Ⅰ matlab神經網路工具箱分別怎麼用
1單擊Apps,在搜索框中輸入neu,下方出現了所有神經網路工具箱。neural net fitting 是我們要使用的神經網路擬合工具箱。 2 在下界面中點擊next 3 單擊load example data set,得到我們需要的測試數據。
Ⅱ matlab的神經網路工具箱怎麼用
1.神經網路
神經網路是單個並行處理元素的集合,我們從生物學神經系統得到啟發。在自然界,網路功能主要由神經節決定,我們可以通過改變連接點的權重來訓練神經網路完成特定的功能。
一般的神經網路都是可調節的,或者說可訓練的,這樣一個特定的輸入便可得到要求的輸出。如下圖所示。這里,網路根據輸出和目標的比較而調整,直到網路輸出和目標匹配。作為典型,許多輸入/目標對應的方法已被用在有監督模式中來訓練神經網路。
神經網路已經在各個領域中應用,以實現各種復雜的功能。這些領域包括:模式識別、鑒定、分類、語音、翻譯和控制系統。
如今神經網路能夠用來解決常規計算腿四岩越餼齙奈侍狻N頤侵饕ü飧齬ぞ呦淅唇⑹痙兜納窬縵低常⒂τ玫焦こ獺⒔鶉諍推淥導氏釒恐腥ァ?BR>一般普遍使用有監督訓練方法,但是也能夠通過無監督的訓練方法或者直接設計得到其他的神經網路。無監督網路可以被應用在數據組的辨別上。一些線形網路和Hopfield網路是直接設計的。總的來說,有各種各樣的設計和學習方法來增強用戶的選擇。
神經網路領域已經有50年的歷史了,但是實際的應用卻是在最近15年裡,如今神經網路仍快速發展著。因此,它顯然不同與控制系統和最優化系統領域,它們的術語、數學理論和設計過程都已牢固的建立和應用了好多年。我們沒有把神經網路工具箱僅看作一個能正常運行的建好的處理輪廓。我們寧願希望它能成為一個有用的工業、教育和研究工具,一個能夠幫助用戶找到什麼能夠做什麼不能做的工具,一個能夠幫助發展和拓寬神經網路領域的工具。因為這個領域和它的材料是如此新,這個工具箱將給我們解釋處理過程,講述怎樣運用它們,並且舉例說明它們的成功和失敗。我們相信要成功和滿意的使用這個工具箱,對範例和它們的應用的理解是很重要的,並且如果沒有這些說明那麼用戶的埋怨和質詢就會把我們淹沒。所以如果我們包括了大量的說明性材料,請保持耐心。我們希望這些材料能對你有幫助。
這個章節在開始使用神經網路工具箱時包括了一些注釋,它也描述了新的圖形用戶介面和新的運演算法則和體系結構,並且它解釋了工具箱為了使用模塊化網路對象描述而增強的機動性。最後這一章給出了一個神經網路實際應用的列表並增加了一個新的文本--神經網路設計。這本書介紹了神經網路的理論和它們的設計和應用,並給出了相當可觀的MATLAB和神經網路工具箱的使用。
2.准備工作
基本章節
第一章是神經網路的基本介紹,第二章包括了由工具箱指定的有關網路結構和符號的基本材料以及建立神經網路的一些基本函數,例如new、init、adapt和train。第三章以反向傳播網路為例講解了反向傳播網路的原理和應用的基本過程。
幫助和安裝
神經網路工具箱包含在nnet目錄中,鍵入help nnet可得到幫助主題。
工具箱包含了許多示例。每一個
Ⅲ matlab神經網路工具的使用
要使用train函數才能打開該界面,可以運行下附件的示常式序看看。
newff函數的格式為:
net=newff(PR,[S1 S2 ...SN],{TF1 TF2...TFN},BTF,BLF,PF),函數newff建立一個可訓練的前饋網路。輸入參數說明:
PR:Rx2的矩陣以定義R個輸入向量的最小值和最大值;
Si:第i層神經元個數;
TFi:第i層的傳遞函數,默認函數為tansig函數;
BTF:訓練函數,默認函數為trainlm函數;
BLF:權值/閥值學習函數,默認函數為learngdm函數;
PF:性能函數,默認函數為mse函數。
給你一個實例,希望通過該例子對實現神經網路應用有一定的了解。
%x,y分別為輸入和目標向量
x=1:5;
y=[639 646 642 624 652];
%創建一個前饋網路
net=newff(minmax(x),[20,1],{'tansig','purelin'});
%模擬未經訓練的網路net並畫圖
y1=sim(net,x);plot(x,y1,':');
%採用L-M優化演算法
net.trainFcn='trainlm';
%設置訓練演算法
net.trainParam.epochs=500;net.trainParam.goal=10^(-6);
%調用相應演算法訓練BP網路
[net,tr,yy]=train(net,x,y);
%對BP網路進行模擬
y1=sim(net,x);
%計算模擬誤差
E=y-y1;MSE=mse(E)
hold on
%繪制匹配結果曲線
figure;
plot(x,y1,'r*',x,y,'b--')
執行結果
Ⅳ matlab 神經網路怎麼用啊
利用MATLAB來輔助進行實驗,領悟神經網路的知識,這是一個非常好的學習模式。之後,進階了,自己再看看怎麼規劃。希望你能認真學習。我加了一個神經網路討論
Ⅵ matlab人工神經網路怎麼使用
請補充問題,你的A、B、C、D四個等級是按什麼標准分?
