1. 什麼是網路基序
網路的復雜性本質上就是關系的復雜性。但是,研究者通過對真實網路的分析,發現各種關系種類的出現頻率是非隨機性的。某些特定的關系種類在網路中反復出現,形成網路的典型連接方式;不同類型的網路具有不同的典型連接方式。研究者把這些特定的關系種類稱為「網路基序」(network motif),認為它們是一個網路的基本構造單元。 �0�2�0�2�0�2�0�2 �0�2基序是從功能的角度來分析網路的構成,著眼於網路內各種成分之間連接的模式或關系。而模塊則注重從結構的角度來理解網路,尋找網路內由直接相互作用的成分構成的單元。 �0�2�0�2�0�2 �0�2模塊有兩個顯著特徵:模塊內的分子與分子間有著直接的相互作用;模塊與模塊或模塊與非模塊之間有著清晰的邊界。
2. DNA與蛋白質相互作用的研究方法有哪些
在許多的細胞生命活動中,例如DNA復制、mRNA轉錄與修飾以及病毒的感染等都涉及到DNA與蛋白質之間的相互作用的問題。重組DNA技術的發展,人們已分離到了許多重要的基因。現在的關鍵問題是需要揭示環境因子及發育信號究竟是如何控制基因的轉錄活性。為此需要:a、鑒定分析參與基因表達調控的DNA元件;b、分離並鑒定這些順式元件特異性結合的蛋白質因子;這些問題的研究都涉及到DNA與蛋白質之間的相互作用。
研究DNA-蛋白質相互作用的實驗方法主要包括:a、凝膠阻滯實驗; b、DNase 1 足跡實驗;c、甲基化干擾實驗; d、體內足跡實驗; f、拉下實驗。研究蛋白質/ 核酸相互作用近期採用的新技術有:核酸適體技術、生物信息學方法、蛋白質晶元技術以及納米技術等。
凝膠阻滯實驗
1、概念:
凝膠阻滯實驗(Gel retardation assay),要叫做DNA遷移率變動試驗(DNA mobility shift assay)或條帶阻滯實驗(Band retardation assay)是在八十年代初期出現的用於在體外研究DNA與蛋白質相互作用的一種特殊的凝膠電泳技術。
2、原理:
在凝膠電泳中,由於電場的作用,裸露的DNA分子向正電極移動距離的大小是同其分子量的對數成反比。如果某種DNA分子結合上一種特殊的蛋白質,那麼由於分子量的加大它在凝膠中的遷移作用便會受到阻滯,於是朝正極移動的距離也就相應的縮短,因而在凝膠中出現滯後的條帶,這就是凝膠阻滯實驗的基本原理。
3、過程:
首先制備細胞蛋白質提取物(理論上其中含有某種特殊的轉錄因子)
用放射性同位素標記待檢測的DNA片段(含有轉錄因子的結合位點)
這種被標記的探針DNA同細胞蛋白質提取物一起進行溫育,於是產生DNA-蛋白質復合物
在控制使DNA-蛋白質保持結合狀態的條件下,進行非變性聚丙烯醯胺凝膠電泳
最後進行放射自顯影,分析電泳結果
4、實驗結果的分析:
a、如果有放射性標記的條帶都集中於凝膠的底部,這就表明在細胞提取物中不存在可以同探針DNA相互結合的轉錄因子蛋白質;
b、如果在凝膠的頂部出現放射性標記的條帶,這就表明細胞提取物存在可與探針DNA結合的轉錄因子蛋白質。
5、DNA競爭實驗:
DNA競爭實驗(DNA competitive assay)的具體做法如下:
在DNA-蛋白質結合的反應體系中加入了超量的非標記的競爭DNA(competitor DNA),如果它同探針DNA結合的是同一種轉錄因子蛋白質,那麼由於競爭DNA與探針DNA相比是極大超量的,這樣絕大部分轉錄因子蛋白質都會被競爭結合掉,而使探針DNA仍然處於自由的非結合狀態,可以在電泳凝膠的放射自顯影圖片上就不會出現阻滯的條帶;
如果反應體系中加入的競爭DNA並不能同探針DNA競爭結合同一種轉錄因子,結果在電泳凝膠中的放射自顯影圖片上就會出現阻滯的條帶。
6、應用:
a、凝膠阻滯實驗可以用於鑒定在特殊類型細胞蛋白質提取物中,是否存在能同某一特定的DNA(含有轉錄因子結合位點)結合的轉錄因子蛋白質;
b、DNA競爭實驗可以用來檢測轉錄因子蛋白質同DNA結合的精確序列部位;
c、通過競爭DNA中轉錄因子結合位點的鹼基突變可以研究此種突變競爭性能及其轉錄因子結合作用的影響;
d、也可以利用DNA同特定轉錄因子的結合作用通過親和層析來分離特定的轉錄因子。
DNaseI足跡實驗
