生的值就構成了一個矩陣,這矩陣叫做特徵圖,表示image的某一維度的特徵,當然具體哪一維度可能並不知道,可能是這個圖像的顏色,也有可能是這個圖像的輪廓等等。

單通道圖片總結 :以上就是單通道的圖片的卷積處理,圖片是一個矩陣,我們用指定大小的卷積核從左上角到右下角來滑動,每次滑動所圈起來的結點會和下一層的一個結點相連,連接之後就會形成局部連接,每一條連接都會產生權重,這些權重就是卷積核,所以每次滑動都會產生一個卷積核,因為權值共享,所以這些卷積核都是一樣的。卷積核會不斷和當時卷積核所圈起來的局部矩陣作用,每次產生的值就是下一層結點的值了,這樣多次產生的值組合起來就是一個特徵圖,表示某一維度的特徵。也就是從左上滑動到右下這一過程中會形成一個特徵圖矩陣(共享一個卷積核),再從左上滑動到右下又會形成另一個特徵圖矩陣(共享另一個卷積核),這些特徵圖都是表示特徵的某一維度。

三個通道的圖片如何進行卷積操作?

至此我們應該已經知道了單通道的灰度圖是如何處理的,實際上我們的圖片都是RGB的圖像,有三個通道,那麼此時圖像是如何卷積的呢?

彩色圖像

filter窗口滑的時候,我們只是從width和height的角度來滑動的,並沒有考慮depth,所以每滑動一次實際上是產生一個卷積核,共享這一個卷積核,而現在depth=3了,所以每滑動一次實際上產生了具有三個通道的卷積核(它們分別作用於輸入圖片的藍色、綠色、紅色通道),卷積核的一個通道核藍色的矩陣作用產生一個值,另一個和綠色的矩陣作用產生一個值,最後一個和紅色的矩陣作用產生一個值,然後這些值加起來就是下一層結點的值,結果也是一個矩陣,也就是一張特徵圖。

三通道的計算過程

要想有多張特徵圖的話,我們可以再用新的卷積核來進行左上到右下的滑動,這樣就會形成 新的特徵圖

三通道圖片的卷積過程

也就是說增加一個卷積核,就會產生一個特徵圖,總的來說就是輸入圖片有多少通道,我們的卷積核就需要對應多少通道,而本層中卷積核有多少個,就會產生多少個特徵圖。這樣卷積後輸出可以作為新的輸入送入另一個卷積層中處理,有幾個特徵圖那麼depth就是幾,那麼下一層的每一個特徵圖就得用相應的通道的卷積核來對應處理,這個邏輯要清楚,我們需要先了解一下 基本的概念:

卷積計算的公式

4x4的圖片在邊緣Zero padding一圈後,再用3x3的filter卷積後,得到的Feature Map尺寸依然是4x4不變。

填充

當然也可以使用5x5的filte和2的zero padding可以保持圖片的原始尺寸,3x3的filter考慮到了像素與其距離為1以內的所有其他像素的關系,而5x5則是考慮像素與其距離為2以內的所有其他像素的關系。

規律: Feature Map的尺寸等於

(input_size + 2 * padding_size − filter_size)/stride+1

我們可以把卷積層的作用 總結一點: 卷積層其實就是在提取特徵,卷積層中最重要的是卷積核(訓練出來的),不同的卷積核可以探測特定的形狀、顏色、對比度等,然後特徵圖保持了抓取後的空間結構,所以不同卷積核對應的特徵圖表示某一維度的特徵,具體什麼特徵可能我們並不知道。特徵圖作為輸入再被卷積的話,可以則可以由此探測到"更大"的形狀概念,也就是說隨著卷積神經網路層數的增加,特徵提取的越來越具體化。

激勵層的作用可以理解為把卷積層的結果做 非線性映射

激勵層

上圖中的f表示激勵函數,常用的激勵函數幾下幾種:

常用的激勵函數

我們先來看一下激勵函數Sigmoid導數最小為0,最大為1/4,

激勵函數Sigmoid

Tanh激活函數:和sigmoid相似,它會關於x軸上下對應,不至於朝某一方面偏向

Tanh激活函數

ReLU激活函數(修正線性單元):收斂快,求梯度快,但較脆弱,左邊的梯度為0

ReLU激活函數

Leaky ReLU激活函數:不會飽和或者掛掉,計算也很快,但是計算量比較大

Leaky ReLU激活函數

一些激勵函數的使用技巧 :一般不要用sigmoid,首先試RELU,因為快,但要小心點,如果RELU失效,請用Leaky ReLU,某些情況下tanh倒是有不錯的結果。

