導航:首頁 > 網路問題 > OCR用什麼網路

OCR用什麼網路

發布時間:2022-07-11 22:19:58

1. VR和OCR是否屬於無線網路通信技術

Vr和ocr都是屬於無線網路通信的技術的,具體的話你可以了解一下,像一些配套機培訓機構,學習一下基礎的知識。

2. ocr是什麼意思

OCR是英文optical character recognition的縮寫,意思是:文字識別

OCR(optical character recognition)文字識別是指電子設備(例如掃描儀或數碼相機)檢查紙上列印的字元,然後用字元識別方法將形狀翻譯成計算機文字的過程;即,對文本資料進行掃描,然後對圖像文件進行分析處理,獲取文字及版面信息的過程。

如何除錯或利用輔助信息提高識別正確率,是OCR最重要的課題。衡量一個OCR系統性能好壞的主要指標有:拒識率、誤識率、識別速度、用戶界面的友好性,產品的穩定性,易用性及可行性等。

(2)OCR用什麼網路擴展閱讀

應用:

OCR文字識別很重要的一個技術參數,就是識別率。就拿身份證識別來舉例子,就會涉及到兩個問題。身份證識別出來的最終目的是要有格式,供直接錄入系統,姓名項、地址項、身份證號項都黏在一起,就沒辦法使用了;

目前身份證識別率能達到98%以上,如果拿通用OCR文字識別來識別,識別率達不到如此高識別率,需要專門針對身份證進行校正優化。所以OCR文字識別根據特殊識別內容,形成了多個產品出來。

同樣身份證識別,項目使用中,方案有分多種,有雲端識別,也可以手機端本地識別。根據應用場景來區分需求。雲端的會涉及到網路延時和流量產生費用等,但微信工作號之類的,只能使用這種方式。手機端本地識別,識別速度快,不會產生流量,也沒有網路延時。

3. OCR是什麼

你可能裝了OCR設備,或者是你下載的OCR安裝程序。

OCR(Optical Character Recognition,光學字元識別),是屬於圖型識別(Pattern Recognition,PR)的一門學問。其目的就是要讓計算機知道它到底看到了什麼,尤其是文字資料。

由於OCR是一門與識別率拔河的技術,因此如何除錯或利用輔助信息提高識別正確率,是OCR最重要的課題,ICR(Intelligent Character Recognition)的名詞也因此而產生。而根據文字資料存在的媒體介質不同,及取得這些資料的方式不同,就衍生出各式各樣、各種不同的應用。
在此對OCR作一基本介紹,包括其技術簡介以及其應用介紹。

一、OCR的發展
要談OCR的發展,早在60、70年代,世界各國就開始有OCR的研究,而研究的初期,多以文字的識別方法研究為主,且識別的文字僅為0至9的數字。以同樣擁有方塊文字的日本為例,1960年左右開始研究OCR的基本識別理論,初期以數字為對象,直至1965至1970年之間開始有一些簡單的產品,如印刷文字的郵政編碼識別系統,識別郵件上的郵政編碼,幫助郵局作區域分信的作業;也因此至今郵政編碼一直是各國所倡導的地址書寫方式。
OCR可以說是一種不確定的技術研究,正確率就像是一個無窮趨近函數,知道其趨近值,卻只能靠近而無法達到,永遠在與100%作拉鋸戰。因為其牽扯的因素太多了,書寫者的習慣或文件印刷品質、掃描儀的掃瞄品質、識別的方法、學習及測試的樣本……等等,多少都會影響其正確率,也因此,OCR的產品除了需有一個強有力的識別核心外,產品的操作使用方便性、所提供的除錯功能及方法,亦是決定產品好壞的重要因素。
一個OCR識別系統,其目的很簡單,只是要把影像作一個轉換,使影像內的圖形繼續保存、有表格則表格內資料及影像內的文字,一律變成計算機文字,使能達到影像資料的儲存量減少、識別出的文字可再使用及分析,當然也可節省因鍵盤輸入的人力與時間。

