導航:首頁 > 網路問題 > 網路殘差起源是什麼

網路殘差起源是什麼

發布時間:2022-06-29 19:57:12

A. resnet 殘差網路 為什麼

2016年初最重要的兩篇文章應該是
A. inception-V3
B. 深度殘差網路
深度殘差網路主要解決的問題是:
網路越深的時候,訓練誤差和測試誤差都會加大。----早前的說法是 網路越深 越不容易收斂

B. 新息與殘差有什麼區別

新息與殘差的區別在於:二者指代不同、二者特徵不同、二者代表相關分析不同。

1、特徵不同:

(1)由於其也是序列,所以也被稱為新息序列:x(t)=x(t)+e(t),此式表明,x(t)可表達為兩項之和:第一項,x(t)它是被序列歷史所確定的;第二項e(t),根據歷史數對其預報為零。

直觀而言,在無偏預報意義下,原序列歷史不包含對e(t)的信息,故此時稱為它對原序列的新息。對極特殊的情況下,e(t)恆等於0時,此序列無新息,這樣的序列稱為純確定型。

(2)在回歸分析中,測定值與按回歸方程預測的值之差,以δ表示。殘差δ遵從正態分布N(0,σ2)。(δ-殘差的均值)/殘差的標准差,稱為標准化殘差,以δ*表示。δ*遵從標准正態分布N(0,1)。實驗點的標准化殘差落在(-2,2)區間以外的概率≤0.05。

若某一實驗點的標准化殘差落在(-2,2)區間以外,可在95%置信度將其判為異常實驗點,不參與回歸直線擬合。顯然,有多少對數據,就有多少個殘差。殘差分析就是通過殘差所提供的信息,分析出數據的可靠性、周期性或其它干擾。

2、指代不同:

(1)考察時間序列{x(t)},根據歷史數據對x(n+1)的無偏預報x(n+1),且用斜體代表x尖,即x的估計值,預報誤差e(n+1)=x(n+1)-x(n+1),e(n+1)被稱為新息。

(2)殘差在數理統計中是指實際觀察值與估計值(擬合值)之間的差。

3、代表相關分析不同:

(1)新息定理是新息預報的基礎。新息預報雖然公式較復雜,但佔用的內存是有限的,並不隨t而增長,而且每步預報是用遞推計算,特別是MA序列,由新息預報公式可以看出,只要能判斷出MA模型的階數,不必計算出滑動平均參數就可以遞推進行新息預報。

由新息定理可以看出,時刻t的新息et是隨著樣本數據xt的輸入經過遞推而得到的。

可以證明,無論是AR、MA或ARMA序列,當k充分大後,新息適時預報都與平穩預報漸近趨於一致。因此,在實際應用時,對於連續預報問題如果要求從較少的數據開始預報,並希望盡可能給出精確的預報值,那麼,在開始一個階段,可以進行新息適時預報。

(2)殘差中殘差圖的分布趨勢可以幫助判明所擬合的線性模型是否滿足有關假設。如殘差是否近似正態分布、是否方差齊次,變數間是否有其它非線性關系及是否還有重要自變數未進入模型等。

當判明有某種假設條件欠缺時, 進一步的問題就是加以校正或補救。需分析具體情況,探索合適的校正方案,如非線性處理,引入新自變數,或考察誤差是否有自相關性。

(2)網路殘差起源是什麼擴展閱讀:

殘差應用——殘差網路:

深度殘差網路。如果深層網路的後面那些層是恆等映射,那麼模型就退化為一個淺層網路。那當前要解決的就是學習恆等映射函數了。 但是直接讓一些層去擬合一個潛在的恆等映射函數H(x)=x,比較困難,這可能就是深層網路難以訓練的原因。

但是,如果把網路設計為H(x)=F(x)+x,可以轉換為學習一個殘差函數F(x)=H(x)-x。只要F(x)=0,就構成了一個恆等映射H(X)=x。 而且,擬合殘差肯定更加容易。

F是求和前網路映射,H是從輸入到求和後的網路映射。比如把5映射到5.1,那麼引入殘差前是:F'(5)=5.1,引入殘差後是H(5)=5.1,H(5)=F(5)+5,F(5)=0.1。這里的F'和F都表示網路參數映射,引入殘差後的映射對輸出的變化更敏感。