Ⅶ 如何利用matlab進行神經網路預測
matlab 帶有神經網路工具箱,可直接調用,建議找本書看看,或者MATLAB論壇找例子。
核心調用語句如下:
%數據輸入
%選連樣本輸入輸出數據歸一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%% BP網路訓練
% %初始化網路結構
net=newff(inputn,outputn,[8 8]);
net.trainParam.epochs=100;
net.trainParam.lr=0.01;
net.trainParam.goal=0.01;
%網路訓練
net=train(net,inputn,outputn);
%% BP網路預測
%預測數據歸一化
inputn_test=mapminmax('apply',input_test,inputps);
%網路預測輸出
an=sim(net,inputn_test);
%網路輸出反歸一化
BPoutput=mapminmax('reverse',an,outputps);
%% 結果分析
Ⅷ matlab中神經網路怎麼使用
可以直接用神經網路工具箱,GUI內設置訓練的輸入、目標、訓練方法、迭代次數等。
Ⅸ matlab工具箱中的神經網路和遺傳演算法要怎麼調用
都是有兩種調用方法,一種圖形界面的,這個從開始菜單,然後工具,然後從裡面找神經網路
neural
network,遺傳演算法工具是
全局優化工具箱裡面的,global
optimization。
另外
一種通過命令行調用,這個需要你理解你都要做什麼,我用神經網路舉例。第一步需要先整理出輸入變數和輸出變數,第二步設計並初始化神經網路,第三部訓練,第四部獲得結果。
如果你想結合這兩者,就會更加復雜,詳細的你可以再問。我曾經做過用遺傳演算法優化神經網路的工具。
Ⅹ matlab神經網路工具箱具體怎麼用
為了看懂師兄的文章中使用的方法,研究了一下神經網路
昨天花了一天的時間查怎麼寫程序,但是費了半天勁,不能運行,網路知道里倒是有一個,可以運行的,先貼著做標本
% 生成訓練樣本集
clear all;
clc;
P=[110 0.807 240 0.2 15 1 18 2 1.5;
110 2.865 240 0.1 15 2 12 1 2;
110 2.59 240 0.1 12 4 24 1 1.5;
220 0.6 240 0.3 12 3 18 2 1;
220 3 240 0.3 25 3 21 1 1.5;
110 1.562 240 0.3 15 3 18 1 1.5;
110 0.547 240 0.3 15 1 9 2 1.5];
0 1.318 300 0.1 15 2 18 1 2];
T=[54248 162787 168380 314797;
28614 63958 69637 82898;
86002 402710 644415 328084;
230802 445102 362823 335913;
60257 127892 76753 73541;
34615 93532 80762 110049;
56783 172907 164548 144040];
@907 117437 120368 130179];
m=max(max(P));
n=max(max(T));
P=P'/m;
T=T'/n;
%-------------------------------------------------------------------------%
pr(1:9,1)=0; %輸入矢量的取值范圍矩陣
pr(1:9,2)=1;
bpnet=newff(pr,[12 4],{'logsig', 'logsig'}, 'traingdx', 'learngdm');
%建立BP神經網路, 12個隱層神經元,4個輸出神經元
%tranferFcn屬性 'logsig' 隱層採用Sigmoid傳輸函數
%tranferFcn屬性 'logsig' 輸出層採用Sigmoid傳輸函數
%trainFcn屬性 'traingdx' 自適應調整學習速率附加動量因子梯度下降反向傳播演算法訓練函數
%learn屬性 'learngdm' 附加動量因子的梯度下降學習函數
net.trainParam.epochs=1000;%允許最大訓練步數2000步
net.trainParam.goal=0.001; %訓練目標最小誤差0.001
net.trainParam.show=10; %每間隔100步顯示一次訓練結果
net.trainParam.lr=0.05; %學習速率0.05
bpnet=train(bpnet,P,T);
%-------------------------------------------------------------------------
p=[110 1.318 300 0.1 15 2 18 1 2];
p=p'/m;
r=sim(bpnet,p);
R=r'*n;
display(R);
運行的結果是出現這樣的界面
點擊performance,training state,以及regression分別出現下面的界面
再搜索,發現可以通過神經網路工具箱來創建神經網路,比較友好的GUI界面,在輸入命令裡面輸入nntool,就可以開始了。
點擊import之後就出現下面的具體的設置神經網路參數的對話界面,
這是輸入輸出數據的對話窗
首先是訓練數據的輸入
然後點擊new,創建一個新的神經網路network1,並設置其輸入輸出數據,包括名稱,神經網路的類型以及隱含層的層數和節點數,還有隱含層及輸出層的訓練函數等
點擊view,可以看到這是神經網路的可視化直觀表達
創建好了一個network之後,點擊open,可以看到一個神經網路訓練,優化等的對話框,選擇了輸入輸出數據後,點擊train,神經網路開始訓練,如右下方的圖,可以顯示動態結果
下面三個圖形則是點擊performance,training state以及regression而出現的
下面就是simulate,輸入的數據是用來檢驗這個網路的數據,output改一個名字,這樣就把輸出數據和誤差都存放起來了
在主界面上點擊export就能將得到的out結果輸入到matlab中並查看
下圖就是輸出的兩個outputs結果
還在繼續挖掘,to be continue……