從影像到結果輸出,須經過影像輸入、影像前處理、文字特徵抽取、比對識別、最後經人工校正將認錯的文字更正,將結果輸出。
在此逐一介紹:
影象輸入:欲經過OCR處理的標的物須透過光學儀器,如影像掃描儀、傳真機或任何攝影器材,將影像轉入計算機。科技的進步,掃描儀等的輸入裝置已製作的愈來愈精緻,輕薄短小、品質也高,對OCR有相當大的幫助,掃描儀的解析度使影像更清晰、掃除速度更增進OCR處理的效率。
影象前處理:影像前處理是OCR系統中,須解決問題最多的一個模塊,從得到一個不是黑就是白的二值化影像,或灰階、彩色的影像,到獨立出一個個的文字影像的過程,都屬於影像前處理。包含了影像正規化、去除雜訊、影像矯正等的影像處理,及圖文分析、文字行與字分離的文件前處理。在影像處理方面,在學理及技術方面都已達成熟階段,因此在市面上或網站上有不少可用的鏈接庫;在文件前處理方面,則憑各家本領了;影像須先將圖片、表格及文字區域分離出來,甚至可將文章的編排方向、文章的題綱及內容主體區分開,而文字的大小及文字的字體亦可如原始文件一樣的判斷出來。
文字特徵抽取:單以識別率而言,特徵抽取可說是OCR的核心,用什麼特徵、怎麼抽取,直接影響識別的好壞,也所以在OCR研究初期,特徵抽取的研究報告特別的多。而特徵可說是識別的籌碼,簡易的區分可分為兩類:一為統計的特徵,如文字區域內的黑/白點數比,當文字區分成好幾個區域時,這一個個區域黑/白點數比之聯合,就成了空間的一個數值向量,在比對時,基本的數學理論就足以應付了。而另一類特徵為結構的特徵,如文字影像細線化後,取得字的筆劃端點、交叉點之數量及位置,或以筆劃段為特徵,配合特殊的比對方法,進行比對,市面上的線上手寫輸入軟體的識別方法多以此種結構的方法為主。
對比資料庫:當輸入文字算完特徵後,不管是用統計或結構的特徵,都須有一比對資料庫或特徵資料庫來進行比對,資料庫的內容應包含所有欲識別的字集文字,根據與輸入文字一樣的特徵抽取方法所得的特徵群組。
對比識別:這是可充分發揮數學運算理論的一個模塊,根據不同的特徵特性,選用不同的數學距離函數,較有名的比對方法有,歐式空間的比對方法、鬆弛比對法(Relaxation)、動態程序比對法(Dynamic Programming,DP),以及類神經網路的資料庫建立及比對、HMM(Hidden Markov Model)…等著名的方法,為了使識別的結果更穩定,也有所謂的專家系統(Experts System)被提出,利用各種特徵比對方法的相異互補性,使識別出的結果,其信心度特別的高。
字詞後處理:由於OCR的識別率並無法達到百分之百,或想加強比對的正確性及信心值,一些除錯或甚至幫忙更正的功能,也成為OCR系統中必要的一個模塊。字詞後處理就是一例,利用比對後的識別文字與其可能的相似候選字群中,根據前後的識別文字找出最合乎邏輯的詞,做更正的功能。
字詞資料庫:為字詞後處理所建立的詞庫。
人工校正:OCR最後的關卡,在此之前,使用者可能只是拿支滑鼠,跟著軟體設計的節奏操作或僅是觀看,而在此有可能須特別花使用者的精神及時間,去更正甚至找尋可能是OCR出錯的地方。一個好的OCR軟體,除了有一個穩定的影像處理及識別核心,以降低錯誤率外,人工校正的操作流程及其功能,亦影響OCR的處理效率,因此,文字影像與識別文字的對照,及其屏幕信息擺放的位置、還有每一識別文字的候選字功能、拒認字的功能、及字詞後處理後特意標示出可能有問題的字詞,都是為使用者設計盡量少使用鍵盤的一種功能,當然,不是說系統沒顯示出的文字就一定正確,就像完全由鍵盤輸入的工作人員也會有出錯的時候,這時要重新校正一次或能允許些許的錯,就完全看使用單位的需求了。
結果輸出:其實輸出是件簡單的事,但卻須看使用者用OCR到底為了什麼?有人只要文本文件作部份文字的再使用之用,所以只要一般的文字文件、有人要漂漂亮亮的和輸入文件一模一樣,所以有原文重現的功能、有人注重表格內的文字,所以要和Excel等軟體結合。無論怎麼變化,都只是輸出檔案格式的變化而已。

補充:你不用的話當然可以刪除了!

