導航:首頁 > 網路問題 > 所謂的訓練神經網路指的是什麼

所謂的訓練神經網路指的是什麼

發布時間:2022-07-12 05:16:07

1. 有人可以介紹一下什麼是"神經網路"嗎

由於神經網路是多學科交叉的產物,各個相關的學科領域對神經網路
都有各自的看法,因此,關於神經網路的定義,在科學界存在許多不同的
見解。目前使用得最廣泛的是T.Koholen的定義,即"神經網路是由具有適
應性的簡單單元組成的廣泛並行互連的網路,它的組織能夠模擬生物神經
系統對真實世界物體所作出的交互反應。"

如果我們將人腦神經信息活動的特點與現行馮·諾依曼計算機的工作方
式進行比較,就可以看出人腦具有以下鮮明特徵:

1. 巨量並行性。
在馮·諾依曼機中,信息處理的方式是集中、串列的,即所有的程序指
令都必須調到CPU中後再一條一條地執行。而人在識別一幅圖像或作出一項
決策時,存在於腦中的多方面的知識和經驗會同時並發作用以迅速作出解答。
據研究,人腦中約有多達10^(10)~10^(11)數量級的神經元,每一個神經元
具有103數量級的連接,這就提供了巨大的存儲容量,在需要時能以很高的
反應速度作出判斷。

2. 信息處理和存儲單元結合在一起。
在馮·諾依曼機中,存儲內容和存儲地址是分開的,必須先找出存儲器的
地址,然後才能查出所存儲的內容。一旦存儲器發生了硬體故障,存儲器中
存儲的所有信息就都將受到毀壞。而人腦神經元既有信息處理能力又有存儲
功能,所以它在進行回憶時不僅不用先找存儲地址再調出所存內容,而且可
以由一部分內容恢復全部內容。當發生"硬體"故障(例如頭部受傷)時,並
不是所有存儲的信息都失效,而是僅有被損壞得最嚴重的那部分信息丟失。

3. 自組織自學習功能。
馮·諾依曼機沒有主動學習能力和自適應能力,它只能不折不扣地按照
人們已經編制好的程序步驟來進行相應的數值計算或邏輯計算。而人腦能夠
通過內部自組織、自學習的能力,不斷地適應外界環境,從而可以有效地處
理各種模擬的、模糊的或隨機的問題。

神經網路研究的主要發展過程大致可分為四個階段:

1. 第一階段是在五十年代中期之前。

西班牙解剖學家Cajal於十九世紀末創立了神經元學說,該學說認為神經
元的形狀呈兩極,其細胞體和樹突從其他神經元接受沖動,而軸索則將信號
向遠離細胞體的方向傳遞。在他之後發明的各種染色技術和微電極技術不斷
提供了有關神經元的主要特徵及其電學性質。

1943年,美國的心理學家W.S.McCulloch和數學家W.A.Pitts在論文《神經
活動中所蘊含思想的邏輯活動》中,提出了一個非常簡單的神經元模型,即
M-P模型。該模型將神經元當作一個功能邏輯器件來對待,從而開創了神經
網路模型的理論研究。

1949年,心理學家D.O. Hebb寫了一本題為《行為的組織》的書,在這本
書中他提出了神經元之間連接強度變化的規則,即後來所謂的Hebb學習法則。
Hebb寫道:"當神經細胞A的軸突足夠靠近細胞B並能使之興奮時,如果A重
復或持續地激發B,那麼這兩個細胞或其中一個細胞上必然有某種生長或代
謝過程上的變化,這種變化使A激活B的效率有所增加。"簡單地說,就是
如果兩個神經元都處於興奮狀態,那麼它們之間的突觸連接強度將會得到增
強。

五十年代初,生理學家Hodykin和數學家Huxley在研究神經細胞膜等效電
路時,將膜上離子的遷移變化分別等效為可變的Na+電阻和K+電阻,從而建
立了著名的Hodykin-Huxley方程。

這些先驅者的工作激發了許多學者從事這一領域的研究,從而為神經計
算的出現打下了基礎。

2. 第二階段從五十年代中期到六十年代末。

1958年,F.Rosenblatt等人研製出了歷史上第一個具有學習型神經網路
特點的模式識別裝置,即代號為Mark I的感知機(Perceptron),這一重
大事件是神經網路研究進入第二階段的標志。對於最簡單的沒有中間層的
感知機,Rosenblatt證明了一種學習演算法的收斂性,這種學習演算法通過迭代
地改變連接權來使網路執行預期的計算。