比如s輸出從5.1變到5.2,映射的輸出增加了2%,而對於殘差結構輸出從5.1到5.2,映射F是從0.1到0.2,增加了100%。明顯後者輸出變化對權重的調整作用更大,所以效果更好。殘差的思想都是去掉相同的主體部分,從而突出微小的變化。

參考資料來源:網路-殘差

參考資料來源:網路-新息

參考資料來源:網路-新息定理

C. 網路的來歷

網路(Internet),它的前身是美國國防部高級研究計劃局(ARPA)用於軍事目的的通信網路。

20世紀60年代末,正處於冷戰時期。當時美國軍方為了自己的計算機網路在受到襲擊時,即使部分網路被摧毀,其餘部分仍能保持通信聯系,便由美國國防部的高級研究計劃局(ARPA)建設了一個軍用網,叫做「阿帕網」(ARPAnet)。

阿帕網於1969年正式啟用,當時僅連接了4台計算機,供科學家們進行計算機聯網實驗用。這就是網際網路的前身。到70年代。ARPAnet經過獨斷發展,又設立了新的研究項目,最終形成「互聯網」。研究人員將之簡稱「Internet」。這個名詞就一直沿用到現在。

(3)網路殘差起源是什麼擴展閱讀

網路誕生過程:

隨著1946年世界上第一台電子計算機問世後的十多年時間內,由於價格很昂貴。電腦數量極少,早期所謂的計算機網路主要是為了解決這一矛盾而產生的。其形式是將一台計算機經過通信線路與若乾颱終端直接連接,我們也可以把這種方式看做為最簡單的區域網雛形。

最早的網路,是由美國國防部高級研究計劃局(ARPA)建立的。現代計算機網路的許多概念和方法,如分組交換技術都來自ARPAnet。 ARPAnet不僅進行了租用線互聯的分組交換技術研究,而且做了無線、衛星網的分組交換技術研究-其結果導致了網路協議TCP/IP協議的問世。

D. 網路的起源是什麼說得詳細些

英特網?這是與軍事分不開的。

得先說說計算機。話說在N十年前,計算機尚未普及之時……

計算機最初是用於戰爭中的彈葯預算及彈道運算,特別是美國得到了德國科學家開始使用彈道導彈,計算機被用來代替人的大規模運算,來提高軍事行動的決策速度。越南戰爭結束時,美軍來不及撤走自己的物品,當北越軍隊到達美軍指揮中心,看到大屏幕上顯示的都是己方每一個設施摧毀需要的彈葯量……這個就提到這里。

Internet最早來源於美國國防部高級研究計劃局DARPA(Defense advanced Research Projects Agency)的前身ARPA建立的ARPAnet,該網於1969年投入使用。從60年代開始,ARPA就開始向美國國內大學的計算機系和一些私人有限公司提供經費,以促進基於分組交換技術的計算機網路的研究。1968年,ARPA為ARPAnet網路項目立項,這個項目基於這樣一種主導思想:網路必須能夠經受住故障的考驗而維持正常工作,一旦發生戰爭,當網路的某一部分因遭受攻擊而失去工作能力時,網路的其它部分應當能夠維持正常通信。最初,ARPAnet主要用於軍事研究目的,它有五大特點:
⑴支持資源共享;
⑵採用分布式控制技術;
⑶採用分組交換技術;
⑷使用通信控制處理機;
⑸採用分層的網路通信協議。
1972年,ARPAnet在首屆計算機後台通信國際會議上首次與公眾見面,並驗證了分組交換技術的可行性,由此,ARPAnet成為現代計算機網路誕生的標志。 ARPAnet在技術上的另一個重大貢獻是TCP/IP協議簇的開發和使用。
1980年,ARPA投資把TCP/IP加進UNIX(BSD4.1版本)的內核中,在BSD4.2版本以後,TCP/IP協議即成為UNIX操作系統的標准通信模塊。
1982年,Internet由ARPAnet,MILNET等幾個計算機網路合並而成,作為Internet的早期骨幹網,ARPAnet試驗並奠定了Internet存在和發展的基礎,較好地解決了異種機網路互聯的一系列理論和技術問題。
1983年,ARPAnet分裂為兩部分:ARPAnet和純軍事用的MILNET。該年1月,ARPA把TCP/IP協議作為ARPAnet的標准協議,其後,人們稱呼這個以ARPAnet為主幹網的網際互聯網為Internet,TCP/IP協議簇便在Internet中進行研究,試驗,並改進成為使用方便,效率極好的協議簇。與此同時,區域網和其它廣域網的產生和蓬勃發展對Internet的進一步發展起了重要的作用。其中,最為引人注目的就是美國國家科學基金會NSF(National Science Foundation)建立的美國國家科學基金網NSFnet。
1986年,NSF建立起了六大超級計算機中心,為了使全國的科學家、工程師能夠共享這些超級計算機設施,NSF建立了自己的基於TCP/IP協議簇的計算機網路NSFnet。NSF在全國建立了按地區劃分的計算機廣域網,並將這些地區網路和超級計算中心相聯,最後將各超級計算中心互聯起來。地區網的構成一般是由一批在地理上局限於某一地域,在管理上隸屬於某一機構或在經濟上有共同利益的用戶的計算機互聯而成,連接各地區網上主通信結點計算機的高速數據專線構成了NSFnet的主幹網,這樣,當一個用戶的計算機與某一地區相聯以後,它除了可以使用任一超級計算中心的設施,可以同網上任一用戶通信,還可以獲得網路提供的大量信息和數據。這一成功使得NSFnet於1990年6月徹底取代了ARPAnet而成為Internet的主幹網。