4. OCR什麼意思

OCR(Optical Character Recognition,光學字元識別),是屬於圖型識別(Pattern Recognition,PR)的一門學問。其目的就是要讓計算機知道它到底看到了什麼,尤其是文字資料。

由於OCR是一門與識別率拔河的技術,因此如何除錯或利用輔助信息提高識別正確率,是OCR最重要的課題,ICR(Intelligent Character Recognition)的名詞也因此而產生。而根據文字資料存在的媒體介質不同,及取得這些資料的方式不同,就衍生出各式各樣、各種不同的應用。
在此對OCR作一基本介紹,包括其技術簡介以及其應用介紹。

一、OCR的發展
要談OCR的發展,早在60、70年代,世界各國就開始有OCR的研究,而研究的初期,多以文字的識別方法研究為主,且識別的文字僅為0至9的數字。以同樣擁有方塊文字的日本為例,1960年左右開始研究OCR的基本識別理論,初期以數字為對象,直至1965至1970年之間開始有一些簡單的產品,如印刷文字的郵政編碼識別系統,識別郵件上的郵政編碼,幫助郵局作區域分信的作業;也因此至今郵政編碼一直是各國所倡導的地址書寫方式。
OCR可以說是一種不確定的技術研究,正確率就像是一個無窮趨近函數,知道其趨近值,卻只能靠近而無法達到,永遠在與100%作拉鋸戰。因為其牽扯的因素太多了,書寫者的習慣或文件印刷品質、掃描儀的掃瞄品質、識別的方法、學習及測試的樣本……等等,多少都會影響其正確率,也因此,OCR的產品除了需有一個強有力的識別核心外,產品的操作使用方便性、所提供的除錯功能及方法,亦是決定產品好壞的重要因素。
一個OCR識別系統,其目的很簡單,只是要把影像作一個轉換,使影像內的圖形繼續保存、有表格則表格內資料及影像內的文字,一律變成計算機文字,使能達到影像資料的儲存量減少、識別出的文字可再使用及分析,當然也可節省因鍵盤輸入的人力與時間。
從影像到結果輸出,須經過影像輸入、影像前處理、文字特徵抽取、比對識別、最後經人工校正將認錯的文字更正,將結果輸出。
在此逐一介紹:
影象輸入:欲經過OCR處理的標的物須透過光學儀器,如影像掃描儀、傳真機或任何攝影器材,將影像轉入計算機。科技的進步,掃描儀等的輸入裝置已製作的愈來愈精緻,輕薄短小、品質也高,對OCR有相當大的幫助,掃描儀的解析度使影像更清晰、掃除速度更增進OCR處理的效率。
影象前處理:影像前處理是OCR系統中,須解決問題最多的一個模塊,從得到一個不是黑就是白的二值化影像,或灰階、彩色的影像,到獨立出一個個的文字影像的過程,都屬於影像前處理。包含了影像正規化、去除雜訊、影像矯正等的影像處理,及圖文分析、文字行與字分離的文件前處理。在影像處理方面,在學理及技術方面都已達成熟階段,因此在市面上或網站上有不少可用的鏈接庫;在文件前處理方面,則憑各家本領了;影像須先將圖片、表格及文字區域分離出來,甚至可將文章的編排方向、文章的題綱及內容主體區分開,而文字的大小及文字的字體亦可如原始文件一樣的判斷出來。
文字特徵抽取:單以識別率而言,特徵抽取可說是OCR的核心,用什麼特徵、怎麼抽取,直接影響識別的好壞,也所以在OCR研究初期,特徵抽取的研究報告特別的多。而特徵可說是識別的籌碼,簡易的區分可分為兩類:一為統計的特徵,如文字區域內的黑/白點數比,當文字區分成好幾個區域時,這一個個區域黑/白點數比之聯合,就成了空間的一個數值向量,在比對時,基本的數學理論就足以應付了。而另一類特徵為結構的特徵,如文字影像細線化後,取得字的筆劃端點、交叉點之數量及位置,或以筆劃段為特徵,配合特殊的比對方法,進行比對,市面上的線上手寫輸入軟體的識別方法多以此種結構的方法為主。
對比資料庫:當輸入文字算完特徵後,不管是用統計或結構的特徵,都須有一比對資料庫或特徵資料庫來進行比對,資料庫的內容應包含所有欲識別的字集文字,根據與輸入文字一樣的特徵抽取方法所得的特徵群組。
對比識別:這是可充分發揮數學運算理論的一個模塊,根據不同的特徵特性,選用不同的數學距離函數,較有名的比對方法有,歐式空間的比對方法、鬆弛比對法(Relaxation)、動態程序比對法(Dynamic Programming,DP),以及類神經網路的資料庫建立及比對、HMM(Hidden Markov Model)…等著名的方法,為了使識別的結果更穩定,也有所謂的專家系統(Experts System)被提出,利用各種特徵比對方法的相異互補性,使識別出的結果,其信心度特別的高。
字詞後處理:由於OCR的識別率並無法達到百分之百,或想加強比對的正確性及信心值,一些除錯或甚至幫忙更正的功能,也成為OCR系統中必要的一個模塊。字詞後處理就是一例,利用比對後的識別文字與其可能的相似候選字群中,根據前後的識別文字找出最合乎邏輯的詞,做更正的功能。
字詞資料庫:為字詞後處理所建立的詞庫。
人工校正:OCR最後的關卡,在此之前,使用者可能只是拿支滑鼠,跟著軟體設計的節奏操作或僅是觀看,而在此有可能須特別花使用者的精神及時間,去更正甚至找尋可能是OCR出錯的地方。一個好的OCR軟體,除了有一個穩定的影像處理及識別核心,以降低錯誤率外,人工校正的操作流程及其功能,亦影響OCR的處理效率,因此,文字影像與識別文字的對照,及其屏幕信息擺放的位置、還有每一識別文字的候選字功能、拒認字的功能、及字詞後處理後特意標示出可能有問題的字詞,都是為使用者設計盡量少使用鍵盤的一種功能,當然,不是說系統沒顯示出的文字就一定正確,就像完全由鍵盤輸入的工作人員也會有出錯的時候,這時要重新校正一次或能允許些許的錯,就完全看使用單位的需求了。
結果輸出:其實輸出是件簡單的事,但卻須看使用者用OCR到底為了什麼?有人只要文本文件作部份文字的再使用之用,所以只要一般的文字文件、有人要漂漂亮亮的和輸入文件一模一樣,所以有原文重現的功能、有人注重表格內的文字,所以要和Excel等軟體結合。無論怎麼變化,都只是輸出檔案格式的變化而已。

