Ⅰ 神經網路能夠自己思考嗎
如果我們把人體內部神經網路的工作機制所表現出來的總體特性,用稱為心智模式(mental model)來表達,那麼下面對問題的表述就更易於理解和容易。
維納在《控制論》中曾經說過,每個時代的思想都被反映在那個時代的技術中。這個思想我就理解成心智模式水平。那麼今天我們這個時代也有反映這個時代思想的技術,網路互聯社會性軟體等等的發展在某種程度上是反映我們這個時代所具有的體現如何學習的思想的技術,那麼如此反觀我們自身,我們個體或群體的心智水平發展是否跟上時代的步伐呢?
心智模式具有與環境交互作用的預見和解釋功能,那麼對於學習本身,我們的心智運用是否能夠發展出一種使得每一次前面的學習都能夠有助於促進後面學習的發生發展的一種模型,或者說我們以前的學習理論傾向於一次性完成所有的學習任務(針對的僅僅是具體的學習任務,是"部分學習",而不是整體的學習),不是通過對知識(或者說,知識所反映的世界本身的層次性,等級性)和能力的學習來影響以後的學習。我們是否可以運用我們的心智所具有的預見與解釋功能,發展出一種有進化潛力的學習方式,讓所有的學習發生能夠產生內在的進化作用?
人類在自身的發展中,通過不同個體在特定智力上的發展同其他個體在其他特定智力的發展之間的合作來實現人類自身智力的完整性的道路就表現為學科的分門別類以及各種專業的劃分,這種學習方式曾經一度推動歷史的進步,但是人類(個體方面)因此也犧牲了很多,這種局面在系統哲學誕生之後應該引起重視,讓人類的每個個體重新回到他原有的那種整體性和創造性去。如果我們的心智模式在人出生之後就能夠接觸到對人類社會信息的整體的了解,從一個整體的視角去學習,這也就避免了現代教育所帶來的破碎危機。
人類的認知系統不同於其他學習系統的關鍵地方應該是人類生命的層次性、人具有主動的選擇性,以及相應的價值取向,這種價值取向不是個體學習決定的,是個體所處的社會的整體確定的,涉及社會的學習水平個體的學習水平的深度、廣度、層、等級。
在應用系統論控制論復雜理論對學習進行分析的時候,不能單單把學習看做是一種自組織方式,學習這種自組織產生的根源不是單純來自於個體的求知求真求善動機,而是個體對自己感受到的社會動向的一種積極反映,教師的職業的特殊性,在專業化的道路上應該通過社會的整體趨勢的理解來指導自己的教學,引導學生認識自己,管理自己,發展自己。
如果說大腦內復雜的神經網路為思考提供了溫床,那麼互連網的出現,SOCIAL NETWORKS,SOCIAL BRAIN這些新生事物就是一個改變原來個人的單獨思考模式為社會思考從而向著社會學習前進的標志。在這樣的背景下,個體心智模式與群體心智模式如何進行研究和描述?我們如何來更好地探討心智模式的進化?
由 zxl 發表於 01:01 PM | 回復 (1) | 引用
我對進化心理學的理解(2)——進化體現何處
如果說「Evolutionary psychology focuses on the evolved properties of nervous systems, especially those of humans.」(引自這里)
人體神經網路對信息的處理傳輸就是在與環境進行信息能量不斷的交互過程中進化的,或者說適應(adaption)環境變化的,這里的環境有自然環境有社會環境,那麼適應環境變化意味著什麼?意味著神經網路對與環境交互的信息的處理傳輸方式或者機制能夠更新並被不斷復制,當然這里每一點的變化都要歷經很長的時間。
那麼在漫長的人類進化的歷史長河中,人類的生活的外圍環境發生哪些變化呢?我們不妨回顧社會發展,看看人與環境的交互方式的典型變化,我們把人與環境交互的變化分為三個進化階段:
第一個階段,在語言文字誕生前夕的人與自然階段交互,這個階段人所交互的環境主要是大自然,自然環境;
第二個階段,伴隨語言文字的誕生到科學技術的發展,科技成為第一生產力,這個階段人所交互的環境主要是自然與科學技術本身;
第三個階段,就是在科技充分發展,進入知識經濟社會今天向後的發展,這個階段人所交互的環境主要是由知識所構建的「知識環境」。
何以斷言?