E. 神經網路的歷史是什麼

沃倫·麥卡洛克和沃爾特·皮茨(1943)基於數學和一種稱為閾值邏輯的演算法創造了一種神經網路的計算模型。這種模型使得神經網路的研究分裂為兩種不同研究思路。一種主要關注大腦中的生物學過程,另一種主要關注神經網路在人工智慧里的應用。

一、赫布型學習

二十世紀40年代後期,心理學家唐納德·赫布根據神經可塑性的機制創造了一種對學習的假說,現在稱作赫布型學習。赫布型學習被認為是一種典型的非監督式學習規則,它後來的變種是長期增強作用的早期模型。從1948年開始,研究人員將這種計算模型的思想應用到B型圖靈機上。

法利和韋斯利·A·克拉克(1954)首次使用計算機,當時稱作計算器,在MIT模擬了一個赫布網路。納撒尼爾·羅切斯特(1956)等人模擬了一台 IBM 704計算機上的抽象神經網路的行為。

弗蘭克·羅森布拉特創造了感知機。這是一種模式識別演算法,用簡單的加減法實現了兩層的計算機學習網路。羅森布拉特也用數學符號描述了基本感知機里沒有的迴路,例如異或迴路。這種迴路一直無法被神經網路處理,直到保羅·韋伯斯(1975)創造了反向傳播演算法。

在馬文·明斯基和西摩爾·派普特(1969)發表了一項關於機器學習的研究以後,神經網路的研究停滯不前。他們發現了神經網路的兩個關鍵問題。

第一是基本感知機無法處理異或迴路。第二個重要的問題是電腦沒有足夠的能力來處理大型神經網路所需要的很長的計算時間。直到計算機具有更強的計算能力之前,神經網路的研究進展緩慢。

二、反向傳播演算法與復興

後來出現的一個關鍵的進展是保羅·韋伯斯發明的反向傳播演算法(Werbos 1975)。這個演算法有效地解決了異或的問題,還有更普遍的訓練多層神經網路的問題。

在二十世紀80年代中期,分布式並行處理(當時稱作聯結主義)流行起來。戴維·魯姆哈特和詹姆斯·麥克里蘭德的教材對於聯結主義在計算機模擬神經活動中的應用提供了全面的論述。

神經網路傳統上被認為是大腦中的神經活動的簡化模型,雖然這個模型和大腦的生理結構之間的關聯存在爭議。人們不清楚人工神經網路能多大程度地反映大腦的功能。

支持向量機和其他更簡單的方法(例如線性分類器)在機器學習領域的流行度逐漸超過了神經網路,但是在2000年代後期出現的深度學習重新激發了人們對神經網路的興趣。

三、2006年之後的進展

人們用CMOS創造了用於生物物理模擬和神經形態計算的計算設備。最新的研究顯示了用於大型主成分分析和卷積神經網路的納米設備具有良好的前景。

如果成功的話,這會創造出一種新的神經計算設備,因為它依賴於學習而不是編程,並且它從根本上就是模擬的而不是數字化的,雖然它的第一個實例可能是數字化的CMOS設備。

在2009到2012年之間,Jürgen Schmidhuber在Swiss AI Lab IDSIA的研究小組研發的循環神經網路和深前饋神經網路贏得了8項關於模式識別和機器學習的國際比賽。

