導航:首頁 > 網路問題 > gabp神經網路演算法是什麼

gabp神經網路演算法是什麼

發布時間:2022-07-05 05:49:03

㈠ BP神經網路演算法的介紹

BP(Back Propagation)網路是1986年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播演算法訓練的多層前饋網路,是目前應用最廣泛的神經網路模型之一。BP網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。BP神經網路模型拓撲結構包括輸入層(input)、隱層(hide layer)和輸出層(output layer)。

㈡ bp神經網路用啥演算法

自己找個例子算一下,推導一下,這個回答起來比較復雜

神經網路對模型的表達能力依賴於優化演算法,優化是一個不斷計算梯度並調整可學習參數的過程,Fluid中的優化演算法可參考優化器。

在網路的訓練過程中,梯度計算分為兩個步驟:前向計算與反向傳播。

BP演算法

隱層的引入使網路具有很大的潛力。但正像Minskey和Papert當時所指出的.雖然對所有那些能用簡單(無隱層)網結解決的問題有非常簡單的學習規則,即簡單感知器的收斂程序(主要歸功於Widrow和HMf於1960年提出的Delta規剛),


BP演算法

但當時並沒有找到同樣有技的含隱層的同培的學習規則。對此問題的研究有三個基本的結果。一種是使用簡單無監督學習規則的競爭學習方法.但它缺乏外部信息.難以確定適台映射的隱層結構。第二條途徑是假設一十內部(隱層)的表示方法,這在一些先約條件下是台理的。另一種方法是利用統計手段設計一個學習過程使之能有技地實現適當的內部表示法,Hinton等人(1984年)提出的Bolzmann機是這種方法的典型例子.它要求網路在兩個不同的狀態下達到平衡,並且只局限於對稱網路。Barto和他的同事(1985年)提出了另一條利用統計手段的學習方法。但迄今為止最有教和最實用的方瑤是Rumelhart、Hinton和Williams(1986年)提出的一般Delta法則,即反向傳播(BP)演算法。Parter(1985年)也獨立地得出過相似的演算法,他稱之為學習邏輯。此外, Lecun(1985年)也研究出大致相似的學習法則。