1、定義:
足跡實驗(foot-printing assay),是一種用來檢測被特定轉錄因子蛋白質特異性結合的DNA序列的位置及其核苷酸序列結構的專門實驗方法。
2、原理:
當DNA分子中的某一區段同特異的轉錄因子結合之後便可以得到保護而免受DNaseI 酶的切割作用,而不會產生出相應的切割分子,結果在凝膠電泳放射性自顯影圖片上便出現了一個空白區,俗稱為「足跡」。
3過程:
將待檢測的雙鏈DNA分子在體外用32P作5『末端標記,並用適當的限制性內切酶切出其中的一個末端,於是便得到了一條單鏈末端標記的雙鏈DNA
在體外同細胞蛋白質提取物(細胞核提取物也可以)混合,形成DNA-蛋白質復合體
在反應混合物中加入少量的DNase I,並控制用量使之達到平均每條DNA鏈,只發生一次磷酸二酯鍵的斷裂:
a、如果蛋白質提取物中不存在與DNA結合的特定蛋白質,使DNase I消化之後,便會產生出距離放射性標記末端1個核苷酸,2個核苷酸,3個核苷酸------等等一系列前後長度均相差一個核苷酸的不間斷的連續的DNA片段梯度群體;
b、如果DNA分子同蛋白質提取物中的某種轉錄因子結合,被結合部位的DNA就可以得到保護免受DNase I酶的降解作用;
除去蛋白,加樣在20%序列膠上進行電泳分離,實驗分兩組:
a、實驗組:DNA+蛋白質混合物
b、對照組:只有DNA,未與蛋白質提取物進行溫育
最後進行放射性自顯影,分析實驗結果。
4、結果判斷:
實驗組凝膠電泳顯示的序列,出現空白的區域表明是轉錄因子蛋白質結合部;與對照組序列比較,便可以得出蛋白質結合部位的DNA區段相應的核苷酸序列。
5、其他的足跡實驗方法:
除了DNase1足跡試驗之外,目前還發展出了若干種其他類型的足跡實驗,例如:
a、 自由羥基足跡實驗;b、菲咯啉銅足跡實驗;c、DMS(硫酸二甲酯)足跡實驗
DMS(硫酸二甲酯)足跡實驗的原理
DMS能夠使DNA分子中裸露的鳥嘌呤(G)殘基甲基化,而六氫吡啶又會對甲基化的G殘基作特異性的化學切割。如果DNA分子中某一區段同轉錄因子結合,就可以避免發生G殘基的甲基化而免受六氫吡啶的切割作用。
甲基化干擾實驗
1、概念:
甲基化干擾實驗(Methylation interference assay)是根據DMS(硫酸二甲酯)能夠使DNA分子中裸露的鳥嘌呤(G)殘基甲基化,而六氫吡啶又會對甲基化的G殘基作特異性的化學切割這一原理設計的另一種研究蛋白質同DNA相互作用的實驗方法。
應用這種技術可以檢測靶DNA中G殘基的優先甲基化,對爾後的蛋白質結合作用究竟會有什麼效應,從而更加詳細的揭示出DNA與蛋白質相互作用的模式。
2、實驗步驟:
用DMS處理靶DNA使之局部甲基化(平均每條DNA只發生一個G鹼基甲基化作用)
同細胞蛋白質提取物一起進行溫育,促進使DNA與蛋白質的結合
進行凝膠電泳形成兩種靶DNA條帶:
a、 其一沒有同蛋白質結合的DNA正常電泳條帶
b、其二同特異蛋白質結合而呈現滯後的DNA電泳條帶
將這兩種DNA電泳條帶分別從凝膠中切出,並用六氫吡啶進行切割,結果為:
a)、甲基化的G殘基被切割:因為轉錄因子蛋白質只能夠同未發生甲基化的正常的結合位點結合,所以在轉錄因子DNA結合位點序列中的G殘基如果被DMS甲基化之後,轉錄因子就無法同其結合位點(順式元件)發生結合作用,從而使得結合位點中的G殘基同樣也要被六氫吡啶切割;
b)、不具有甲基化G殘基的靶DNA 序列則不會被切割
將結合蛋白質的DNA條帶和不結合蛋白質的DNA條帶,經六氫吡啶切割作用之後,再進行凝膠電泳
作放射自顯影,讀片並分析結果
3、結果判斷:
a、同轉錄因子蛋白質結合的靶DNA序列,經六氫吡啶切割之後,電泳分離呈現兩條帶,有一個空白區
b、不同轉錄因子蛋白質結合的靶DNA序列,經六氫吡啶切割後,電泳分離呈現三條帶,沒有空白區域的出現。
4、應用:
a、甲基化干擾實驗可以用來研究轉錄因子與DNA結合位點中的G殘基之間的聯系;
b、是足跡實驗的一種有效的補充手段,可以鑒定足跡實驗中DNA與蛋白質相互作用的精確位置
5、缺點:
DMS只能使DNA序列中的G和A殘基甲基化,而不能使T和C殘基甲基化。
體內足跡實驗