例如,Alex Graves et al.的雙向、多維的LSTM贏得了2009年ICDAR的3項關於連筆字識別的比賽,而且之前並不知道關於將要學習的3種語言的信息。

IDSIA的Dan Ciresan和同事根據這個方法編寫的基於GPU的實現贏得了多項模式識別的比賽,包括IJCNN 2011交通標志識別比賽等等。

他們的神經網路也是第一個在重要的基準測試中(例如IJCNN 2012交通標志識別和NYU的揚·勒丘恩(Yann LeCun)的MNIST手寫數字問題)能達到或超過人類水平的人工模式識別器。

類似1980年Kunihiko Fukushima發明的neocognitron和視覺標准結構(由David H. Hubel和Torsten Wiesel在初級視皮層中發現的那些簡單而又復雜的細胞啟發)那樣有深度的、高度非線性的神經結構可以被多倫多大學傑弗里·辛頓實驗室的非監督式學習方法所訓練。

2012年,神經網路出現了快速的發展,主要原因在於計算技術的提高,使得很多復雜的運算變得成本低廉。以AlexNet為標志,大量的深度網路開始出現。

2014年出現了殘差神經網路,該網路極大解放了神經網路的深度限制,出現了深度學習的概念。

構成

典型的人工神經網路具有以下三個部分:

1、結構(Architecture)結構指定了網路中的變數和它們的拓撲關系。例如,神經網路中的變數可以是神經元連接的權重(weights)和神經元的激勵值(activities of the neurons)。

2、激勵函數(Activation Rule)大部分神經網路模型具有一個短時間尺度的動力學規則,來定義神經元如何根據其他神經元的活動來改變自己的激勵值。一般激勵函數依賴於網路中的權重(即該網路的參數)。

3、學習規則(Learning Rule)學習規則指定了網路中的權重如何隨著時間推進而調整。這一般被看做是一種長時間尺度的動力學規則。一般情況下,學習規則依賴於神經元的激勵值。它也可能依賴於監督者提供的目標值和當前權重的值。

例如,用於手寫識別的一個神經網路,有一組輸入神經元。輸入神經元會被輸入圖像的數據所激發。在激勵值被加權並通過一個函數(由網路的設計者確定)後,這些神經元的激勵值被傳遞到其他神經元。

這個過程不斷重復,直到輸出神經元被激發。最後,輸出神經元的激勵值決定了識別出來的是哪個字母。

F. 網路的起源

計算機網路的發展歷史

1969年,美國國防部高級研究計劃管理局( ARPA - - Advanced Research Projects Agency )開始建立一個命名為ARPAnet的網路, 把美國的幾個軍事及研究用電腦主機聯接起來。當初,ARPAnet只聯結4台主機,從軍事要求上是置於美國國防部高級機密的保護之下,從技術上它還不具備向外推廣的條件。

1983年,ARPA和美國國防部通信局研製成功了用於異構網路的TCP/IP協議,美國加利福尼亞伯克萊分校把該協議作為其BSD UNIX的一部分,使得該協議得以在社會上流行起來,從而誕生了真正的Internet。

1986年,美國國家科學基金會(National Science Foundation,NSF)利用ARPAnet發展出來的TCP/IP 的通訊協議,在5 個科研教育服務超級電腦中心的基礎上建立了NSFnet廣域網。

在90年代以前,Internet的使用一直僅限於研究與學術領域。商業性機構進入Internet一直受到這樣或那樣的法規或傳統問題的困擾。事實上,象美國國家科學基金會等曾經出資建造Internet的政府機構對Internet上的商業活動並不感興趣。 1991年,美國的三家公司分別經營著自己的CERFnet、PSInet及Alternet 網路, 可以在一定程度上向客戶提供Internet聯網服務。他們組成了「商用Internet協會」(CIEA),宣布用戶可以把它們的Internet子網用於任何的商業用途 。

Internet普及化 Internet目前已經聯系著超過160個國家和地區、4萬多個子網、500多萬台電腦主機,直接的用戶超過4000萬,成為世界上信息資源最豐富的電腦公共網路。Internet被認為是未來全球信息高速公路的雛形。

G. 計算機網路的起源是什麼

自1946年電子計算機問世以來的很長一段時間里,計算機不僅非常龐大,而且極其昂貴,只有極少數的公司才買得起。那時,人們上機既費時,又費力,很不方便。為了克服這種困難,人們就想到能不能把計算題目要用的數據和程序利用電話線路送到計算機上,而計算結果再通過電話線路送回來?最早實現這個想法的是美國的軍事部門。