第一個階段,人為了生存,主要是依靠體力求得自然人的生存;(體力)
第二個階段,人逐步依靠技術,用科學技術逐步來代替體力支出;(技術取代體力)
第三個階段,人逐步開始不斷地創新,把所有可能的「重復」,包括思維的重復都用可能類似於「計算機軟體」實現一定功能來取代,如人工智慧的進一步發展,那麼人自身不斷地進行思維的創造工作。(知識創新所產生的智能過程不斷被更高級智能過程所取代的過程)
(還需要進一步細化與深入淺出)
這三個階段是多麼的不同,那麼對神經網路對信息獲取、處理的方式也可能有所不同,而前兩個階段的不同已經為很多科學研究成果所證實。
我們在這里探討這個問題,也想從社會發展進化的角度,來思考「學習」,學習似乎是人與環境交互的適應系統,或者說橋梁,它架起了兩端,一端是我們人生活的外部環境,另一端是我們人的神經網路,它將這兩者緊密地關聯在一起,人在自身成長的過程中,也推動了社會歷史的進步,通過學習,人既創造自己也在創造環境。
Ⅱ 什麼叫神經網路
南搞小孩給出基本的概念: 一.一些基本常識和原理 [什麼叫神經網路?] 人的思維有邏輯性和直觀性兩種不同的基本方式。邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:1.信息是通過神經元上的興奮模式分布儲在網路上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。 人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。 [人工神經網路的工作原理] 人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對手寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。 所以網路學習的准則應該是:如果網路作出錯誤的的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。 如果輸出為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在於使網路下次再遇到「A」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網路輪番輸入若干個手寫字母「A」、「B」後,經過網路按以上學習方法進行若干次學習後,網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識別的模式也就越多。 南搞小孩一個小程序: 關於一個神經網路模擬程序的下載 人工神經網路實驗系統(BP網路) V1.0 Beta 作者:沈琦 http://emuch.net/html/200506/de24132.html 作者關於此程序的說明: 從輸出結果可以看到,前3條"學習"指令,使"輸出"神經元收斂到了值 0.515974。而後3條"學習"指令,其收斂到了值0.520051。再看看處理4和11的指令結果 P *Out1: 0.520051看到了嗎? "大腦"識別出了4和11是屬於第二類的!怎麼樣?很神奇吧?再打show指令看看吧!"神經網路"已經形成了!你可以自己任意的設"模式"讓這個"大腦"學習分辯哦!只要樣本數據量充分(可含有誤差的樣本),如果能夠在out數據上收斂地話,那它就能分辨地很准哦!有時不是絕對精確,因為它具有"模糊處理"的特性.看Process輸出的值接近哪個Learning的值就是"大腦"作出的"模糊性"判別! 南搞小孩神經網路研究社區: 人工神經網路論壇 http://www.youngfan.com/forum/index.php http://www.youngfan.com/nn/index.html(舊版,楓舞推薦) 國際神經網路學會(INNS)(英文) http://www.inns.org/ 歐洲神經網路學會(ENNS)(英文) http://www.snn.kun.nl/enns/ 亞太神經網路學會(APNNA)(英文) http://www.cse.cuhk.e.hk/~apnna 日本神經網路學會(JNNS)(日文) http://www.jnns.org 國際電氣工程師協會神經網路分會 http://www.ieee-nns.org/ 研學論壇神經網路 http://bbs.matwav.com/post/page?bid=8&sty=1&age=0 人工智慧研究者俱樂部 http://www.souwu.com/ 2nsoft人工神經網路中文站 http://211.156.161.210:8888/2nsoft/index.jsp =南搞小孩推薦部分書籍: 人工神經網路技術入門講稿(PDF) http://www.youngfan.com/nn/ann.pdf 神經網路FAQ(英文) http://www.youngfan.com/nn/FAQ/FAQ.html 數字神經網路系統(電子圖書) http://www.youngfan.com/nn/nnbook/director.htm 神經網路導論(英文) http://www.shef.ac.uk/psychology/gurney/notes/contents.html =南搞小孩還找到一份很有參考價值的講座 <前向網路的敏感性研究> http://www.youngfan.com/nn/mgx.ppt 是Powerpoint文件,比較大,如果網速不夠最好用滑鼠右鍵下載另存. 南搞小孩添言:很久之前,楓舞夢想智能機器人從自己手中誕生,SO在學專業的時候也有往這方面發展...考研的時候亦是朝著人工智慧的方向發展..但是很不幸的是楓舞考研失敗...SO 只好放棄這個美好的願望,為生活奔波.希望你能夠成為一個好的智能計算機工程師..楓舞已經努力的在給你提供條件資源哦~~
Ⅲ 神經網路能幹什麼
神經網路利用現有的數據找出輸入與輸出之間得權值關系(近似),然後利用這樣的權值關系進行模擬,例如輸入一組數據模擬出輸出結果,當然你的輸入要和訓練時採用的數據集在一個范疇之內。
例如預報天氣:
溫度 濕度 氣壓等作為輸入 天氣情況作為輸出
利用歷史得輸入輸出關系訓練出神經網路,然後利用這樣的神經網路輸入今天的溫度 濕度 氣壓等 得出即將得天氣情況
當然這樣的例子不夠精確,但是神經網路得典型應用了。
Ⅳ 新型神經網路晶元會對科技領域乃至整個世界產生什麼巨大影響
一、與傳統計算機的區別1946年美籍匈牙利科學家馮·諾依曼提出存儲程序原理,把程序本身當作數據來對待。此後的半個多世紀以來,計算機的發展取得了巨大的進步,但「馮·諾依曼架構」中信息存儲器和處理器的設計一直沿用至今,連接存儲器和處理器的信息傳遞通道仍然通過匯流排來實現。隨著處理的數據量海量地增長,匯流排有限的數據傳輸速率被稱為「馮·諾依曼瓶頸」——尤其是移動互聯網、社交網路、物聯網、雲計算、高通量測序等的興起,使得『馮·諾依曼瓶頸』日益突出,而計算機的自我糾錯能力缺失的局限性也已成為發展障礙。
結構上的缺陷也導致功能上的局限。例如,從效率上看,計算機運算的功耗較高——盡管人腦處理的信息量不比計算機少,但顯然而功耗低得多。為此,學習更多層的神經網路,讓計算機能夠更好地模擬人腦功能,成為上世紀後期以來研究的熱點。
在這些研究中,核心的研究是「馮·諾依曼架構」與「人腦架構」的本質結構區別——與計算機相比,人腦的信息存儲和處理,通過突觸這一基本單元來實現,因而沒有明顯的界限。正是人腦中的千萬億個突觸的可塑性——各種因素和各種條件經過一定的時間作用後引起的神經變化(可變性、可修飾性等),使得人腦的記憶和學習功能得以實現。
大腦有而計算機沒有的三個特性:低功耗(人腦的能耗僅約20瓦,而目前用來嘗試模擬人腦的超級計算機需要消耗數兆瓦的能量);容錯性(壞掉一個晶體管就能毀掉一塊微處理器,但是大腦的神經元每時每刻都在死亡);還有不需為其編製程序(大腦在與外界互動的同時也會進行學習和改變,而不是遵循預設演算法的固定路徑和分支運行。)
這段描述可以說是「電」腦的最終理想了吧。
註:最早的電腦也是模擬電路實現的,之後發展成現在的只有0、1的數字CPU。
今天的計算機用的都是所謂的馮諾依曼結構,在一個中央處理器和記憶晶元之間以線性計算序列來回傳輸數據。這種方式在處理數字和執行精確撰寫的程序時非常好用,但在處理圖片或聲音並理解它們的意義時效果不佳。
有件事很說明問題:2012年,谷歌展示了它的人工智慧軟體在未被告知貓是什麼東西的情況下,可以學會識別視頻中的貓,而完成這個任務用到了1.6萬台處理器。
要繼續改善這類處理器的性能,生產商得在其中配備更多更快的晶體管、硅存儲緩存和數據通路,但所有這些組件產生的熱量限制了晶元的運作速度,尤其在電力有限的移動設備中。這可能會阻礙人們開發出有效處理圖片、聲音和其他感官信息的設備,以及將其應用於面部識別、機器人,或者交通設備航運等任務中。
神經形態晶元嘗試在矽片中模仿人腦以大規模的平行方式處理信息:幾十億神經元和千萬億個突觸對視覺和聲音刺激物這類感官輸入做出反應。
作為對圖像、聲音等內容的反應,這些神經元也會改變它們相互間連接的方式,我們把這個過程叫做學習。神經形態晶元納入了受人腦啟發的「神經網路」模式,因此能做同樣的事。
人工智慧的頂尖思想家傑夫·霍金斯(Jeff Hawkins)說,在傳統處理器上用專門的軟體嘗試模擬人腦(谷歌在貓實驗中所做的),以此作為不斷提升的智能基礎,這太過低效了。
霍金斯創造了掌上電腦(Palm Pilot),後來又聯合創辦了Numenta公司,後者製造從人腦中獲得啟發的軟體。「你不可能只在軟體中建造它,」他說到人工智慧,「你必須在矽片中建造它。」
現有的計算機計算,程序的執行是一行一行執行的,而神經網路計算機則有所不同。
現行的人工智慧程式,基本上都是將大大小小的各種知識寫成一句一句的陳述句,再灌進系統之中。當輸入問題進去智能程式時,它就會搜尋本身的資料庫,再選擇出最佳或最近解。2011年時,IBM 有名的 Watson 智能電腦,便是使用這樣的技術,在美國的電視益智節目中打敗的人類的最強衛冕者。
(神經網路計算機)以這種非同步信號發送(因沒有能使其同步的中央時鍾而得名)處理數據的速度比同步信號發送更快,以為沒有時間浪費在等待時鍾發出信號上。非同步信號發送消耗的能量也更少,這樣便滿足了邁耶博士理想的計算機的第一個特點。如果有一個處理器壞了,系統會從另一路線繞過它,這樣便滿足了邁耶博士理想的計算機的第二個特點。正是由於為非同步信號發送編程並不容易,所以大多數計算機工程師都無視於此。然而其作為一種模仿大腦的方式堪稱完美。功耗方面:
硬體方面,近年來主要是通過對大型神經網路進行模擬,如 Google 的深度學習系統Google Brain,微軟的Adam等。但是這些網路需要大量傳統計算機的集群。比方說 Google Brain 就採用了 1000 台各帶 16 核處理器的計算機,這種架構盡管展現出了相當的能力,但是能耗依然巨大。而 IBM 則是在晶元上的模仿。4096 個內核,100 萬個「神經元」、2.56 億個「突觸」集成在直徑只有幾厘米的方寸(是 2011 年原型大小的 1/16)之間,而且能耗只有不到 70 毫瓦。
IBM 研究小組曾經利用做過 DARPA 的NeoVision2 Tower數據集做過演示。它能夠實時識別出用 30 幀每秒的正常速度拍攝自斯坦福大學胡佛塔的十字路口視頻中的人、自行車、公交車、卡車等,准確率達到了 80%。相比之下,一台筆記本編程完成同樣的任務用時要慢 100 倍,能耗卻是 IBM 晶元的 1 萬倍。
Ref: A million spiking-neuron integrated circuit with a scalable communication network and interface. Paul A. Merolla et al. Science 345, 668 (2014); DOI: 10.1126/science.1254642
因為需要擁有極多數據的Database 來做training以及需要極強大的計算能力來做prediction,現有的一些Deep learning如Andrew Ng的Google Brain、Apple的Siri等都需要連接網路到雲端的伺服器。
二、爭議:
雖然深度學習已經被應用到尖端科學研究及日常生活當中,而 Google 已經實際搭載在核心的搜尋功能之中。但其他知名的人工智慧實驗室,對於深度學習技術的反應並不一致。例如艾倫人工智慧中心的執行長 Oren Etzioni,就沒有考慮將深度學習納入當前開發中的人工智慧系統中。該機構目前的研究是以小學程度的科學知識為目標,希望能開發出光是看學校的教科書,就能夠輕松應付各類考試的智能程式。Oren Etzioni 以飛機為例,他表示,最成功的飛機設計都不是來自於模仿鳥的結構,所以腦神經的類比並無法保證人工智慧的實現,因此他們暫不考慮借用深度學習技術來開發這個系統。
但是從短期來看,情況也許並沒有那麼樂觀。
首先晶元的編程仍然是個大問題。晶元的編程要考慮選擇哪一個神經元來連接,以及神經元之間相互影響的程度。比方說,為了識別上述視頻中的汽車,編程人員首先要對晶元的模擬版進行必要的設置,然後再傳給實際的晶元。這種晶元需要顛覆以往傳統的編程思想,盡管 IBM 去年已經發布了一套工具,但是目前編程仍非常困難,IBM 團隊正在編制令該過程簡單一點的開發庫。(當然,如果我們回顧過去編程語言從匯編一路走來的歷史,這一點也許不會成為問題。)
其次,在部分專業人士看來,這種晶元的能力仍有待證實。
再者,真正的認知計算應該能從經驗中學習,尋找關聯,提出假設,記憶,並基於結果學習,而IBM 的演示里所有學習(training)都是在線下的馮諾依曼計算機上進行的。不過目前大多數的機器學習都是離線進行的,因為學習經常需要對演算法進行調整,而 IBM 的硬體並不具備調整的靈活性,不擅長做這件事情。
三、人造神經元工作原理及電路實現
人工神經網路
人工神經網路(artificial neural network,縮寫ANN),簡稱神經網路(neural network,縮寫NN),是一種模仿生物神經網路的結構和功能的數學模型或計算模型。
神經網路是一種運算模型,由大量的節點(或稱「神經元」,或「單元」)和之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激勵函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重(weight),這相當於人工神經網路的記憶。網路的輸出則依網路的連接方式,權重值和激勵函數的不同而不同。而網路自身通常都是對自然界某種演算法或者函數的逼近,也可能是對一種邏輯策略的表達。Ref:Wikipedia: 人工神經網路
電路原理
神經遞質的分泌反過來又是對動作電位刺激的反應。然而神經元在接收到這些神經遞質信號中的一個後便不會再繼續發出動作電位。當然,它們會逐漸累加至一個極限值。在神經元接受了一定數量的信號並超過極限值後----從根本上講是一個模擬進程----然後它們會發出一個動作電位,並自行重置。Spikey的人造神經元也是這么做的,當它們每次受到激發時都會在電容中累積電荷,直至達到限值,電容再進行放電。具體電路結構和分析之後有機會的話再更新。
現階段硬體的實現方式有數電(IBM、Qualcomm)、模電、數模混合(學界)、GPUs等等,還有各種不是基於硅半導體製程製作的神經元等的device方面的研究。
四、歷史
Neuromorphic engineering由老祖宗Carver Mead提出
卡福·米德是加州理工學院的一名工程師,被公認為神經形態計算機之父(當然還發明了「神經形態學」這個詞)
神經形態晶元的創意可以追溯到幾十年前。加州理工大學的退休教授、集成電路設計的傳奇人物卡弗·米德(Carver Mead)在1990年發表的一篇論文中首次提出了這個名稱。
這篇論文介紹了模擬晶元如何能夠模仿腦部神經元和突觸的電活動。所謂模擬晶元,其輸出是變化的,就像真實世界中發生的現象,這和數字晶元二進制、非開即關的性質不同。
後來這(大腦研究)成為我畢生的工作,我覺得我可以有所貢獻,我嘗試離開計算機行業而專注大腦研究。首先我去了MIT的人工智慧研究院,我想,我也想設計和製作聰明的機器,但我的想法是先研究大腦怎麼運作。而他們說,呃,你不需要這樣做,我們只需要計算機編程。而我說,不,你應該先研究大腦。他們說,呃,你錯了。而我說,不,你們錯了。最後我沒被錄取。但我真的有點失望,那時候年輕,但我再嘗試。幾年後再加州的Berkley,這次我嘗試去學習生物方面的研究。我開始攻讀生物物理博士課程。我在學習大腦了,而我想學理論。而他們說,不,你不可以學大腦的理論,這是不可以的,你不會拿到研究經費,而作為研究生,沒有經費是不可以的。我的天。
八卦:老師說neural network這個方向每20年火一次,之前有很長一段時間的沉寂期,甚至因為理論的不完善一度被認為是江湖術士的小把戲,申請研究經費都需要改課題名稱才能成功。(這段為小弟的道聽途說,請大家看過就忘。後來看相關的資料發現,這段歷史可能與2006年Geoffrey E. Hinton提出深度學習的概念這一革命性工作改變了之前的狀況有關。)
五、針對IBM這次的工作:
關於 SyNAPSE
美國國防部先進研究項目局的研究項目,由兩個大的group組成:IBM team和HRL Team。
Synapse在英文中是突觸的意思,而SyNAPSE是Systems of Neuromorphic Adaptive Plastic Scalable Electronics的簡稱。
Cognitive computing: Neurosynaptic chips
IBM proces first working chips modeled on the human brain
另一個SyNAPSE項目是由IBM阿爾馬登實驗室(位於聖何塞)的達爾門德拉·穆德哈負責。與四所美國大學(哥倫比亞大學,康奈爾大學,加州大學默塞德分校以及威斯康辛-麥迪遜大學)合作,穆德哈博士及其團隊製造了一台神經形態學計算機的原型機,擁有256個「積分觸發式」神經元,之所以這么叫是因為這些神經元將自己的輸入累加(即積分)直至達到閾值,然後發出一個信號後再自行重置。它們在這一點上與Spikey中的神經元類似,但是電子方面的細節卻有所不同,因為它們是由一個數字儲存器而非許多電容來記錄輸入信號的。