稍後於Rosenblatt,B.Widrow等人創造出了一種不同類型的會學習的神經
網路處理單元,即自適應線性元件Adaline,並且還為Adaline找出了一種有
力的學習規則,這個規則至今仍被廣泛應用。Widrow還建立了第一家神經計
算機硬體公司,並在六十年代中期實際生產商用神經計算機和神經計算機軟
件。

除Rosenblatt和Widrow外,在這個階段還有許多人在神經計算的結構和
實現思想方面作出了很大的貢獻。例如,K.Steinbuch研究了稱為學習矩陣
的一種二進制聯想網路結構及其硬體實現。N.Nilsson於1965年出版的
《機器學習》一書對這一時期的活動作了總結。

3. 第三階段從六十年代末到八十年代初。

第三階段開始的標志是1969年M.Minsky和S.Papert所著的《感知機》一書
的出版。該書對單層神經網路進行了深入分析,並且從數學上證明了這種網
絡功能有限,甚至不能解決象"異或"這樣的簡單邏輯運算問題。同時,他們
還發現有許多模式是不能用單層網路訓練的,而多層網路是否可行還很值得
懷疑。

由於M.Minsky在人工智慧領域中的巨大威望,他在論著中作出的悲觀結論
給當時神經網路沿感知機方向的研究潑了一盆冷水。在《感知機》一書出版
後,美國聯邦基金有15年之久沒有資助神經網路方面的研究工作,前蘇聯也
取消了幾項有前途的研究計劃。

但是,即使在這個低潮期里,仍有一些研究者繼續從事神經網路的研究工
作,如美國波士頓大學的S.Grossberg、芬蘭赫爾辛基技術大學的T.Kohonen
以及日本東京大學的甘利俊一等人。他們堅持不懈的工作為神經網路研究的
復興開辟了道路。

4. 第四階段從八十年代初至今。

1982年,美國加州理工學院的生物物理學家J.J.Hopfield採用全互連型
神經網路模型,利用所定義的計算能量函數,成功地求解了計算復雜度為
NP完全型的旅行商問題(Travelling Salesman Problem,簡稱TSP)。這
項突破性進展標志著神經網路方面的研究進入了第四階段,也是蓬勃發展
的階段。

Hopfield模型提出後,許多研究者力圖擴展該模型,使之更接近人腦的
功能特性。1983年,T.Sejnowski和G.Hinton提出了"隱單元"的概念,並且
研製出了Boltzmann機。日本的福島邦房在Rosenblatt的感知機的基礎上,
增加隱層單元,構造出了可以實現聯想學習的"認知機"。Kohonen應用3000
個閾器件構造神經網路實現了二維網路的聯想式學習功能。1986年,
D.Rumelhart和J.McClelland出版了具有轟動性的著作《並行分布處理-認知
微結構的探索》,該書的問世宣告神經網路的研究進入了高潮。

1987年,首屆國際神經網路大會在聖地亞哥召開,國際神經網路聯合會
(INNS)成立。隨後INNS創辦了刊物《Journal Neural Networks》,其他
專業雜志如《Neural Computation》,《IEEE Transactions on Neural
Networks》,《International Journal of Neural Systems》等也紛紛
問世。世界上許多著名大學相繼宣布成立神經計算研究所並制訂有關教育
計劃,許多國家也陸續成立了神經網路學會,並召開了多種地區性、國際性
會議,優秀論著、重大成果不斷涌現。

今天,在經過多年的准備與探索之後,神經網路的研究工作已進入了決
定性的階段。日本、美國及西歐各國均制訂了有關的研究規劃。

日本制訂了一個"人類前沿科學計劃"。這項計劃為期15-20年,僅
初期投資就超過了1萬億日元。在該計劃中,神經網路和腦功能的研究佔有
重要地位,因為所謂"人類前沿科學"首先指的就是有關人類大腦以及通過
借鑒人腦而研製新一代計算機的科學領域。

在美國,神經網路的研究得到了軍方的強有力的支持。美國國防部投資
4億美元,由國防部高級研究計劃局(DAPRA)制訂了一個8年研究計劃,
並成立了相應的組織和指導委員會。同時,海軍研究辦公室(ONR)、空軍
科研辦公室(AFOSR)等也紛紛投入巨額資金進行神經網路的研究。DARPA認
為神經網路"看來是解決機器智能的唯一希望",並認為"這是一項比原子彈
工程更重要的技術"。美國國家科學基金會(NSF)、國家航空航天局(NASA)
等政府機構對神經網路的發展也都非常重視,它們以不同的形式支持了眾多
的研究課題。

歐共體也制訂了相應的研究計劃。在其ESPRIT計劃中,就有一個項目是
"神經網路在歐洲工業中的應用",除了英、德兩國的原子能機構外,還有多
個歐洲大公司卷進這個研究項目,如英國航天航空公司、德國西門子公司等。
此外,西歐一些國家還有自己的研究計劃,如德國從1988年就開始進行一個
叫作"神經資訊理論"的研究計劃。