上面討論的三種研究轉錄因子與DNA相互作用的方法,有一個共同的不足之處在於它們是在體外進行的實驗,因此人們就會考慮這些實驗結果是否能夠反映細胞內發生的真實生命過程,即細胞內發生的真實的DNA與蛋白質的相互作用情況。
為了解答這個問題,科學家就設計出了一種體內足跡試驗(in vivo foot-printing assay),該方法可以看做是體外DMS足跡實驗的一個變種。
1、原理:
體內足跡試驗的原理原則上同體外DMS足跡實驗無本質差別,即
a、DMS能夠使G殘基甲基化;
b、六氫吡啶能特異的切割甲基化的G殘基;
c、同特異轉錄因子蛋白質結合的識別序列中的G殘基由於受到蛋白質的保護而不會被DMS甲基化,於是不會被六氫吡啶切割;
d、同對照的裸露的DNA形成的序列梯作比較,就會發現活細胞DNA形成的序列梯中缺少G殘基沒有被切割的相應條帶。
2、過程:
用有限數量的化學試劑DMS處理完整的游離細胞,使滲透到胞內的DMS濃度恰好導致天然染色體DNA的G殘基發生甲基化
對這些經過DMS處理的細胞提取DNA,並在體外加入六氫吡啶作消化反應
PCR擴增後作凝膠電泳分析,因為在體外實驗中用的是克隆的DNA片段其數量足夠,而在體內足跡實驗中用的是從染色體DNA中分離獲得的任何一種特異的DNA,其數量是微不足道的,所以需要經PCR擴增以獲得足夠數量的特異DNA
放射自顯影,讀片並記錄讀片的結果
3、結果判斷:
a、能夠同轉錄因子蛋白質結合的DNA區段其中G殘基受到保護因而不會被DMS甲基化避免了六氫吡啶的切割作用;
b、體外裸露的DNA分子上,G殘基被DMS甲基化而被六氫吡啶切割。
拉下實驗(Pull-down assay)
拉下實驗又叫做蛋白質體外結合實驗(binding assay in vitro),是一種在試管中檢測蛋白質之間相互作用的方法。其基本原理是將某種小肽(例如生物素、6-His標簽以及谷胱甘肽轉移酶等)的編碼基因與誘餌蛋白的編碼基因重組,表達為融合蛋白。分離純化融合蛋白並與磁珠結合,使之固相化之後,再與表達目的蛋白的細胞提取物混合保溫適當時間,例如在4℃下保溫過夜,使目標蛋白同已經固定在磁珠表面的融合蛋白中的誘餌蛋白充分的結合。離心收集與固定化的融合蛋白(即與磁珠相互結合的融合蛋白)中的誘餌蛋白相結合的目的蛋白,經過煮沸處理使目的蛋白與誘餌蛋白相脫離從而從固相支持物(例如磁珠)上脫離下來,收集樣品,再與目標蛋白的抗體作Western blotting分析,以檢測出與誘餌蛋白的目標的目標蛋白。
一些新的研究蛋白質/ 核酸相互作用的方法和技術,主要從核酸適體技術、生物信息學方法、蛋白質晶元技術以及納米技術等方面進行綜述。
核酸適體技術
核酸適體(aptamer)指的是經過一種新的體外篩選技術——指數富集配體系統進化(systematic evolution of ligands by exponential enrichment,SELEX),從隨機單鏈寡聚核苷酸文庫中得到的能特異結合蛋白質或其他小分子物質的單鏈寡聚核苷酸,可以是RNA 也可以是DNA,長度一般為25~60 個核苷酸。SELEX 的篩選流程首先是利用現有的分子生物學技術人工合成一個含有1014~1015 個單鏈寡核苷酸序列的隨機文庫,序列長度往往在25~35 個核苷酸之間,單鏈的隨機寡核苷酸序列容易形成可與蛋白質等配體特異性共價結合的二級結構,在這一高親和力特異性結合的基礎之上配體蛋白質同隨機文庫相互作用,選擇性分離出核酸適體後,然後通過PCR或RT-PCR 等技術進行擴增。次一級文庫再與配體蛋白質相互作用,反復多次循環,即可獲得與配體蛋白質特異性高親和力結合的核酸適體。核酸適體與配體間的親合力(解離常數在皮摩和納摩之間)常要強於抗原抗體之間的親合力[3]。核酸適體所結合的靶分子范圍非常廣泛,除蛋白質之外,還能作用於酶、生長因子、抗體、基因調節因子、細胞黏附分子、植物凝集素、完整的病毒顆粒、病原菌等[4]。適體從20 世紀90 年代初出現以後,就得到了科研工作者的廣泛關注,適體的研究工作得到了快速的發展。SELEX 篩選技術和核酸適體的高親和性在蛋白質/ 核酸相互作用的研究中發揮了重要的作用。