㈢ BP神經網路演算法的關鍵詞

BP演算法是一種有監督式的學習演算法,其主要思想是:輸入學習樣本,使用反向傳播演算法對網路的權值和偏差進行反復的調整訓練,使輸出的向量與期望向量盡可能地接近,當網路輸出層的誤差平方和小於指定的誤差時訓練完成,保存網路的權值和偏差。具體步驟如下:
(1)初始化,隨機給定各連接權[w],[v]及閥值θi,rt。
(2)由給定的輸入輸出模式對計算隱層、輸出層各單元輸出
bj=f(■wijai-θj) ct=f(■vjtbj-rt)
式中:bj為隱層第j個神經元實際輸出;ct為輸出層第t個神經元的實際輸出;wij為輸入層至隱層的連接權;vjt為隱層至輸出層的連接權。
dtk=(ytk-ct)ct(1-ct) ejk=[■dtvjt] bj(1-bj)
(3)選取下一個輸入模式對返回第2步反復訓練直到網路設輸出誤差達到要求結束訓練。
傳統的BP演算法,實質上是把一組樣本輸入/輸出問題轉化為一個非線性優化問題,並通過負梯度下降演算法,利用迭代運算求解權值問題的一種學習方法,但其收斂速度慢且容易陷入局部極小,為此提出了一種新的演算法,即高斯消元法。 2.1 改進演算法概述
此前有人提出:任意選定一組自由權,通過對傳遞函數建立線性方程組,解得待求權。本文在此基礎上將給定的目標輸出直接作為線性方程等式代數和來建立線性方程組,不再通過對傳遞函數求逆來計算神經元的凈輸出,簡化了運算步驟。沒有採用誤差反饋原理,因此用此法訓練出來的神經網路結果與傳統演算法是等效的。其基本思想是:由所給的輸入、輸出模式對通過作用於神經網路來建立線性方程組,運用高斯消元法解線性方程組來求得未知權值,而未採用傳統BP網路的非線性函數誤差反饋尋優的思想。
2.2 改進演算法的具體步驟
對給定的樣本模式對,隨機選定一組自由權,作為輸出層和隱含層之間固定權值,通過傳遞函數計算隱層的實際輸出,再將輸出層與隱層間的權值作為待求量,直接將目標輸出作為等式的右邊建立方程組來求解。
現定義如下符號(見圖1):x (p)輸入層的輸入矢量;y (p)輸入層輸入為x (p)時輸出層的實際輸出矢量;t (p)目標輸出矢量;n,m,r分別為輸入層、隱層和輸出層神經元個數;W為隱層與輸入層間的權矩陣;V為輸出層與隱層間的權矩陣。具體步驟如下:
(1)隨機給定隱層和輸入層間神經元的初始權值wij。
(2)由給定的樣本輸入xi(p)計算出隱層的實際輸出aj(p)。為方便起見將圖1網路中的閥值寫入連接權中去,令:隱層閥值θj=wnj,x(n)=-1,則:
aj(p)=f(■wijxi(p)) (j=1,2…m-1)。
(3)計算輸出層與隱層間的權值vjr。以輸出層的第r個神經元為對象,由給定的輸出目標值tr(p)作為等式的多項式值建立方程,用線性方程組表示為:
a0(1)v1r+a1(1)v2r+…+am(1)vmr=tr(1)a0(2)v1r+a1(2)v2r+…+am(2)vmr=tr(2) ……a0(p)v1r+a1(p)v2r+…+am(p)vmr=tr(p) 簡寫為: Av=T
為了使該方程組有唯一解,方程矩陣A為非奇異矩陣,其秩等於其增廣矩陣的秩,即:r(A)=r(A┊B),且方程的個數等於未知數的個數,故取m=p,此時方程組的唯一解為: Vr=[v0r,v2r,…vmr](r=0,1,2…m-1)
(4)重復第三步就可以求出輸出層m個神經元的權值,以求的輸出層的權矩陣加上隨機固定的隱層與輸入層的權值就等於神經網路最後訓練的權矩陣。 現以神經網路最簡單的XOR問題用VC編程運算進行比較(取神經網路結構為2-4-1型),傳統演算法和改進BP演算法的誤差(取動量因子α=0.001 5,步長η=1.653)

㈣ BP神經網路初始權值和閾值

請理解程序中的變數含義:

  1. inputnum:輸入層節點數

  2. hiddennum:隱層節點數

  3. outputnum:輸出層節點數

因此,當輸入為3時,如果前面有inputnum=size(P,1);語句,將會自適應確定輸入節點數;如果沒有使用該語句,直接將inputnum賦值為3即可,即加上inputnum=3;


你這段代碼是GA-BP神經網路最後的染色體解碼階段的代碼,注意染色體編碼結構為:輸入層與隱層間權值矩陣、隱層閾值、隱層與輸出層間權值矩陣、輸出層閾值。

什麼是BP神經網路

BP演算法的基本思想是:學習過程由信號正向傳播與誤差的反向回傳兩個部分組成;正向傳播時,輸入樣本從輸入層傳入,經各隱層依次逐層處理,傳向輸出層,若輸出層輸出與期望不符,則將誤差作為調整信號逐層反向回傳,對神經元之間的連接權矩陣做出處理,使誤差減小。經反復學習,最終使誤差減小到可接受的范圍。具體步驟如下:
1、從訓練集中取出某一樣本,把信息輸入網路中。
2、通過各節點間的連接情況正向逐層處理後,得到神經網路的實際輸出。
3、計算網路實際輸出與期望輸出的誤差。
4、將誤差逐層反向回傳至之前各層,並按一定原則將誤差信號載入到連接權值上,使整個神經網路的連接權值向誤差減小的方向轉化。
5、対訓練集中每一個輸入—輸出樣本對重復以上步驟,直到整個訓練樣本集的誤差減小到符合要求為止。