5. OCR文字識別用的是什麼演算法

首先OCR是模式識別的一個領域,所以整體過程也就是模式識別的過程。其過程整體來說可以分為以下幾個步驟:

預處理:對包含文字的圖像進行處理以便後續進行特徵提取、學習。這個過程的主要目的是減少圖像中的無用信息,以便方便後面的處理。在這個步驟通常有:灰度化(如果是彩色圖像)、降噪、二值化、字元切分以及歸一化這些子步驟。經過二值化後,圖像只剩下兩種顏色,即黑和白,其中一個是圖像背景,另一個顏色就是要識別的文字了。降噪在這個階段非常重要,降噪演算法的好壞對特徵提取的影響很大。字元切分則是將圖像中的文字分割成單個文字——識別的時候是一個字一個字識別的。如果文字行有傾斜的話往往還要進行傾斜校正。歸一化則是將單個的文字圖像規整到同樣的尺寸,在同一個規格下,才能應用統一的演算法。
特徵提取和降維:特徵是用來識別文字的關鍵信息,每個不同的文字都能通過特徵來和其他文字進行區分。對於數字和英文字母來說,這個特徵提取是比較容易的,因為數字只有10個,英文字母只有52個,都是小字元集。對於漢字來說,特徵提取比較困難,因為首先漢字是大字元集,國標中光是最常用的第一級漢字就有3755個;第二個漢字結構復雜,形近字多。在確定了使用何種特徵後,視情況而定,還有可能要進行特徵降維,這種情況就是如果特徵的維數太高(特徵一般用一個向量表示,維數即該向量的分量數),分類器的效率會受到很大的影響,為了提高識別速率,往往就要進行降維,這個過程也很重要,既要降低維數吧,又得使得減少維數後的特徵向量還保留了足夠的信息量(以區分不同的文字)。
分類器設計、訓練和實際識別:分類器是用來進行識別的,就是對於第二步,你對一個文字圖像,提取出特徵給,丟給分類器,分類器就對其進行分類,告訴你這個特徵該識別成哪個文字。在進行實際識別前,往往還要對分類器進行訓練,這是一個監督學習的案例。成熟的分類器也很多,什麼svm,kn,神經網路etc。我當時不知天高地厚用經典bp神經網路去學習,結果……呵呵……
後處理:後處理是用來對分類結果進行優化的,第一個,分類器的分類有時候不一定是完全正確的(實際上也做不到完全正確),比如對漢字的識別,由於漢字中形近字的存在,很容易將一個字識別成其形近字。後處理中可以去解決這個問題,比如通過語言模型來進行校正——如果分類器將「在哪裡」識別成「存哪裡」,通過語言模型會發現「存哪裡」是錯誤的,然後進行校正。第二個,OCR的識別圖像往往是有大量文字的,而且這些文字存在排版、字體大小等復雜情況,後處理中可以嘗試去對識別結果進行格式化,比如按照圖像中的排版排列什麼的,舉個栗子,一張圖像,其左半部分的文字和右半部分的文字毫無關系,而在字元切分過程中,往往是按行切分的,那麼識別結果中左半部分的第一行後面會跟著右半部分的第一行諸如此類。