Wen等[5]研究了同細菌噬菌體Ff 基因5蛋白(g5p) 高親和力結合的核酸適體,發現G 富集基序對於形成g5p 連接啟動子結構,提供實際的g5p 連接位點具有重要的意義。White 等[6]利用SELEX 技術研究了一種PUM2HD (短小桿菌素同源結構域)及其RNA 核酸適體,發現在PUM2 氨基端有Ser和Glu/Ala富集區,並且PEB ( PUM2 連接元件)與果蠅反應元件的3'端具有親緣關系,但又互不相同。Bouvent等[7]利用NRE(核仁蛋白識別元件) 發現了RNA 莖環上的RBD1 和RBD2 (折疊元件結構域),這對了解模式蛋白識別RNA 的結構過程具有重要意義。核酸適體以及SELEX 技術給蛋白質/ 核酸相互作用研究提供了一種新穎的研究方法,科研人員可以控制篩選條件得到與待研究蛋白質相互結合的核酸適體,避免了天然條件下研究蛋白質/ 核酸相互作用的困難性。但目前對核酸適體與靶蛋白相互作用的分析是在篩選條件與天然條件相同的假設基礎上進行的,在這種篩選條件下得到的核酸適體與蛋白質之間的相互作用,和天然狀態下的蛋白質/ 核酸之間的相互作用到底有何異同,這是一個亟待解決的問題,此問題的解決必將推動蛋白質/ 核酸相互作用的研究進展。
生物信息學方法
生物信息學是在生命科學的研究中,以計算機為工具對生物信息進行儲存、檢索和分析的科學。它包含著生物信息的獲取、處理、存儲、分配、分析和解釋的所有方面。具體地說,生物信息學是用數理和信息科學的觀點、理論和方法去研究生命現象,組織和分析呈現指數增長的生物學數據的一門學科。Luscombe和Thornton[8]利用氨基酸序列的保守性構建計算機演算法來預測蛋白質/DNA復合體中DNA的結合位點。Selvaraj等[9]將蛋白質/核酸復合體中原子電荷勢能作為訓練數據集,利用人工智慧技術來預測蛋白質對DNA 的識別位點。Ahmad 等[10]將蛋白質的序列組成、可溶解性以及二級結構等信息數據用人工神經網路演算法進行訓練,構建了在線蛋白質/ 核酸結合預測技術,預測成功率達到了69%。此後Ahmad 和Sarai[11]將此技術進一步加強,在訓練人工神經網路時加入了蛋白質進化關系的信息,使預測成功率提高了8.7%。目前建立在蛋白質/ 核酸相互作用基礎上的較重要的資料庫為蛋白質- 核酸識別資料庫(http://gibk26.bse.kyutech.ac.jp/jouhou/3dinsight/recognition.html),利用該資料庫能幫助研究者了解核酸被蛋白質識別的機制。該資料庫包括以下幾個組成部分。
2.1蛋白質-核酸復合物資料庫蛋白質-核酸復合物資料庫是一個包含蛋白質- 核酸復合物結構數據的資料庫。這些數據根據蛋白質的識別序列和復合物中DNA 形式進行分類。使用者可以通過關鍵詞、識別序列、D N A 形式等進行搜索,並且搜索結果可以直接鏈接到3DinSight資料庫(在此處,可以通過三維結構瀏覽器,如RasMol 或者VRML 查看含有序列位點和突變位點的三維結構圖)。該資料庫也能讓使用者檢測依賴於序列的構象參數和DNA 的柔韌性,並以圖表形式顯示結果。
2.2核苷酸-氨基酸相互作用資料庫核苷酸-氨基酸相互作用資料庫搜集核苷酸和氨基酸間4 埃大小內的成對原子,能讓使用者找到成對的核苷酸和氨基酸。使用者可以指定殘基名稱( 核苷酸或氨基酸)、原子類型和側鏈/ 骨幹。搜索後,帶有距離值的所有原子對將被顯示。搜索可直接鏈接到3DinSight 資料庫,以RasMol 圖片形式自動地突出展示復合物結構中所有原子對。使用者可以檢測到每個結構中核苷酸和氨基酸的特別相互作用。
2.3蛋白質-核酸相互作用的熱力學資料庫(ProNIT)
蛋白質- 核酸相互作用的熱力學資料庫包含有序列、結構和一些熱力學參量(如分裂常數、結合常數、吉布斯自由能的轉換、焓和熱容量、活性)等信息。該資料庫允許使用者用不同條件(多種分類和顯示選項)搜索數據。此外,ProNIT 超鏈接於其他重要的資料庫,如PDB、核酸資料庫NDB 、酶代碼EC、蛋白質信息資源PIR 和ProTherm 等等。當前,在分子生物學和信息科學快速發展的影響下,生物信息學已經成為生物領域的指導科學,利用生物信息學方法研究蛋白質/核酸相互作用可以大大縮短研究工作的時間,達到事半功倍的效果。但受限於當前計算科學和演算法領域的發展情況,生物信息學得到的結果與實際的結果還存在一定的偏差,仍需開展進一步的實驗工作來進行驗證。