Ref: A million spiking-neuron integrated circuit with a scalable communication network and interface. Paul A. Merolla et al. Science 345, 668 (2014); DOI: 10.1126/science.1254642
Ⅳ 人腦神經網路的優點
它們能夠勝過幾乎所有其他機器學習演算法。
神經網路的主要優點在於它們能夠勝過幾乎所有其他機器學習演算法,具有很強的魯棒性和容錯性,因為信息是分布貯於網路內的神經元中。
人腦神經網路是一種模擬人腦的神經網路以期能夠實現類人工智慧的機器學習技術,人腦中的神經網路是一個非常復雜的組織,成人的大腦中估計有1000億個神經元之多。
Ⅵ 網路信號對大腦有影響嗎
網路信號對大腦有影響。
有很多科學研究表明WiFi對人體有害。它通過增加自由基的產生引起氧化應激。增加的氧化應激是細胞大分子氧化損傷的原因,如蛋白質、脂類和DNA。
一些關於2.45 GHz WiFi信號對人類和動物健康影響的研究表明,WiFi設備發出的射頻電磁輻射會影響精子數量、活力和DNA完整性。
男性生殖系統的其他變化包括退化性損傷、睾丸素水平降低、細胞死亡升高和DNA損傷,這些主要是由睾丸溫度和氧化應激水平升高引起的。
在女性生殖改變方面,WiFi暴露會減少雌激素和黃體酮的產生和分泌,導致生殖功效降低和生育能力受損。WiFi還會導致染色體突變,這是自然流產的原因之一。
大腦為神經系統最高級部分,由左、右兩個大腦半球組成,兩半球間有橫行的神經纖維相聯系。每個半球包括:大腦皮層(大腦皮質):是表面的一層灰質(神經細胞的細胞體集中部分)。
人的大腦表面有很多往下凹的溝(裂),溝(裂)之間有隆起的回,因而大大增加了大腦皮層的面積。人的大腦皮層最為發達,是思維的器官,主導機體內一切活動過程,並調節機體與周圍環境的平衡,所以大腦皮層是高級神經活動的物質基礎。
大腦主要包括左、右大腦半球,是中樞神經中最大和最復雜的結構,也是最高部位;是調節機體功能的器官,也是意識、精神、語言、學習、記憶和智能等高級神經活動的物質基礎。
大腦半球表面呈現不同的溝或裂。溝、裂之間隆起的部分叫腦回。大腦半球借溝和裂分為5葉:即額葉、顳葉、頂葉、枕葉和腦島。
Ⅶ 神經網路的發展趨勢如何
神經網路的雲集成模式還不是很成熟,應該有發展潛力,但神經網路有自己的硬傷,不知道能夠達到怎樣的效果,所以決策支持系統中並不是很熱門,但是神經網路無視過程的優點也是無可替代的,雲網路如果能夠對神經網路提供一個互補的輔助決策以控制誤差的話,也許就能使神經網路成熟起來
1 人工神經網路產生的背景
自古以來,關於人類智能本源的奧秘,一直吸引著無數哲學家和自然科學家的研究熱情。生物學家、神經學家經過長期不懈的努力,通過對人腦的觀察和認識,認為人腦的智能活動離不開腦的物質基礎,包括它的實體結構和其中所發生的各種生物、化學、電學作用,並因此建立了神經元網路理論和神經系統結構理論,而神經元理論又是此後神經傳導理論和大腦功能學說的基礎。在這些理論基礎之上,科學家們認為,可以從仿製人腦神經系統的結構和功能出發,研究人類智能活動和認識現象。另一方面,19世紀之前,無論是以歐氏幾何和微積分為代表的經典數學,還是以牛頓力學為代表的經典物理學,從總體上說,這些經典科學都是線性科學。然而,客觀世界是如此的紛繁復雜,非線性情況隨處可見,人腦神經系統更是如此。復雜性和非線性是連接在一起的,因此,對非線性科學的研究也是我們認識復雜系統的關鍵。為了更好地認識客觀世界,我們必須對非線性科學進行研究。人工神經網路作為一種非線性的、與大腦智能相似的網路模型,就這樣應運而生了。所以,人工神經網路的創立不是偶然的,而是20世紀初科學技術充分發展的產物。
2 人工神經網路的發展
人工神經網路的研究始於40年代初。半個世紀以來,經歷了興起、高潮與蕭條、高潮及穩步發展的遠為曲折的道路。
1943年,心理學家W.S.Mcculloch和數理邏輯學家W.Pitts 提出了M—P模型,這是第一個用數理語言描述腦的信息處理過程的模型, 雖然神經元的功能比較弱,但它為以後的研究工作提供了依據。1949年,心理學家D.O.Hebb提出突觸聯系可變的假設,根據這一假設提出的學習規律為神經網路的學習演算法奠定了基礎。 1957 年, 計算機科學家Rosenblatt提出了著名的感知機模型,它的模型包含了現代計算機的一些原理,是第一個完整的人工神經網路,第一次把神經網路研究付諸工程實現。由於可應用於模式識別,聯想記憶等方面,當時有上百家實驗室投入此項研究,美國軍方甚至認為神經網路工程應當比「原子彈工程」更重要而給予巨額資助,並在聲納信號識別等領域取得一定成績。1960年,B.Windrow和E.Hoff提出了自適應線性單元, 它可用於自適應濾波、預測和模式識別。至此,人工神經網路的研究工作進入了第一個高潮。
1969年,美國著名人工智慧學者M.Minsky和S.Papert編寫了影響很大的Perceptron一書,從理論上證明單層感知機的能力有限,諸如不能解決異或問題,而且他們推測多層網路的感知機能力也不過如此,他們的分析恰似一瓢冷水,很多學者感到前途渺茫而紛紛改行,原先參與研究的實驗室紛紛退出,在這之後近10年,神經網路研究進入了一個緩慢發展的蕭條期。這期間,芬蘭學者T.Kohonen 提出了自組織映射理論,反映了大腦神經細胞的自組織特性、記憶方式以及神經細胞興奮刺激的規律;美國學者S.A.Grossberg的自適應共振理論(ART );日本學者K.Fukushima提出了認知機模型;ShunIchimari則致力於神經網路有關數學理論的研究等,這些研究成果對以後的神經網路的發展產生了重要影響。