這就是卷積神經網路的激勵層,它就是將卷積層的線性計算的結果進行了非線性映射。可以從下面的圖中理解。它展示的是將非線性操作應用到一個特徵圖中。這里的輸出特徵圖也可以看作是"修正"過的特徵圖。如下所示:

非線性操作

池化層:降低了各個特徵圖的維度,但可以保持大分重要的信息。池化層夾在連續的卷積層中間,壓縮數據和參數的量,減小過擬合,池化層並沒有參數,它只不過是把上層給它的結果做了一個下采樣(數據壓縮)。下采樣有 兩種 常用的方式:

Max pooling :選取最大的,我們定義一個空間鄰域(比如,2x2 的窗口),並從窗口內的修正特徵圖中取出最大的元素,最大池化被證明效果更好一些。

Average pooling :平均的,我們定義一個空間鄰域(比如,2x2 的窗口),並從窗口內的修正特徵圖算出平均值

Max pooling

我們要注意一點的是:pooling在不同的depth上是分開執行的,也就是depth=5的話,pooling進行5次,產生5個池化後的矩陣,池化不需要參數控制。池化操作是分開應用到各個特徵圖的,我們可以從五個輸入圖中得到五個輸出圖。

池化操作

無論是max pool還是average pool都有分信息被舍棄,那麼部分信息被舍棄後會損壞識別結果嗎?

因為卷積後的Feature Map中有對於識別物體不必要的冗餘信息,我們下采樣就是為了去掉這些冗餘信息,所以並不會損壞識別結果。

我們來看一下卷積之後的冗餘信息是怎麼產生的?

我們知道卷積核就是為了找到特定維度的信息,比如說某個形狀,但是圖像中並不會任何地方都出現這個形狀,但卷積核在卷積過程中沒有出現特定形狀的圖片位置卷積也會產生一個值,但是這個值的意義就不是很大了,所以我們使用池化層的作用,將這個值去掉的話,自然也不會損害識別結果了。

比如下圖中,假如卷積核探測"橫折"這個形狀。 卷積後得到3x3的Feature Map中,真正有用的就是數字為3的那個節點,其餘數值對於這個任務而言都是無關的。 所以用3x3的Max pooling後,並沒有對"橫折"的探測產生影響。 試想在這里例子中如果不使用Max pooling,而讓網路自己去學習。 網路也會去學習與Max pooling近似效果的權重。因為是近似效果,增加了更多的參數的代價,卻還不如直接進行最大池化處理。

最大池化處理

在全連接層中所有神經元都有權重連接,通常全連接層在卷積神經網路尾部。當前面卷積層抓取到足以用來識別圖片的特徵後,接下來的就是如何進行分類。 通常卷積網路的最後會將末端得到的長方體平攤成一個長長的向量,並送入全連接層配合輸出層進行分類。比如,在下面圖中我們進行的圖像分類為四分類問題,所以卷積神經網路的輸出層就會有四個神經元。

四分類問題

我們從卷積神經網路的輸入層、卷積層、激活層、池化層以及全連接層來講解卷積神經網路,我們可以認為全連接層之間的在做特徵提取,而全連接層在做分類,這就是卷積神經網路的核心。

閱讀全文

與輸入照片用什麼神經網路好相關的資料

熱點內容
公共網路延時特別高怎麼辦 瀏覽:541
日本蘋果4網路設置 瀏覽:724
天童美語網路上課軟體 瀏覽:254
網路合夥人如何找 瀏覽:169
帶無線路由器網路信號弱 瀏覽:384
如何用電話知道對方網路密碼 瀏覽:118
九江公安局網路安全支隊 瀏覽:994
無線網路連接密碼錯誤 瀏覽:428
隨身wifi沒有網路怎麼用 瀏覽:36
如何切換至廣電網路信號 瀏覽:314
網路收款助手在哪裡 瀏覽:300
移動網路設置接哪個位置 瀏覽:20
網路安全宣傳語錄簡短 瀏覽:310
網路上虛擬視頻用哪一個軟體 瀏覽:464
蘋果xsmax網路天線在哪裡 瀏覽:692
移動網路無法使用電信dns解析 瀏覽:663
4g網路如何解析信號 瀏覽:137
移動的網路台式電腦掉線 瀏覽:952
注冊微信網路打不開什麼原因 瀏覽:544
王者榮耀手機網路模式怎麼設置 瀏覽:362

友情鏈接