生物晶元技術
生物晶元技術是基於生物大分子間相互作用的大規模並行分析方法,使得生命科學研究中所涉及的樣品反應、檢測、分析等過程得以連續化、集成化和微型化,現已成為當今生命科學研究領域發展最快的技術之一。目前的生物晶元主要有核酸晶元、蛋白質晶元和糖體晶元等幾大類。蛋白質晶元是依靠手工、壓印或噴墨的方法將探針蛋白點樣在化學膜、凝膠、微孔板或玻片上形成陣列,經過與樣品的雜交捕獲靶蛋白,再用原子力顯微鏡、磷光成像儀、光密度儀或激光共聚焦掃描儀進行檢測,獲得靶蛋白表達的種類、數量及關聯等信息。蛋白質晶元已經廣泛用於研究蛋白質與核酸的相互作用,已成為一種進行高通量蛋白質與DNA 或RNA作用篩選的有效方法。Ge[12]運用蛋白質晶元檢測蛋白質與核酸相互作用,他將包括通用轉錄因子、激活蛋白和輔激活蛋白在內的48種純化蛋白質點樣在硝酸纖維素膜製成通用蛋白質晶元,用腺病毒主要晚期啟動子64 bp 雙鏈DNA 片段、腺病毒主要晚期啟動子64 bp 負鏈DNA 和SV40 早期前體mRNA 雜交,結果證明蛋白質晶元上的所有蛋白質都能夠不同程度地特異性識別和結合雙鏈和單鏈寡核苷酸片段,並且結合雙鏈DNA 和單鏈DNA 的總體模式基本相同,說明大多數D N A 結合蛋白既能和雙鏈DNA 結合,也能夠和單鏈DNA 結合。蛋白質晶元與RNA 的作用研究表明,蛋白質晶元能夠成功地分析RNA 與蛋白質間的識別性結合。蛋白質晶元技術最大優點在於快速和高通量,以往科研人員作研究時一次只能研究少量生物樣品,藉助蛋白質晶元,一次實驗可同時研究大量生物樣本,加速了蛋白質/ 核酸相互作用的研究。蛋白質晶元技術目前存在的問題有:(1)蛋白質晶元在製作過程中實驗條件發生微小的變化便可能引起最後結果的不同,實驗條件不易控制,使得實驗結果的可重復性相對不足;(2) 目前用於蛋白質晶元制備的固相介質,如化學膜、凝膠和玻片都存在一些缺點,蛋白質在固相基質表面的固定往往會造成其解折疊,從而失去生物活性;(3)對結果的掃描、去除背景、數據處理等,目前還不能做得很完美,會導致假陽性、假陰性的存在。
納米技術
納米技術(nano scale technology) 是一門在0.1~100nm 空間尺度內操縱原子和分子,對材料進行加工、製造具有特定功能的產品、或對某物質進行研究,掌握其原子和分子的運動規律和特性的嶄新高技術學科。核酸和蛋白質等生物大分子的大小也是在納米尺度,隨著科學技術的快速發展,越來越多的納米技術被用來研究生物大分子。在蛋白質/ 核酸相互作用的研究工作中,目前使用較新的技術是利用納米孔技術來進行研究。納米孔(nanopore),可以簡單地定義為內徑為1~100nm 的微小洞孔,一般孔徑應大於洞孔深度,或者處於同一量級。如果孔的深度遠大於孔徑,就稱之為納米孔道。納米孔有天然存在的生物納米孔,也有人工加工的納米孔。它們都可以用來進行生命科學的相關研究,但是,理想的生物化學或生物物理研究應採用孔徑穩定、堅固耐用、物化性能良好的固體納米孔,這樣的納米孔應該由質地堅硬的固體薄膜材料加工製作。Li等[16]利用聚焦離子束(FIB)製作納米孔,利用納米孔將雙螺旋DNA 從組蛋白八聚體上剝離下來,並探測這一過程,從而可以揭示核小體中包含的許多生物化學、物理信息。這是由於處於電場中的核小體在電場的作用下,DNA 分子穿越納米孔,同時由於納米孔的阻擋力,使組蛋白不能穿越,從而誘使DNA 從組蛋白八聚體上分離下來。通過准確檢測DNA 分子穿孔過程中引起的電流阻塞效應,可將DNA 與組蛋白的相互作用的一些性質反映出來。目前已經取得了階段性的成果。在納米尺度上研究核酸與蛋白質相互作用,相較於其他的研究方法,優點是能夠在生物活性環境中,保持生物大分子受到最少化學修飾干擾的狀態下,對生物大分子的空間結構、動態變化、生化特性等進行直接研究。相信該技術可以提供更多、更詳細的生物大分子相互作用、蛋白質功能等方面的信息,幫助我們解決一些深層次的生物學疑難問題。目前阻礙此方法廣泛應用的一個最大難題是如何在納米尺度上更好的操縱生物大分子,這需要生物科學、電子科學、材料科學等多學科的共同進展來推動此方法的發展和應用。