美國生物物理學家J.J.Hopfield於1982年、1984年在美國科學院院刊發表的兩篇文章,有力地推動了神經網路的研究,引起了研究神經網路的又一次熱潮。 1982 年, 他提出了一個新的神經網路模型——hopfield網路模型。他在這種網路模型的研究中,首次引入了網路能量函數的概念,並給出了網路穩定性的判定依據。1984年,他又提出了網路模型實現的電子電路,為神經網路的工程實現指明了方向,他的研究成果開拓了神經網路用於聯想記憶的優化計算的新途徑,並為神經計算機研究奠定了基礎。1984年Hinton等人將模擬退火演算法引入到神經網路中,提出了Boltzmann機網路模型,BM 網路演算法為神經網路優化計算提供了一個有效的方法。1986年,D.E.Rumelhart和J.LMcclelland提出了誤差反向傳播演算法,成為至今為止影響很大的一種網路學習方法。1987年美國神經計算機專家R.Hecht—Nielsen提出了對向傳播神經網路,該網路具有分類靈活,演算法簡練的優點,可用於模式分類、函數逼近、統計分析和數據壓縮等領域。1988年L.Ochua 等人提出了細胞神經網路模型,它在視覺初級加工上得到了廣泛應用。
為適應人工神經網路的發展,1987年成立了國際神經網路學會,並決定定期召開國際神經網路學術會議。1988年1月Neural Network 創刊。1990年3月IEEE Transaction on Neural Network問世。 我國於1990年12月在北京召開了首屆神經網路學術大會,並決定以後每年召開一次。1991 年在南京成立了中國神經網路學會。 IEEE 與INNS 聯合召開的IJCNN92已在北京召開。 這些為神經網路的研究和發展起了推波助瀾的作用,人工神經網路步入了穩步發展的時期。
90年代初,諾貝爾獎獲得者Edelman提出了Darwinism模型,建立了神經網路系統理論。同年,Aihara等在前人推導和實驗的基礎上,給出了一個混沌神經元模型,該模型已成為一種經典的混沌神經網路模型,該模型可用於聯想記憶。 Wunsch 在90OSA 年會上提出了一種AnnualMeeting,用光電執行ART,學習過程有自適應濾波和推理功能,具有快速和穩定的學習特點。1991年,Hertz探討了神經計算理論, 對神經網路的計算復雜性分析具有重要意義;Inoue 等提出用耦合的混沌振盪子作為某個神經元,構造混沌神經網路模型,為它的廣泛應用前景指明了道路。1992年,Holland用模擬生物進化的方式提出了遺傳演算法, 用來求解復雜優化問題。1993年方建安等採用遺傳演算法學習,研究神經網路控制器獲得了一些結果。1994年Angeline等在前人進化策略理論的基礎上,提出一種進化演算法來建立反饋神經網路,成功地應用到模式識別,自動控制等方面;廖曉昕對細胞神經網路建立了新的數學理論和方法,得到了一系列結果。HayashlY根據動物大腦中出現的振盪現象,提出了振盪神經網路。1995年Mitra把人工神經網路與模糊邏輯理論、 生物細胞學說以及概率論相結合提出了模糊神經網路,使得神經網路的研究取得了突破性進展。Jenkins等人研究光學神經網路, 建立了光學二維並行互連與電子學混合的光學神經網路,它能避免網路陷入局部最小值,並最後可達到或接近最理想的解;SoleRV等提出流體神經網路,用來研究昆蟲社會,機器人集體免疫系統,啟發人們用混沌理論分析社會大系統。1996年,ShuaiJW』等模擬人腦的自發展行為, 在討論混沌神經網路的基礎上提出了自發展神經網路。1997、1998年董聰等創立和完善了廣義遺傳演算法,解決了多層前向網路的最簡拓樸構造問題和全局最優逼近問題。
隨著理論工作的發展,神經網路的應用研究也取得了突破性進展,涉及面非常廣泛,就應用的技術領域而言有計算機視覺,語言的識別、理解與合成,優化計算,智能控制及復雜系統分析,模式識別,神經計算機研製,知識推理專家系統與人工智慧。涉及的學科有神經生理學、認識科學、數理科學、心理學、信息科學、計算機科學、微電子學、光學、動力學、生物電子學等。美國、日本等國在神經網路計算機軟硬體實現的開發方面也取得了顯著的成績,並逐步形成產品。在美國,神經計算機產業已獲得軍方的強有力支持,國防部高級研究計劃局認為「神經網路是解決機器智能的唯一希望」,僅一項8 年神經計算機計劃就投資4億美元。在歐洲共同體的ESPRIT計劃中, 就有一項特別項目:「神經網路在歐洲工業中的應用」,單是生產神經網路專用晶元這一項就投資2200萬美元。據美國資料聲稱,日本在神經網路研究上的投資大約是美國的4倍。我國也不甘落後,自從1990 年批准了南開大學的光學神經計算機等3項課題以來, 國家自然科學基金與國防預研基金也都為神經網路的研究提供資助。另外,許多國際著名公司也紛紛捲入對神經網路的研究,如Intel、IBM、Siemens、HNC。神經計算機產品開始走向商用階段,被國防、企業和科研部門選用。在舉世矚目的海灣戰爭中,美國空軍採用了神經網路來進行決策與控制。在這種刺激和需求下,人工神經網路定會取得新的突破,迎來又一個高潮。自1958年第一個神經網路誕生以來,其理論與應用成果不勝枚舉。人工神經網路是一個快速發展著的一門新興學科,新的模型、新的理論、新的應用成果正在層出不窮地涌現出來。
3 人工神經網路的發展前景
針對神經網路存在的問題和社會需求,今後發展的主要方向可分為理論研究和應用研究兩個方面。
(1)利用神經生理與認識科學研究大腦思維及智能的機理、 計算理論,帶著問題研究理論。
人工神經網路提供了一種揭示智能和了解人腦工作方式的合理途徑,但是由於人類起初對神經系統了解非常有限,對於自身腦結構及其活動機理的認識還十分膚淺,並且帶有某種「先驗」。例如, Boltzmann機引入隨機擾動來避免局部極小,有其卓越之處,然而缺乏必要的腦生理學基礎,毫無疑問,人工神經網路的完善與發展要結合神經科學的研究。而且,神經科學,心理學和認識科學等方面提出的一些重大問題,是向神經網路理論研究提出的新挑戰,這些問題的解決有助於完善和發展神經網路理論。因此利用神經生理和認識科學研究大腦思維及智能的機理,如有新的突破,將會改變智能和機器關系的認識。
利用神經科學基礎理論的研究成果,用數理方法探索智能水平更高的人工神經網路模型,深入研究網路的演算法和性能,如神經計算、進化計算、穩定性、收斂性、計算復雜性、容錯性、魯棒性等,開發新的網路數理理論。由於神經網路的非線性,因此非線性問題的研究是神經網路理論發展的一個最大動力。特別是人們發現,腦中存在著混沌現象以來,用混沌動力學啟發神經網路的研究或用神經網路產生混沌成為擺在人們面前的一個新課題,因為從生理本質角度出發是研究神經網路的根本手段。