OCR的大致內容差不多就是這樣。

6. ocr文字識別軟體需不需要聯網.........麻煩高手解答,謝謝

光學字元識別 (OCR) 軟體,10年前我就使用了,那時候上網、聯網遠沒有現在這么方便、普遍。這個軟體使用時是不需要聯網的。新版的OCR軟體更人性化、實用化,不可能把自己的軟體應用范圍縮小到、局限於聯網狀態!這等同於退步行為,將會失去許多用戶群的!

OCR軟體的更新、升級,可能需要聯網下載;但也不是絕對的。你可以在普通上網時、或者聽到別人說起:OCR軟體更新到某某版了。你可以單獨下載更新內容,然後對軟體實施更新。

有些軟體是收費的、或付費後購買的,或者即使破解了但使用時需要先登錄的,否則軟體不工作的。如果是這樣,你注冊、登錄都沒有問題的,你可以繼續使用;不然,你可以重新下載免費軟體,以方便使用。

7. 在線ocr識別網站哪個好 ocr在線圖文識別教程

現在網上有很多ocr文字識別軟體,我用的是ABBYY FineReader 14覺得還不錯。你可以到ABBYY 中文網站(www.abbyychina.com)去下載一個試用一下,看看怎麼樣。另外站內提供了各種資源和學習教程,讓你輕輕鬆鬆掌握這款OCR文字識別軟體。

8. OCR文字識別用的是什麼演算法

一般OCR套路是這樣的
1.先檢測和提取Text region.
2.接著利用radon hough變換 等方法 進行文本校正。
3.通過投影直方圖分割出單行的文本的圖片。
最後是對單行的OCR
對單行的OCR主要由兩種思想
第一種是需要分割字元的。
分割字元的方法也比較多,用的最多的是基於投影直方圖極值點作為候選分割點並使用分類器+beam search 搜索最佳分割點。
搜索到分割點之後對於單個字元,傳統的就是特徵工程+分類器。 一般流程是 灰度 -> 二值化->矯正圖像 -> 提取特徵(方法多種多樣例如pca lbp 等等) ->分類器(分類器大致有SVM ANN KNN等等 )。
現在的 CNN(卷積神經網路)可以很大程度上免去特徵工程。
第二種是無需分割字元的
還有一點就是端到端(end to end)的識別,但前提是你需要大量的標注好的數據集。 這種方法可以不分割圖像直接以連續的輸出字元序列。
對於短長度的可以使用mutli-label classification 。比如像車牌,驗證碼。 這里我試過一個車牌的多標簽分類。 車牌識別中的不分割字元的端到端(End-to-End)識別
google做街景門牌號識別就是用的這種方法。

閱讀全文

與OCR用什麼網路相關的資料

熱點內容
貴陽方正網路為什麼這么好 瀏覽:265
為什麼開了移動網路卻沒網 瀏覽:415
聯通卡網路可轉為移動網路嗎 瀏覽:7
哪個美院有網路教育 瀏覽:139
為啥有的軟體進去就顯示網路錯誤 瀏覽:465
磊科如何讓手機連接網路 瀏覽:718
聯通網路報銷打哪個電話 瀏覽:81
電磁炮手游通心物語網路連接 瀏覽:195
從網路上下載的文件軟體處理措施 瀏覽:575
家裡網滿格卻顯示無網路連接 瀏覽:221
台式電腦共享手機網路怎麼沒網 瀏覽:446
手機什麼是本地網路 瀏覽:298
微信網路考試軟體下載 瀏覽:180
本地網路安全運營服務 瀏覽:716
泛在的無線網路應用於 瀏覽:684
網路如何橋接用cmd 瀏覽:926
普陀區網路營銷技術開發聯系方式 瀏覽:6
淮南壽縣網路營銷 瀏覽:703
網路視頻軟體核心需求 瀏覽:998
移動網路盒子連接不上電視 瀏覽:397

友情鏈接