3. 什麼是e-box
(E-BOX)高清多媒體網路廣告機(網路信息發布系統)產品介紹
E-BOX信息發布系統是採用嵌入式LINUX技術平台的網路多媒體信息發布系統,該系統完整的將視頻與網路技術相結合,採用統一集中管理方式,實現完全自動下載素材。系統將以高質量編碼方式的視頻信號、音頻信號、圖片信息、HTML網頁信息和滾動文本結合成一個簡易的可視畫面,這種內容顯示方式對於廣告、新聞媒體、娛樂、財經而言是一種極為理想化的方式。整套系統功能強大,操作簡單,界面人性化。它是您理想的高效信息傳輸解決方案
系統採用數據流分發模式,減輕中央伺服器的壓力,廣告機可以到指定的節目伺服器上去下載,可以根據系統規模的大小,建立節目伺服器的數量,對於大型的網路播放,可以採用城市區域的方式建立。而所有的網路信息發布系統管理則有中心集中管理,解決了節目分發的問題。
優勢:
1.E-BOX網路信息發布系統基於嵌入式LINUX平台開發,採用LINUX瘦身操作系統,解決了XP或者2003操作系統不穩定、容易受到攻擊、佔用系統資源大、容易感染病毒等問題。系統硬體採用模塊化設計,對於售後維修非常重要,降低維修成本。
2.界面內容更加豐富,E-BOX採用視頻疊加HTML網頁的方式顯示,HTML可以使播放界面更加豐富,比如支持FLASH、外匯牌價、黃金信息、信息、日期、時鍾等眾多信息。HTML網頁製作更靈活。
3.採用視頻+HTML(或者圖片)+滾動字幕的方式實現播放,播放界面可以根據坐標軸任意定位。字幕、視頻窗口的大小位置均可以手動調節,並且可以即時看到調整結果。其他網路信息發布系統只能通過製作節目單的方式製作好,不能即時調整。真正實現以HTML為背景,之間的調節不影響其他元素。視頻窗口大小等定位信息可以存儲成模板,供以後調用
4.管理模式,傳統的廣告機採用一對一的管理方式,但E-BOX系統則採用一對多的方式,所有的網路廣告機均注冊到管理伺服器上,有管理伺服器統一管理,管理人員只要在網路的任何一方即可實現對所有網路信息發布系統的管理。
5.節目下載方式,採用多伺服器數據分發模式,所有的網路信息發布系統(編組或單一)均可以指定到不同的節目伺服器上下載節目,從而減輕了中心伺服器的網路瓶頸問題。解決了傳統廣告機到單一伺服器上下載節目的問題。廣告機自動識別最新節目,支持斷點續傳功能。
6.系統擴展性更強。允許自動開關機功能,無須人工執守。
7.無須第三方設備即可支持流媒體,召開會議。一體化管理,終端無須切換。遠程統一操作。
8.可以遠程刪除網路信息發布終端裡面的文件。通過網路遠程修改IP地址、遠程升級等功能。
9.網路信息發布系統編組功能,可以將所有網路信息發布終端編成不同的組,然後對組進行操作。管理更方便
10.網路信息發布系統提供緊急發布視頻、字幕等功能。
11.支持流媒體解碼功能,無須增加任何輔助設備,即可實現單向教學功能。
12、終端可以實現HTML、字幕、視頻疊加播放功能。
應用環境
適合樓宇廣告播放系統、銀行網路信息發布、名牌連鎖店、超市連鎖、地鐵廣告信息發布系統、網路廣告播出、酒店網路信息發布系統、政府網路信息發布、旅遊資訊系統、銀行匯率顯示系統、網路視頻培訓等等領域。
融靖電子---國內專業的信息發布系統下載、信息發布系統公司、信息發布系統設計、信息發布網站、信息發布軟體開發和製造商,生產E-BOX廣告機,可提供8~42吋等多種規格的信息發布終端,並提供點對多點及集中控制的遠程網路廣告播放系統解決方案和網路廣告機,以及網路信息發布系統,銀行信息發布系統,多媒體信息發布系統,信息發布系統終端,信息發布系統軟體,信息發布軟體平台,多媒體信息發布系統伺服器控制軟體,銀行營業廳信息發布系統等各種功能升級模塊。
4. 生命科學近年來有哪些新技術
NO.1
SARAH TEICHMANN: Expand single-cell biology(擴展單細胞生物學)
Head of cellular genetics, Wellcome Trust Sanger Institute, Hinxton, UK.