(2)神經網路軟體模擬, 硬體實現的研究以及神經網路在各個科學技術領域應用的研究。
由於人工神經網路可以用傳統計算機模擬,也可以用集成電路晶元組成神經計算機,甚至還可以用光學的、生物晶元的方式實現,因此研製純軟體模擬,虛擬模擬和全硬體實現的電子神經網路計算機潛力巨大。如何使神經網路計算機與傳統的計算機和人工智慧技術相結合也是前沿課題;如何使神經網路計算機的功能向智能化發展,研製與人腦功能相似的智能計算機,如光學神經計算機,分子神經計算機,將具有十分誘人的前景。
4 哲理
(1)人工神經網路打開了認識論的新領域
認識與腦的問題,長期以來一直受到人們的關注,因為它不僅是有關人的心理、意識的心理學問題,也是有關人的思維活動機制的腦科學與思維科學問題,而且直接關繫到對物質與意識的哲學基本問題的回答。人工神經網路的發展使我們能夠更進一步地既唯物又辯證地理解認識與腦的關系,打開認識論的新領域。人腦是一個復雜的並行系統,它具有「認知、意識、情感」等高級腦功能,用人工進行模擬,有利於加深對思維及智能的認識,已對認知和智力的本質的研究產生了極大的推動作用。在研究大腦的整體功能和復雜性方面,人工神經網路給人們帶來了新的啟迪。由於人腦中存在混沌現象,混沌可用來理解腦中某些不規則的活動,從而混沌動力學模型能用作人對外部世界建模的工具,可用來描述人腦的信息處理過程。混沌和智能是有關的,神經網路中引入混沌學思想有助於提示人類形象思維等方面的奧秘。人工神經網路之所以再度興起,關鍵在於它反映了事物的非線性,抓住了客觀世界的本質,而且它在一定程度上正面回答了智能系統如何從環境中自主學習這一最關鍵的問題,從認知的角度講,所謂學習,就是對未知現象或規律的發現和歸納。由於神經網路具有高度的並行性,高度的非線性全局作用,良好的容錯性與聯想記憶功能以及十分強的自適應、自學習功能,而使得它成為揭示智能和了解人腦工作方式的合理途徑。但是,由於認知問題的復雜性,目前,我們對於腦神經網的運行和神經細胞的內部處理機制,如信息在人腦是如何傳輸、存貯、加工的?記憶、聯想、判斷是如何形成的?大腦是否存在一個操作系統?還沒有太多的認識,因此要製造人工神經網路來模仿人腦各方面的功能,還有待於人們對大腦信息處理機理認識的深化。
(2)人工神經網路發展的推動力來源於實踐、 理論和問題的相互作用
隨著人們社會實踐范圍的不斷擴大,社會實踐層次的不斷深入,人們所接觸到的自然現象也越來越豐富多彩、紛繁復雜,這就促使人們用不同的原因加以解釋不同種類的自然現象,當不同種類的自然現象可以用同樣的原因加以解釋,這樣就出現了不同學科的相互交叉、綜合,人工神經網路就這樣產生了。在開始階段,由於這些理論化的網路模型比較簡單,還存在許多問題,而且這些模型幾乎沒有得到實踐的檢驗,因而神經網路的發展比較緩慢。隨著理論研究的深入,問題逐漸地解決特別是工程上得到實現以後,如聲納識別成功,才迎來了神經網路的第一個發展高潮。可Minisky認為感知器不能解決異或問題, 多層感知器也不過如此,神經網路的研究進入了低谷,這主要是因為非線性問題沒得到解決。隨著理論的不斷豐富,實踐的不斷深入, 現在已證明Minisky的悲觀論調是錯誤的。今天,高度發達的科學技術逐漸揭示了非線性問題是客觀世界的本質。問題、理論、實踐的相互作用又迎來了人工神經網路的第二次高潮。目前人工神經網路的問題是智能水平不高,還有其它理論和實現方面的問題,這就迫使人們不斷地進行理論研究,不斷實踐,促使神經網路不斷向前發展。總之,先前的原因遇到了解釋不同的新現象,促使人們提出更加普遍和精確的原因來解釋。理論是基礎,實踐是動力,但單純的理論和實踐的作用還不能推動人工神經網路的發展,還必須有問題提出,才能吸引科學家進入研究的特定范圍,引導科學家從事相關研究,從而逼近科學發現,而後實踐又提出新問題,新問題又引發新的思考,促使科學家不斷思考,不斷完善理論。人工神經網路的發展無不體現著問題、理論和實踐的辯證統一關系。
(3 )人工神經網路發展的另一推動力來源於相關學科的貢獻及不同學科專家的競爭與協同
人工神經網路本身就是一門邊緣學科,它的發展有更廣闊的科學背景,亦即是眾多科研成果的綜合產物,控制論創始人Wiener在其巨著《控制論》中就進行了人腦神經元的研究;計算機科學家Turing就提出過B網路的設想;Prigogine提出非平衡系統的自組織理論,獲得諾貝爾獎;Haken研究大量元件聯合行動而產生宏觀效果, 非線性系統「混沌」態的提出及其研究等,都是研究如何通過元件間的相互作用建立復雜系統,類似於生物系統的自組織行為。腦科學與神經科學的進展迅速反映到人工神經網路的研究中,例如生物神經網路理論,視覺中發現的側抑制原理,感受野概念等,為神經網路的發展起了重要的推動作用。從已提出的上百種人工神經網路模型中,涉及學科之多,令人目不暇接,其應用領域之廣,令人嘆為觀止。不同學科專家為了在這一領域取得領先水平,存在著不同程度的競爭,所有這些有力地推動了人工神經網路的發展。人腦是一個功能十分強大、結構異常復雜的信息系統,隨著資訊理論、控制論、生命科學,計算機科學的發展,人們越來越驚異於大腦的奇妙,至少到目前為止,人類大腦信號處理機制對人類自身來說,仍是一個黑盒子,要揭示人腦的奧秘需要神經學家、心理學家、計算機科學家、微電子學家、數學家等專家的共同努力,對人類智能行為不斷深入研究,為人工神經網路發展提供豐富的理論源泉。另外,還要有哲學家的參與,通過哲學思想和自然科學多種學科的深層結合,逐步孕育出探索人類思維本質和規律的新方法,使思維科學從朦朧走向理性。而且,不同領域專家的競爭與協調同有利於問題清晰化和尋求最好的解決途徑。縱觀神經網路的發展歷史,沒有相關學科的貢獻,不同學科專家的競爭與協同,神經網路就不會有今天。當然,人工神經網路在各個學科領域應用的研究反過來又推動其它學科的發展,推動自身的完善和發展。
Ⅷ 神經網路是什麼
神經網路是一種以人腦為模型的機器學習,簡單地說就是創造一個人工神經網路,通過一種演算法允許計算機通過合並新的數據來學習。
神經網路簡單說就是通過一種演算法允許計算機通過合並新的數據來學習!