1950年,美國在其北部和加拿大境內建立了一個地面防空系統,簡稱賽其(SAGE)系統。它是人類歷史上第一次將計算機與通信設備結合起來,是計算機網路的雛形。

賽其系統還不能算是真正的計算機網路,因為由通信線路所連接的,一端是計算機,另一端只是個數據輸入輸出設備,或稱終端設備。人們將這種系統稱為聯機終端系統,簡稱聯機系統。聯機系統很快就得到了推廣應用。按照這種方式,人們只要將一個終端通過通信線路與計算機聯起來,就可以在遠地通過終端利用計算機,好像人就在機房裡面一樣。

除了在科學計算上的應用外,聯機系統在商業上也得到了大量的應用。如用於航空公司的自動訂票系統。航空公司在各售票點的窗口都裝一台終端,通過通信線路連到總部的大型計算機上。這樣,總部的計算機隨時可知道每個航班已經發售了多少票,各終端上的售票員也隨時可知道哪些航班還有餘票,這樣就大大提高了工作效率和服務質量。

在發展聯機系統的同時,人們也在探索能不能將計算機通過通信線路連接起來,使得一些計算機上的用戶能夠利用其他計算機強大的計算能力、昂貴的外部設備和豐富的信息資源。20世紀60年代,美國國防部高級研究計劃局資助計算機網路的研究,於1969年12月建立了只有4台主計算機的ARPA網路。這是世界上第一個計算機網路,它就是今天網際網路的前身。ARPA網的成功引發了計算機網路研究的熱潮,這些研究為計算機網路的發展奠定了理論基礎。

隨後,以IBM和數字設備公司(DEC)為代表的各大計算機廠商幾乎都推出了自己的網路產品,但是計算機網路的普及是俗稱個人計算機出現以後的事了。

H. 網路的起源與發展

互 聯 網 發 展 史

1、什麼是Internet?
Internet是計算機交互網路的簡稱,又稱網間網。它是利用通信設備和線路將全世界上不同地理位置的功能相對獨立的數以千萬計的計算機系統互連起來,以功能完善的網路軟體(網路通信協議、網路操作系統等)實現網路資源共享和信息交換的數據通信網。

2、Internet的起源和發展

Internet的最早起源於美國國防部高級研究計劃署DARPA(Defence Advanced Research Projects Agency)的前身ARPAnet,該網於1969年投入使用。由此,ARPAnet成為現代計算機網路誕生的標志。

從六十年代起,由ARPA提供經費,聯合計算機公司和大學共同研製而發展起來的ARPAnet網路。最初,ARPAnet主要是用於軍事研究目的,它主要是基於這樣的指導思想:網路必須經受得住故障的考驗而維持正常的工作,一旦發生戰爭,當網路的某一部分因遭受攻擊而失去工作能力時,網路的其他部分應能維持正常的通信工作。ARPAnet在技術上的另一個重大貢獻是TCP/IP協議簇的開發和利用。作為Internet的早期骨幹網,ARPAnet的試驗並奠定了Internet存在和發展的基礎,較好地解決了異種機網路互聯的一系列理論和技術問題。

1983年,ARPAnet分裂為兩部分,ARPAnet和純軍事用的MILNET。同時,區域網和廣域網的產生和逢勃發展對Internet的進一步發展起了重要的作用。其中最引人注目的是美國國家科學基金會ASF(National Science Foundation)建立的NSFnet。NSF在全美國建立了按地區劃分的計算機廣域網並將這些地區網路和超級計算機中心互聯起來。NFSnet於1990年6月徹底取代了ARPAnet而成為Internet的主幹網。

NSFnet對Internet的最大貢獻是使Internet向全社會開放,而不象以前的那樣僅供計算機研究人員和政府機構使用。1990年9月,由Merit,IBM和MCI公司聯合建立了一個非盈利的組織―先進網路科學公司ANS(Advanced Network &Science Inc.)。ANS的目的是建立一個全美范圍的T3級主幹網,它能以45Mbps的速率傳送數據。到1991年底,NSFnet的全部主幹網都與ANS提供的T3級主幹網相聯通。

Internet的第二次飛躍歸功於Internet的商業化,商業機構一踏入Internet這一陌生世界,很快發現了它在通信、資料檢索、客戶服務等方面的巨大潛力。於是世界各地的無數企業紛紛湧入Internet,帶來了Internet發展史上的一個新的飛躍。