我國從1986年開始,先後召開了多次非正式的神經網路研討會。1990年
12月,由中國計算機學會、電子學會、人工智慧學會、自動化學會、通信學
會、物理學會、生物物理學會和心理學會等八個學會聯合在北京召開了"中
國神經網路首屆學術會議",從而開創了我國神經網路研究的新紀元。

2. 神經網路、深度學習、機器學習是什麼有什麼區別和聯系

深度學習是由深層神經網路+機器學習造出來的詞。深度最早出現在deep belief network(深度(層)置信網路)。其出現使得沉寂多年的神經網路又煥發了青春。GPU使得深層網路隨機初始化訓練成為可能。resnet的出現打破了層次限制的魔咒,使得訓練更深層次的神經網路成為可能。

深度學習是神經網路的唯一發展和延續。在現在的語言環境下,深度學習泛指神經網路,神經網路泛指深度學習。

在當前的語境下沒有區別。

定義

生物神經網路主要是指人腦的神經網路,它是人工神經網路的技術原型。人腦是人類思維的物質基礎,思維的功能定位在大腦皮層,後者含有大約10^11個神經元,每個神經元又通過神經突觸與大約103個其它神經元相連,形成一個高度復雜高度靈活的動態網路。

作為一門學科,生物神經網路主要研究人腦神經網路的結構、功能及其工作機制,意在探索人腦思維和智能活動的規律。

人工神經網路是生物神經網路在某種簡化意義下的技術復現,作為一門學科,它的主要任務是根據生物神經網路的原理和實際應用的需要建造實用的人工神經網路模型,設計相應的學習演算法,模擬人腦的某種智能活動,然後在技術上實現出來用以解決實際問題。

因此,生物神經網路主要研究智能的機理;人工神經網路主要研究智能機理的實現,兩者相輔相成。

3. 通俗易懂:徹底明白什麼是神經網路

想像一個黑箱子,你給它輸入(樣本),它給你輸出(實際輸出),但是輸出和你想要的結果有偏差,於是你事先告訴它你想要的結果(期望輸出),它做一些調整(調整內部權值和閾值)以適應你的期望,如此反復,黑箱子就摸透了你的這些樣本的規律,於是在來一些沒有期望輸出的樣本就能預測輸出了,但是這些樣本必須是屬於一類問題的,如果換了一類就必須重新訓練它,這個黑箱子是神經網路,有很多有層次有連接的神經元構成。

4. 什麼是神經網路學習呢

神經網路學習由稱為神經元的基本處理單元互連而成的平行工作的復雜網路系統,簡稱神經網路。當已知訓練樣本的數據加到網路輸入端時,網路的學習機制一遍又一遍地調整各神經元的權值,使其輸出端達到預定的目標。這就是訓練(學習、記憶)過程。

5. 監督學習的神經網路是啥意思!

用樣本去訓練一個BP網路,然後用新的樣本作為輸入,再通過這個已經訓練好的BP網路,得到的數據就是模擬的結果,這就是BP網路模擬。我們訓練一個BP網路就好像是在訓練一個神經系統,然後用這個已經具備分析能力的神經系統去分析事情,這就是為什麼要模擬,說到底就是為了用。模擬的作用你可以從BP神經網路的用途上去看,例如很經典的可以用來做分類器等。你用不同類別的樣本(輸入+對應的期望輸出)作為訓練,然後給出一個新的輸入,BP網就能給你這個所屬的類別。

6. 什麼神經網路訓練學習學習有哪幾種方式

神經網路的學習,也就是訓練過程,指的是輸入層神經元接收輸入信息,傳遞給中間層神經元,最後傳遞到輸出層神經元,由輸出層輸出信息處理結果的過程。
1、有監督學習2、無監督學習3、增強學習。

7. 什麼是神經網路中的訓練樣本

指對人工神經網路訓練。向網路足夠多的樣本,通過一定演算法調整網路的結構(主要是調節權值),使網路的輸出與預期值相符,這樣的過程就是神經網路訓練。根據學習環境中教師信號的差異,神經網路訓練大致可分為二分割學習、輸出值學習和無教師學習三種。