Ⅸ 什麼是神經網路
隱層節點數在BP 網路中,隱層節點數的選擇非常重要,它不僅對建立的神經網路模型的性能影響很大,而且是訓練時出現「過擬合」的直接原因,但是目前理論上還沒有一種科學的和普遍的確定方法。 目前多數文獻中提出的確定隱層節點數的計算公式都是針對訓練樣本任意多的情況,而且多數是針對最不利的情況,一般工程實踐中很難滿足,不宜採用。事實上,各種計算公式得到的隱層節點數有時相差幾倍甚至上百倍。為盡可能避免訓練時出現「過擬合」現象,保證足夠高的網路性能和泛化能力,確定隱層節點數的最基本原則是:在滿足精度要求的前提下取盡可能緊湊的結構,即取盡可能少的隱層節點數。研究表明,隱層節點數不僅與輸入/輸出層的節點數有關,更與需解決的問題的復雜程度和轉換函數的型式以及樣本數據的特性等因素有關。在確定隱層節點數時必須滿足下列條件:(1)隱層節點數必須小於N-1(其中N為訓練樣本數),否則,網路模型的系統誤差與訓練樣本的特性無關而趨於零,即建立的網路模型沒有泛化能力,也沒有任何實用價值。同理可推得:輸入層的節點數(變數數)必須小於N-1。(2) 訓練樣本數必須多於網路模型的連接權數,一般為2~10倍,否則,樣本必須分成幾部分並採用「輪流訓練」的方法才可能得到可靠的神經網路模型。 總之,若隱層節點數太少,網路可能根本不能訓練或網路性能很差;若隱層節點數太多,雖然可使網路的系統誤差減小,但一方面使網路訓練時間延長,另一方面,訓練容易陷入局部極小點而得不到最優點,也是訓練時出現「過擬合」的內在原因。因此,合理隱層節點數應在綜合考慮網路結構復雜程度和誤差大小的情況下用節點刪除法和擴張法確定。
Ⅹ 人工神經網路的作用
人工神經網路(Artificial Neural Network,即ANN ),是20世紀80 年代以來人工智慧領域興起的研究熱點。它從信息處理角度對人腦神經元網路進行抽象, 建立某種簡單模型,按不同的連接方式組成不同的網路。在工程與學術界也常直接簡稱為神經網路或類神經網路。神經網路是一種運算模型,由大量的節點(或稱神經元)之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激勵函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重,這相當於人工神經網路的記憶。網路的輸出則依網路的連接方式,權重值和激勵函數的不同而不同。而網路自身通常都是對自然界某種演算法或者函數的逼近,也可能是對一種邏輯策略的表達。
最近十多年來,人工神經網路的研究工作不斷深入,已經取得了很大的進展,其在模式識別、智能機器人、自動控制、預測估計、生物、醫學、經濟等領域已成功地解決了許多現代計算機難以解決的實際問題,表現出了良好的智能特性。
中文名
人工神經網路
外文名
artificial neural network
別稱
ANN
應用學科
人工智慧
適用領域范圍
模式分類
精品薦讀
「蠢萌」的神經網路
作者:牛油果進化論
快速
導航
基本特徵
發展歷史
網路模型
學習類型
分析方法
特點優點
研究方向
發展趨勢
應用分析
神經元
如圖所示
a1~an為輸入向量的各個分量
w1~wn為神經元各個突觸的權值
b為偏置
f為傳遞函數,通常為非線性函數。以下默認為hardlim()
t為神經元輸出
數學表示 t=f(WA'+b)
W為權向量
A為輸入向量,A'為A向量的轉置
b為偏置
f為傳遞函數
可見,一個神經元的功能是求得輸入向量與權向量的內積後,經一個非線性傳遞函數得到一個標量結果。
單個神經元的作用:把一個n維向量空間用一個超平面分割成兩部分(稱之為判斷邊界),給定一個輸入向量,神經元可以判斷出這個向量位於超平面的哪一邊。
該超平面的方程: Wp+b=0
W權向量
b偏置
p超平面上的向量
基本特徵
人工神經網路是由大量處理單元互聯組成的非線性、自適應信息處理系統。它是在現代神經科學研究成果的基礎上提出的,試圖通過模擬大腦神經網路處理、記憶信息的方式進行信息處理。
人工神經網路具有四個基本特徵:
(1)非線性 非線性關系是自然界的普遍特性。大腦的智慧就是一種非線性現象。人工神經元處於激活或抑制二種不同的狀態,這種行為在數學上表現為一種非線性關系。具有閾值的神經元構成的網路具有更好的性能,可以提高容錯性和存儲容量。
人工神經網路
(2)非局限性 一個神經網路通常由多個神經元廣泛連接而成。一個系統的整體行為不僅取決於單個神經元的特徵,而且可能主要由單元之間的相互作用、相互連接所決定。通過單元之間的大量連接模擬大腦的非局限性。聯想記憶是非局限性的典型例子。
(3)非常定性 人工神經網路具有自適應、自組織、自學習能力。神經網路不但處理的信息可以有各種變化,而且在處理信息的同時,非線性動力系統本身也在不斷變化。經常採用迭代過程描寫動力系統的演化過程。
(4)非凸性 一個系統的演化方向,在一定條件下將取決於某個特定的狀態函數。例如能量函數,它的極值相應於系統比較穩定的狀態。非凸性是指這種函數有多個極值,故系統具有多個較穩定的平衡態,這將導致系統演化的多樣性