3、Internet在我國的發展進程及現狀

關於中國公用數據通信網 我國已建立了四大公用數據通信網,為我國Internet的發展創造了條件。

(1)中國公用分組交換數據通信網(ChinaPAC)。該網於1993年9月開通,1996年底已覆蓋全國縣級以上城市和一部分發達地區的鄉鎮,與世界23個國家和地區的44個數據網互聯。

(2)中國公用數字數據網(ChinaDDN)。該網於1994年開通,1996年底覆蓋到3000個縣級以上的城市和鄉鎮。我國的四大互聯網的骨幹大部分都是採用ChinaDDN。

(3)中國公用幀中繼網(ChinaFRN)。該網已在我國的8大區的省會城市設立了節點,向社會提供高速數據和多媒體通信。

(4)中國公用計算機互聯網(ChinaNet)。該網於1995年與Internet互聯,物理節點覆蓋30個省(市、自治區)的200多個城市,業務范圍覆蓋所有電話通達的地區。1998年7月,中國公用計算機互聯網(ChinaNet)骨幹網二期工程開始啟動。二期工程將八個大區間的主幹帶寬擴充至155M,並且將八個大區的節點路由器全部換成千兆位路由器。

2000年下半年,中國電信利用n*10Gbps DWDM和千兆位路由器技術,對ChinaNet進行了大規模擴容。目前,ChinaNet網路節點間的路由中繼由155M提升到2.5Gbps,提速16倍,到2000年底ChinaNet國內總帶寬已達800Gbps,到2001年3月份國際出口總帶寬突破3Gbps。

關於中國Internet的發展階段

互聯網在中國的發展歷程可以大略地劃分為三個階段:

第一階段為1986.6-1993.3是研究試驗階段(E-mail Only)

在此期間中國一些科研部門和高等院校開始研究Internet聯網技術,並開展了科研課題和科技合作工作。這個階段的網路應用僅限於小范圍內的電子郵件服務,而且僅為少數高等院校、研究機構提供電子郵件服務。發展經歷如下:

1986 : Dial up (Terminal)

1990 : X.25 (1989.11: CNPAC,1993.9: CHINAPAC)

1993.3 : Leased Line(DECnet) (Email Only)

第二階段為1994.4至1996年,是起步階段(Full Function Connection)

1994年4月,中關村地區教育與科研示範網路工程進入互聯網,實現和Internet的TCP/IP連接,從而開通了Internet全功能服務。從此中國被國際上正式承認為有互聯網的國家。之後,ChinaNet、CERnet、CSTnet、ChinaGBnet等多個互聯網路項目在全國范圍相繼啟動,互聯網開始進入公眾生活,並在中國得到了迅速的發展。1996年底,中國互聯網用戶數已達20萬,利用互聯網開展的業務與應用逐步增多。

第三階段從1997年至今,是快速增長階段。

國內互聯網用戶數97年以後基本保持每半年翻一番的增長速度。增長到今天,上網用戶已超過2000萬。據中國互聯網路信息中心(CNNIC)公布的統計報告顯示,截止到2001年6月30日,我國共有上網計算機約1002萬台,其中專線上網計算機:163萬台,撥號上網計算機:839萬台,上網用戶約2650萬人,其中專線上網的用戶人數為454萬,撥號上網的用戶人數為1793萬,同時使用專線與撥號的用戶人數為403萬。除計算機外同時使用其它設備(移動終端、信息家電)上網的用戶人數為107萬。CN下注冊的域名128362個,WWW站點242739個,國際出口帶寬3257Mbps。

詳情可參考中國互聯網信息中心(CNNIC)的《中國Internet發展大事記》。 中國目前有十傢具有獨立國際出入口線路的商用性互聯網骨幹單位,還有面向教育、科技、經貿等領域的非營利性互聯網骨幹單位。現在有600多家網路接入服務提供商(ISP),其中跨省經營的有200家左右。

在網路基礎設施方面,近年來,中國先後啟用了數個國際光纜系統。已經建成並投入使用的有;中日、中韓、環球海底光纜系統、亞歐陸地光纜系統;正在建設的有:亞太2號海底光纜、中美海底光纜、亞歐海底光纜。1999年共有13條國內干線光纜投入使用或試運行。光纜總長100萬公里。國內互聯網骨幹網路對原有信道全面擴容,中繼電路以155M為主。隨著密集波分復用(DWDM)技術廣泛應用於光通信建設,互聯網骨幹網帶寬可達2.5G-40G。