8. 什麼叫神經網路

南搞小孩給出基本的概念: 一.一些基本常識和原理 [什麼叫神經網路?] 人的思維有邏輯性和直觀性兩種不同的基本方式。邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:1.信息是通過神經元上的興奮模式分布儲在網路上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。 人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。 [人工神經網路的工作原理] 人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對手寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。 所以網路學習的准則應該是:如果網路作出錯誤的的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。 如果輸出為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在於使網路下次再遇到「A」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網路輪番輸入若干個手寫字母「A」、「B」後,經過網路按以上學習方法進行若干次學習後,網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識別的模式也就越多。 南搞小孩一個小程序: 關於一個神經網路模擬程序的下載 人工神經網路實驗系統(BP網路) V1.0 Beta 作者:沈琦 http://emuch.net/html/200506/de24132.html 作者關於此程序的說明: 從輸出結果可以看到,前3條"學習"指令,使"輸出"神經元收斂到了值 0.515974。而後3條"學習"指令,其收斂到了值0.520051。再看看處理4和11的指令結果 P *Out1: 0.520051看到了嗎? "大腦"識別出了4和11是屬於第二類的!怎麼樣?很神奇吧?再打show指令看看吧!"神經網路"已經形成了!你可以自己任意的設"模式"讓這個"大腦"學習分辯哦!只要樣本數據量充分(可含有誤差的樣本),如果能夠在out數據上收斂地話,那它就能分辨地很准哦!有時不是絕對精確,因為它具有"模糊處理"的特性.看Process輸出的值接近哪個Learning的值就是"大腦"作出的"模糊性"判別! 南搞小孩神經網路研究社區: 人工神經網路論壇 http://www.youngfan.com/forum/index.php http://www.youngfan.com/nn/index.html(舊版,楓舞推薦) 國際神經網路學會(INNS)(英文) http://www.inns.org/ 歐洲神經網路學會(ENNS)(英文) http://www.snn.kun.nl/enns/ 亞太神經網路學會(APNNA)(英文) http://www.cse.cuhk.e.hk/~apnna 日本神經網路學會(JNNS)(日文) http://www.jnns.org 國際電氣工程師協會神經網路分會 http://www.ieee-nns.org/ 研學論壇神經網路 http://bbs.matwav.com/post/page?bid=8&sty=1&age=0 人工智慧研究者俱樂部 http://www.souwu.com/ 2nsoft人工神經網路中文站 http://211.156.161.210:8888/2nsoft/index.jsp =南搞小孩推薦部分書籍: 人工神經網路技術入門講稿(PDF) http://www.youngfan.com/nn/ann.pdf 神經網路FAQ(英文) http://www.youngfan.com/nn/FAQ/FAQ.html 數字神經網路系統(電子圖書) http://www.youngfan.com/nn/nnbook/director.htm 神經網路導論(英文) http://www.shef.ac.uk/psychology/gurney/notes/contents.html =南搞小孩還找到一份很有參考價值的講座 <前向網路的敏感性研究> http://www.youngfan.com/nn/mgx.ppt 是Powerpoint文件,比較大,如果網速不夠最好用滑鼠右鍵下載另存. 南搞小孩添言:很久之前,楓舞夢想智能機器人從自己手中誕生,SO在學專業的時候也有往這方面發展...考研的時候亦是朝著人工智慧的方向發展..但是很不幸的是楓舞考研失敗...SO 只好放棄這個美好的願望,為生活奔波.希望你能夠成為一個好的智能計算機工程師..楓舞已經努力的在給你提供條件資源哦~~

9. 神經網路中學習和訓練的區別是什麼

你好,一般學習是指自動的而訓練是指有人逼的。在神經網路中這兩者對應的是無監督學習和有監督學習。如果還是不太理解你可以查一下感知器和認知器。感知器是有監督的學習而認知器則是無監督的學習。
希望對你有幫助。^_^

閱讀全文

與所謂的訓練神經網路指的是什麼相關的資料

熱點內容
網路安全制度管理辦法 瀏覽:618
台式電腦連接網路慢是什麼原因 瀏覽:538
福山網路營銷 瀏覽:625
貴陽方正網路為什麼這么好 瀏覽:266
為什麼開了移動網路卻沒網 瀏覽:416
聯通卡網路可轉為移動網路嗎 瀏覽:8
哪個美院有網路教育 瀏覽:140
為啥有的軟體進去就顯示網路錯誤 瀏覽:466
磊科如何讓手機連接網路 瀏覽:719
聯通網路報銷打哪個電話 瀏覽:81
電磁炮手游通心物語網路連接 瀏覽:195
從網路上下載的文件軟體處理措施 瀏覽:575
家裡網滿格卻顯示無網路連接 瀏覽:221
台式電腦共享手機網路怎麼沒網 瀏覽:446
手機什麼是本地網路 瀏覽:298
微信網路考試軟體下載 瀏覽:180
本地網路安全運營服務 瀏覽:716
泛在的無線網路應用於 瀏覽:684
網路如何橋接用cmd 瀏覽:926
普陀區網路營銷技術開發聯系方式 瀏覽:6

友情鏈接