在過去的十年裡,我們看到研究人員可以分析的單細胞數量大幅增加,隨著細胞捕獲技術的發展,結合條形碼標記細胞和智能化技術等方法,在未來數量還將繼續增加,對此,大家可能不以為然,但這可以讓我們以更高的解析度來研究更為復雜的樣品,我們可以做各種各樣的實驗。比如說,研究人員不再只關注一個人的樣本,而是能夠同時觀察20到100個人的樣本,這意味我們能夠更好的掌握人的多樣性,我們可以分析出更多的發展時間點,組織和個體,從而提高分析的統計學意義。
我們的實驗室最近參與了一項研究,對6個物種的250000個細胞進行了分析,結果表明,控制先天免疫反應的基因進化速度快,並且在不同物種間具有較高的細胞間變異性,這兩個特徵都有助於免疫系統產生有效的微調反應。
我們還將看到在單個細胞中同時觀察不同基因組模式的能力發展。例如,我們不局限於RNA,而是能夠看到染色質的蛋白質-DNA復合物是開放還是封閉。這對理解細胞分化時的表觀遺傳狀態以及免疫系統和神經系統中的表觀遺傳記憶具有重要意義。
將單細胞基因組學與表型關聯的方法將會發生演變,例如,將蛋白質表達或形態學與既定細胞的轉錄組相關聯。我認為我們將在2019年看到更多這種類型的東西,無論是通過純測序還是通過成像和測序相結合的方法。事實上,我們已經見證了這兩種技術的一種融合發展:測序在解析度上越來越高,成像也越來越多元化。
NO.2
JIN-SOO KIM: Improve gene editors(改進基因編輯)
Director of the Center for Genome Engineering, Institute for Basic Science, and professor of chemistry, Seoul National University.(首爾國立大學基因學研究所基因組工程中心主任、化學教授。)
現如今,蛋白質工程推動基因組工程的發展。第一代CRISPR基因編輯系統使用核酸酶Cas9,這是一種在特定位點剪切DNA的酶。到目前為止,這種方法仍然被廣泛使用,但是許多工程化的CRISPR系統正在用新變體取代天然核酸酶,例如xCas9和SpCas9-NG,這拓寬了靶向空間——基因組中可以被編輯的區域。有一些酶比第一代酶更具特異性,可以將脫靶效應最小化或避免脫靶效應。
去年,研究人員報告了阻礙CRISPR基因組編輯引入臨床的新障礙。其中包括激活p53基因 (此基因與癌症風險相關);不可預料的「靶向」效應;以及對CRISPR系統的免疫原性。想要將基因組編輯用於臨床應用,就必須解決這些限制。其中一些問題是由DNA雙鏈斷裂引起的,但並非所有基因組編輯酶都會產生雙鏈斷裂——「鹼基編輯」會將單個DNA鹼基直接轉換成另一個鹼基。因此,鹼基編輯比傳統的基因組編輯更干凈利索。去年,瑞士的研究人員使用鹼基編輯的方式來糾正小鼠中導致苯丙酮尿症的突變基因,苯丙酮尿症是一種先天性代謝異常疾病,患者體內會不斷累積毒素。
值得注意的是,鹼基編輯在它們可以編輯的序列中受到了限制,這些序列被稱為原間隔相鄰基序。然而蛋白質工程可以用來重新設計和改進現有的鹼基編輯,甚至可以創建新的編輯,例如融合到失活Cas9的重組酶。就像鹼基編輯一樣,重組酶不會誘導雙鏈斷裂,但可以在用戶定義的位置插入所期望的序列。此外,RNA引導的重組酶將會在新的維度上擴展基因組編輯。
基因編輯技術在臨床上的常規應用可能還需要幾年的時間。但是我們將在未來一兩年看到新一代的工具,將會有很多的研究人員對這項技術感興趣,到時候他們每天都會使用這些技術。屆時必然會出現新的問題,但創新的解決方案也會隨之出現。
NO.3
XIAOWEI ZHUANG(庄小威): Boost micros resolution (提高顯微鏡解析度)
Professor of chemistry and chemical biology, Harvard University, Cambridge, Massachusetts; and 2019 Breakthrough Prize winner.