據中國電信集團公司副總經理冷榮泉介紹,我國網際網路骨幹網從1996年至今已經歷了3個階段:1996年之前,多數採用64K至2M傳輸通道;1997年至1999年多為2M至115M的通道;2000年到2001年從115M跳到了2.5G;從2002年開始,將逐步進入10G時代。

2002年1月11日,中國電信上海―杭州10G IP over DWDM建成開通,該通道所構建的長途波分復用傳輸系統,採用了思科公司長途波分復用系統和系列高速互聯網路由器。這一系統已被世界各地的大型電信運營商用於構建規模龐大、運行快速穩定的「IP+Optical」網路,並被證明具有良好的穩定性、可靠性和先進性。這條全國最寬的數據通信通道的開通,標志著我國網際網路骨幹傳輸網從2.5G步入10G時代,標志著中國電信數據傳輸能力已經達到國際先進水平,中國電信的數據網已經成為真正的高速數據網路、海量帶寬網。

關於中國十大互聯網簡況

目前我國有10家網路運營商(即十大互聯網路單位),有200家左右有跨省經營資格的網路服務提供商(ISP)。十大互聯網路單位分別是:

(1)中國公用計算機互聯網(CHINANET) (2)中國科技網(CSTNET)

(3)中國教育和科研計算機網(CERNET) (4)中國金橋信息網(CHINAGBN)(已並入網通)

(5)中國聯通互聯網(UNINET) (6)中國網通公用互聯網(CNCNET)

(7)中國移動互聯網(CMNET) (8)中國國際經濟貿易互聯網(CIETNET)

(9)中國長城互聯網(CGWNET) (10)中國衛星集團互聯網(CSNET)

其中非營利單位有四家:中國科技網、中國教育和科研計算機網、中國國際經濟貿易互聯網和中國長城互聯網。這十大互聯網路單位都擁有獨立的國際出口。調查顯示,截止2001年9月30日,我國的國際出口帶寬總和已達到5724M(見下圖,未包括中國長城互聯網的國際出口帶寬數據),與CNNIC在2001年1月的互聯網統計調查報告中公布的2799M相比,我國大陸在短短9個月的時間里,國際出口帶寬增加了2925M,增幅為105%。其中,與美國相連的有4023M(佔70.3%),與日本相連的有314M,與韓國相連的有251M,與中國香港相連的有749M,與中國澳門相連的有14M,還與澳大利亞、英國等國家相連。另外,這十大互聯網路單位與國家互聯網交換中心(NAP)之間的連接帶寬也達到3558M。我國十大互聯網單位之間的相互連接帶寬數,以及我國部分ISP與十大互聯網單位之間的連接帶寬數和國際出口帶寬情況請參考中國互聯網聯接帶寬Flash圖。

4、互聯網帶來的機遇與挑戰

互聯網給全世界帶來了非同尋常的機遇。人類經歷了農業社會、工業社會,當前正在邁進信息社會。信息作為繼材料、能源之後的又一重要戰略資源,它的有效開發和充分利用,已經成為社會和經濟發展的重要推動力和取得經濟發展的重要生產要素,它正在改變著人們的生產方式、工作方式、生活方式和學習方式。

首先,網路縮短了時空的距離,大大加快了信息的傳遞.使得社會的各種資源得以共享。

其次,網路創造出了更多的機會,可以有效地提高傳統產業的生產效率,有力地拉動消費需求,從而促進經濟增長。推動生產力進步。

第三,網路也為各個層次的文化交流提供了良好的平台。

互聯網的確創造了一個奇跡,但在奇跡背後,存在著日益突出的問題,給人們提出了極大的挑戰。比如,信息貧富差距開始擴大,財富分配出現不平等;網路的開放性和全球化,促進了人類知識的共享和經濟的全球化。但也使得網路安全和信息安全成為非常嚴峻的問題;網路的競爭已成為國家間和企業間高技術的競爭和人才的競爭;網路帶來信息的全球性流通,也加劇了文化滲透,各國都在為捍衛自己的網路文化而努力。中國擁有悠久的文化,如何使得這種厚重的文化在網路上得以延伸,這個問題顯得尤其突出。