㈥ 什麼是神經網路共識演算法

BP(Back Propagation)網路是1986年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播演算法訓練的多層前饋網路,是目前應用最廣泛的神經網路模型之一。BP網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。BP神經網路模型拓撲結構包括輸入層(input)、隱層(hide layer)和輸出層(output layer)。

㈦ 深入淺出BP神經網路演算法的原理

深入淺出BP神經網路演算法的原理
相信每位剛接觸神經網路的時候都會先碰到BP演算法的問題,如何形象快速地理解BP神經網路就是我們學習的高級樂趣了(畫外音:樂趣?你在跟我談樂趣?)
本篇博文就是要簡單粗暴地幫助各位童鞋快速入門採取BP演算法的神經網路。
BP神經網路是怎樣的一種定義?看這句話:一種按「誤差逆傳播演算法訓練」的多層前饋網路。
BP的思想就是:利用輸出後的誤差來估計輸出層前一層的誤差,再用這層誤差來估計更前一層誤差,如此獲取所有各層誤差估計。這里的誤差估計可以理解為某種偏導數,我們就是根據這種偏導數來調整各層的連接權值,再用調整後的連接權值重新計算輸出誤差。直到輸出的誤差達到符合的要求或者迭代次數溢出設定值。
說來說去,「誤差」這個詞說的很多嘛,說明這個演算法是不是跟誤差有很大的關系?
沒錯,BP的傳播對象就是「誤差」,傳播目的就是得到所有層的估計誤差。
它的學習規則是:使用最速下降法,通過反向傳播(就是一層一層往前傳)不斷調整網路的權值和閾值,最後使全局誤差系數最小。
它的學習本質就是:對各連接權值的動態調整。

拓撲結構如上圖:輸入層(input),隱藏層(hide layer),輸出層(output)
BP網路的優勢就是能學習和儲存大量的輸入輸出的關系,而不用事先指出這種數學關系。那麼它是如何學習的?
BP利用處處可導的激活函數來描述該層輸入與該層輸出的關系,常用S型函數δ來當作激活函數。

我們現在開始有監督的BP神經網路學習演算法:
1、正向傳播得到輸出層誤差e
=>輸入層輸入樣本=>各隱藏層=>輸出層
2、判斷是否反向傳播
=>若輸出層誤差與期望不符=>反向傳播
3、誤差反向傳播
=>誤差在各層顯示=>修正各層單元的權值,直到誤差減少到可接受程度。
演算法闡述起來比較簡單,接下來通過數學公式來認識BP的真實面目。
假設我們的網路結構是一個含有N個神經元的輸入層,含有P個神經元的隱層,含有Q個神經元的輸出層。

這些變數分別如下:

認識好以上變數後,開始計算:
一、用(-1,1)內的隨機數初始化誤差函數,並設定精度ε,最多迭代次數M
二、隨機選取第k個輸入樣本及對應的期望輸出

重復以下步驟至誤差達到要求:
三、計算隱含層各神經元的輸入和輸出

四、計算誤差函數e對輸出層各神經元的偏導數,根據輸出層期望輸出和實際輸出以及輸出層輸入等參數計算。

五、計算誤差函數對隱藏層各神經元的偏導數,根據後一層(這里即輸出層)的靈敏度(稍後介紹靈敏度)δo(k),後一層連接權值w,以及該層的輸入值等參數計算
六、利用第四步中的偏導數來修正輸出層連接權值

七、利用第五步中的偏導數來修正隱藏層連接權值

八、計算全局誤差(m個樣本,q個類別)

比較具體的計算方法介紹好了,接下來用比較簡潔的數學公式來大致地概括這個過程,相信看完上述的詳細步驟都會有些了解和領悟。
假設我們的神經網路是這樣的,此時有兩個隱藏層。
我們先來理解靈敏度是什麼?
看下面一個公式:

這個公式是誤差對b的一個偏導數,這個b是怎麼?它是一個基,靈敏度δ就是誤差對基的變化率,也就是導數。
因為?u/?b=1,所以?E/?b=?E/?u=δ,也就是說bias基的靈敏度?E/?b=δ等於誤差E對一個節點全部輸入u的導數?E/?u。
也可以認為這里的靈敏度等於誤差E對該層輸入的導數,注意了,這里的輸入是上圖U級別的輸入,即已經完成層與層權值計算後的輸入。
每一個隱藏層第l層的靈敏度為:

這里的「?」表示每個元素相乘,不懂的可與上面詳細公式對比理解
而輸出層的靈敏度計算方法不同,為:

而最後的修正權值為靈敏度乘以該層的輸入值,注意了,這里的輸入可是未曾乘以權值的輸入,即上圖的Xi級別。

對於每一個權值(W)ij都有一個特定的學習率ηIj,由演算法學習完成。

㈧ BP神經網路的核心問題是什麼其優缺點有哪些

人工神經網路,是一種旨在模仿人腦結構及其功能的信息處理系統,就是使用人工神經網路方法實現模式識別.可處理一些環境信息十分復雜,背景知識不清楚,推理規則不明確的問題,神經網路方法允許樣品有較大的缺損和畸變.神經網路的類型很多,建立神經網路模型時,根據研究對象的特點,可以考慮不同的神經網路模型. 前饋型BP網路,即誤差逆傳播神經網路是最常用,最流行的神經網路.BP網路的輸入和輸出關系可以看成是一種映射關系,即每一組輸入對應一組輸出.BP演算法是最著名的多層前向網路訓練演算法,盡管存在收斂速度慢,局部極值等缺點,但可通過各種改進措施來提高它的收斂速度,克服局部極值現象,而且具有簡單,易行,計算量小,並行性強等特點,目前仍是多層前向網路的首選演算法.

㈨ 請問誰能用簡單通俗的幾句話講清楚bp演算法(神經網路中的)是個什麼演算法

相似歸類。例如認定A是個好人,A其具有那些特點,B如果具有這些特點,B就是好人。

㈩ BP神經網路的原理的BP什麼意思

原文鏈接:http://tecdat.cn/?p=19936

在本教程中,您將學習如何在R語言中創建神經網路模型。

神經網路(或人工神經網路)具有通過樣本進行學習的能力。人工神經網路是一種受生物神經元系統啟發的信息處理模型。它由大量高度互連的處理元件(稱為神經元)組成,以解決問題。它遵循非線性路徑,並在整個節點中並行處理信息。神經網路是一個復雜的自適應系統。自適應意味著它可以通過調整輸入權重來更改其內部結構。

該神經網路旨在解決人類容易遇到的問題和機器難以解決的問題,例如識別貓和狗的圖片,識別編號的圖片。這些問題通常稱為模式識別。它的應用范圍從光學字元識別到目標檢測。

本教程將涵蓋以下主題:

閱讀全文

與gabp神經網路演算法是什麼相關的資料

熱點內容
網路盒子上的密碼忘記了怎麼辦 瀏覽:147
把網路信號發射到車載 瀏覽:957
華為手機怎樣刪除網路鄰居 瀏覽:376
一個網路介面接兩台電腦怎麼配置 瀏覽:130
蘋果手機重置移動網路 瀏覽:687
zte網路密碼是什麼 瀏覽:183
網路音樂和電視哪個更好 瀏覽:33
如何解決全樓無線網路 瀏覽:281
認知無線電感測器網路 瀏覽:903
如何論維護網路安全 瀏覽:339
外地如何連接網路 瀏覽:78
如何只用3g網路 瀏覽:783
三層別墅無線wifi網路方法 瀏覽:212
網路密碼中間的是什麼 瀏覽:624
網路貸款年化率多少是合法的 瀏覽:479
檢查網吧網路安全告知書 瀏覽:433
360網路附近wifi視頻 瀏覽:402
計算機網路蔡皖東第三版習題答案 瀏覽:516
手機網路怎麼共享給其它手機 瀏覽:582
wifi是免費網路嗎 瀏覽:775

友情鏈接