超解析度顯微鏡的原理驗證僅僅發生在十幾年前,但今天這項技術相對來說再平常不過,生物學家可以接觸到並豐富知識。
一個特別令人興奮的研究領域是確定基因組的三維結構和組織。值得一提的是,基因組的三維結構在調節基因表達中起到的作用越來越大。
在過去的一年裡,我們報道了一項工作,在這項工作中,我們對染色質進行了納米級的精準成像,將它與數千個不同類型細胞的序列信息聯系起來。這種空間解析度比我們以前的工作好一到兩個數量級,使我們能夠觀察到各個細胞將染色質組織成不同細胞之間差異很大的結構域。我們還提供了這些結構域是如何形成的證據,這使我們更好地理解染色質調節的機制。
除了染色質,我們預見到在超解析度成像領域空間解析度有了實質性的提高。大多數實驗的解析度只有幾十納米,雖然很小,但與被成像的分子相比卻沒有什麼差別,特別是當我們想解決分子間的相互作用時。我們看到熒光分子和成像方法的改進,大大提高了解析度,我們預計1納米解析度的成像將成為常規。
同時,瞬時解析度變得越來越好。目前,研究人員必須在空間解析度和成像速度之間做出妥協。但是通過更好的照明策略和更快的圖像採集,這些限制可以被克服。成千上萬的基因和其他類型的分子共同作用來塑造細胞的行為。能夠在基因組范圍內同時觀察這些分子的活動,將為成像創造強有力的機會。
NO.4
JEF BOEKE: Advance synthetic genomes (先進的合成基因組)
Director of the Institute for Systems Genetics, New York University Langone Medical Center, New York City.
當我意識到從頭開始寫一個完整的基因組變成可能的時候,我認為這將是一個對基因組功能獲得新觀點的絕佳機會。
從純科學的角度來看,研究小組在合成簡單的細菌和酵母基因組方面取得了進展。但是在合成整個基因組,特別是哺乳動物基因組方面仍然存在技術挑戰。
有一項降低DNA合成成本的技術將會對行業產生幫助,但是目前還沒有上市。今天發生的大多數DNA合成都是基於亞磷醯胺化學過程。所得核酸聚合物的最大長度和保真度都受到限制。
許多公司和實驗室都在研究酶促DNA合成——這種方法有可能比化學合成更快、更准確、更便宜。目前,還沒有一家公司在商業上提供這種分子。但是去年10月,一家總部位於巴黎的叫做DNA Script的公司宣布,它已經合成了一種150鹼基的寡核苷酸,幾乎符合化學DNA合成的實際限制。
作為一個群體,我們還研究了如何組裝人類染色體DNA的大片段,並且我們可以使用這種方法構建100千鹼基或更多的區域。現在,我們將使用這種方法來解剖大的基因組區域,這些區域對於識別疾病易感性非常重要,或者是其他表型特徵的基礎。
我們可以在酵母細胞中快速合成這些區域,因此我們應該能夠製造數十到數百種以前不可能檢測到的基因組變體。使用它們,我們將能夠檢查全基因組關聯研究中涉及的數千個基因組基因座,它們在疾病易感性方面具有一定意義。這種解剖策略可能使我們最終能夠確定這些變體的作用。
NO.5
CASEY GREENE: Apply AI and deep learning(應用人工智慧和深度學習)
Assistant professor of systems pharmacology and translational therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia.
5. 什麼叫做「免疫受體酪氨酸活化基序(ITAM)」
免疫受體酪氨酸活化基序(immunorecepter tyrosine-based activation motif,ITAM),是免疫細胞活化相關受體(如BCR/Igα/Igβ,TCR/CD3、FcαR和FcRγ等)胞漿區所共有的以酪氨酸殘基(tyrosine,Y)為基礎的氨基酸序列基序,其特徵為:兩個酪氨酸殘基被大約13個其它氨酸殘基隔開(…YXX [L/V] X 7-11 YXX [L/V] …),其中酪氨酸是蛋白激酶磷酸化位點,被磷酸化後能夠與信號轉導途徑下游的信號分子結合,導致細胞的活化。
6. 請問各大網友有沒有1_50的英文基序數詞
基數詞 序數詞
1 one first
2 two second
3 three third
4 four fourth
5 five fifth
6 six sixth
7 seven seventh
8 eight eighth
9 nine ninth
10 ten tenth
11 eleven eleventh
12 twelve twelfth
13 thirteen thirteenth
14 fourteen fourteenth
15 fifteen fifteenth
16 sixteen sixteenth
17 seventeen seventeenth
18 eighteen eighteenth
19 nineteen nineteenth
20 twenty twentieth
21 twenty one twenty-first
22 twenty two twenty-second
23 twenty three twenty-third
24 twenty four twenty-fourth
25 twenty five twenty-fifth
26 twenty six twenty-sixth
27 twenty seven twenty-seventh
28 twenty eight twenty-eighth
29 twenty nine twenty-ninth
30 thirty thirtieth
31 thirty one thirty-first
32 thirty two thirty-second
33 thirty three thirty-third
34 thirty four thirty-fourth
35 thirty five thirty-fifth
36 thirty six thirty-sixth
37 thirty seven thirty-seventh
38 thirty eight thirty-eighth
39 thirty nine thirty-ninth
40 forty fortieth
41 forty one forty-first
42 forty two forty-second
43 forty three forty-third
44 forty four forty-fourth
45 forty five forty-fifth
46 forty six forty-sixth
47 forty seven forty-seventh
48 forty eight forty-eighth
49 forty nine forty-ninth
50 fifty fiftieth