5、Internet的發展特點與趨勢

Internet發展經歷了研究網、運行網和商業網3個階段。至今,全世界沒有人能夠知道Internet的確切規模。Internet正以當初人們始料不及的驚人速度向前發展,今天的Internet已經從各個方面逐漸改變人們的工作和生活方式。人們可以隨時從網上了解當天最新的天氣信息、新聞動態和旅遊信息,可看到當天的報紙和最新雜志,可以足不出戶在家裡炒股、網上購物、收發電子郵件,享受遠程醫療和遠程教育等等。

Internet的意義並不在於它的規模,而在於它提供了一種全新的全球性的信息基礎設施。當今世界正向知識經濟時代邁進,信息產業已經發展成為世界發達國家的新的支柱產業,成為推動世界經濟高速發展的新的源動力,並且廣泛滲透到各個領域,特別是近幾年來國際互聯網路及其應用的發展,從根本上改變了人們的思想觀念和生產生活方式,推動了各行各業的發展,並且成為知識經濟時代的一個重要標志之一。Internet已經構成全球信息高速公路的雛形和未來信息社會的藍圖。縱觀Internet的發展史,可以看出Internet的發展趨勢主要表現在如下幾個方面:

1)運營產業化

以Internet運營為產業的企業迅速崛起,從1995年5月開始,多年資助Internet研究開發的美國科學基金會(NSF)退出Internet,把NFSnet的經營權轉交給美國3家最大的私營電信公司(即Sprint、MCI和ANS),這是Internet發展史上的重大轉折。

2)應用商業化

隨著Internet對商業應用的開放,它已成為一種十分出色的電子化商業媒介。眾多公司、企業不僅把它作為市場銷售和客戶支持的重要手段,而且把它作為傳真、快遞及其他通信手段的廉價替代品,藉以形成與全球客戶保持聯系和降低日常的運營成本。如:電子郵件、IP電話、網路傳真、VPN和電子商務等等的日漸受到人們的重視便是最好例證。

3)互聯全球化

Internet雖然已有三十來年的發展歷史,但早期主要是限於美國國內的科研機構、政府機構和它的盟國范圍內使用。現在不一樣了,隨著各國紛紛提出適合本國國情的信息高速公路計劃,已迅速形成了世界性的信息高速公路建設熱潮,各個國家都在以最快的速度接入Internet。

4)互聯寬頻化

隨著網路基礎的改善、用戶接入方面新技術的採用、接入方式的多樣化和運營商服務能力的提高,接入網速率慢形成的瓶頸問題將會得到進一步改善,上網速度將會更快,帶寬瓶頸約束將會消除,互聯必然寬頻化,從而促進更多的應用在網上實現,並能滿足用戶多方面的網路需求。

5)多業務綜合平台化、智能化

隨著信息技術的發展,互聯網將成為圖像、話音和數據「三網合一」的多媒體業務綜合平台,並與電子商務、電子政務、電子公務、電子醫務、電子教學等交叉融合。十到二十年內,互聯網將超過報刊、廣播和電視的影響力,逐漸形成「第四媒體」。

綜上所述,隨著電信、電視、計算機「三網融合」趨勢的加強,未來的互聯網將是一個真正的多網合一、多業務綜合平台和智能化的平台,未來的互聯網是移動+IP+廣播多媒體的網路世界,它能融合現今所有的通信業務,並能推動新業務的迅猛發展,給整個信息技術產業帶來一場革命。

閱讀全文

與網路殘差起源是什麼相關的資料

熱點內容
網路限速150k是多少 瀏覽:372
打開聯通網路移動無信號 瀏覽:285
vivo設置app關閉移動網路 瀏覽:481
為啥么wifi顯示無網路 瀏覽:421
5g網路修改密碼 瀏覽:287
西瓜開會員網路異常 瀏覽:219
網路空間連通性異常網路延遲異常 瀏覽:214
鴻蒙系統怎樣開啟移動網路共享 瀏覽:377
信息技術與網路安全有什麼區別 瀏覽:474
機體電腦如何安裝網路 瀏覽:346
雙卡手機二卡沒有網路 瀏覽:752
電腦怎麼分享網路給iPhone 瀏覽:365
飛利浦藍牙音響怎麼連接網路 瀏覽:654
穿越火線一開游戲就提示網路連接錯誤 瀏覽:292
小企業如何組建網路實例 瀏覽:996
電視高清hdmi連接網路 瀏覽:167
需要付錢的wifi網路怎麼連 瀏覽:788
天易成網路管理如何使用 瀏覽:805
醫院網路信號很好 瀏覽:206
兩個路由器進行網路中繼穩定嗎 瀏覽:411

友情鏈接