導航:首頁 > 網路營銷 > 卷積網路用到了哪些演算法

卷積網路用到了哪些演算法

發布時間:2022-02-14 20:49:06

Ⅰ 深度學習演算法有哪些卷積神經網路

這個太多了,卷積是一種結構,凡是包含這種結構的深度網路都是卷積神經網路。比較知名的有:VGG、GoogleNet、Resnet等

Ⅱ 深度學習主要是學習哪些演算法

深度學習(也稱為深度結構化學習或分層學習)是基於人工神經網路的更廣泛的機器學習方法族的一部分。學習可以是有監督的、半監督的或無監督的。
深度學習架構,例如深度神經網路、深度信念網路、循環神經網路和卷積神經網路,已經被應用於包括計算機視覺、語音識別、自然語言處理、音頻識別、社交網路過濾、機器翻譯、生物信息學、葯物設計、醫學圖像分析、材料檢查和棋盤游戲程序在內的領域,在這些領域中,它們的成果可與人類專家媲美,並且在某些情況下勝過人類專家。
神經網路受到生物系統中信息處理和分布式通信節點的啟發。人工神經網路與生物大腦有各種不同。具體而言,神經網路往往是靜態和象徵性的,而大多數生物的大腦是動態(可塑)和模擬的。
定義
深度學習是一類機器學習演算法: 使用多個層逐步從原始輸入中逐步提取更高級別的特徵。例如,在圖像處理中,較低層可以識別邊緣,而較高層可以識別對人類有意義的部分,例如數字/字母或面部。

Ⅲ 卷積神經網路主要做什麼用的

卷積網路的特點主要是卷積核參數共享,池化操作。
參數共享的話的話是因為像圖片等結構化的數據在不同的區域可能會存在相同的特徵,那麼就可以把卷積核作為detector,每一層detect不同的特徵,但是同層的核是在圖片的不同地方找相同的特徵。然後把底層的特徵組合傳給後層,再在後層對特徵整合(一般深度網路是說不清楚後面的網路層得到了什麼特徵的)。
而池化主要是因為在某些任務中降采樣並不會影響結果。所以可以大大減少參數量,另外,池化後在之前同樣大小的區域就可以包含更多的信息了。
綜上,所有有這種特徵的數據都可以用卷積網路來處理。有卷積做視頻的,有卷積做文本處理的(當然這兩者由於是序列信號,天然更適合用lstm處理)
另外,卷積網路只是個工具,看你怎麼使用它,有必要的話你可以隨意組合池化和卷積的順序,可以改變網路結構來達到自己所需目的的,不必太被既定框架束縛。

Ⅳ 深度學習有哪些演算法

只有簡單的了解:
常見的深度學習演算法有三種:來卷積神經網路、循環神經網路、生成對抗網路。具體的需要自己去鑽研了

Ⅳ CNNs卷積神經網路演算法最後輸出的是什麼,一維向量和原始輸入圖像有什麼關系呢

看你的目的是什麼了,一般傳統分類的輸出是圖片的種類,也就是你說的一維向量,前提是你輸入圖像是也是一維的label。 如果你輸入的是一個矩陣的label,也可以通過調整網路的kernel達到輸出一個矩陣的labels。

Ⅵ 神經網路演算法的三大類分別是

神經網路演算法的三大類分別是:

1、前饋神經網路:

這是實際應用中最常見的神經網路類型。第一層是輸入,最後一層是輸出。如果有多個隱藏層,我們稱之為「深度」神經網路。他們計算出一系列改變樣本相似性的變換。各層神經元的活動是前一層活動的非線性函數。

2、循環網路:

循環網路在他們的連接圖中定向了循環,這意味著你可以按照箭頭回到你開始的地方。他們可以有復雜的動態,使其很難訓練。他們更具有生物真實性。

循環網路的目的是用來處理序列數據。在傳統的神經網路模型中,是從輸入層到隱含層再到輸出層,層與層之間是全連接的,每層之間的節點是無連接的。但是這種普通的神經網路對於很多問題卻無能無力。

循環神經網路,即一個序列當前的輸出與前面的輸出也有關。具體的表現形式為網路會對前面的信息進行記憶並應用於當前輸出的計算中,即隱藏層之間的節點不再無連接而是有連接的,並且隱藏層的輸入不僅包括輸入層的輸出還包括上一時刻隱藏層的輸出。

3、對稱連接網路:

對稱連接網路有點像循環網路,但是單元之間的連接是對稱的(它們在兩個方向上權重相同)。比起循環網路,對稱連接網路更容易分析。

這個網路中有更多的限制,因為它們遵守能量函數定律。沒有隱藏單元的對稱連接網路被稱為「Hopfield 網路」。有隱藏單元的對稱連接的網路被稱為玻爾茲曼機。

(6)卷積網路用到了哪些演算法擴展閱讀:

應用及發展:

心理學家和認知科學家研究神經網路的目的在於探索人腦加工、儲存和搜索信息的機制,弄清人腦功能的機理,建立人類認知過程的微結構理論。

生物學、醫學、腦科學專家試圖通過神經網路的研究推動腦科學向定量、精確和理論化體系發展,同時也寄希望於臨床醫學的新突破;信息處理和計算機科學家研究這一問題的目的在於尋求新的途徑以解決不能解決或解決起來有極大困難的大量問題,構造更加逼近人腦功能的新一代計算機。

Ⅶ 卷積神經網路演算法是什麼

一維構築、二維構築、全卷積構築。

卷積神經網路(Convolutional Neural Networks, CNN)是一類包含卷積計算且具有深度結構的前饋神經網路(Feedforward Neural Networks),是深度學習(deep learning)的代表演算法之一。

卷積神經網路具有表徵學習(representation learning)能力,能夠按其階層結構對輸入信息進行平移不變分類(shift-invariant classification),因此也被稱為「平移不變人工神經網路(Shift-Invariant Artificial Neural Networks, SIANN)」。

卷積神經網路的連接性:

卷積神經網路中卷積層間的連接被稱為稀疏連接(sparse connection),即相比於前饋神經網路中的全連接,卷積層中的神經元僅與其相鄰層的部分,而非全部神經元相連。具體地,卷積神經網路第l層特徵圖中的任意一個像素(神經元)都僅是l-1層中卷積核所定義的感受野內的像素的線性組合。

卷積神經網路的稀疏連接具有正則化的效果,提高了網路結構的穩定性和泛化能力,避免過度擬合,同時,稀疏連接減少了權重參數的總量,有利於神經網路的快速學習,和在計算時減少內存開銷。

卷積神經網路中特徵圖同一通道內的所有像素共享一組卷積核權重系數,該性質被稱為權重共享(weight sharing)。權重共享將卷積神經網路和其它包含局部連接結構的神經網路相區分,後者雖然使用了稀疏連接,但不同連接的權重是不同的。權重共享和稀疏連接一樣,減少了卷積神經網路的參數總量,並具有正則化的效果。

在全連接網路視角下,卷積神經網路的稀疏連接和權重共享可以被視為兩個無限強的先驗(pirior),即一個隱含層神經元在其感受野之外的所有權重系數恆為0(但感受野可以在空間移動);且在一個通道內,所有神經元的權重系數相同。

Ⅷ 常見的深度學習演算法主要有哪些

深度學習常見的3種演算法有:卷積神經網路、循環神經網路、生成對抗網路。
卷積神經網路(Convolutional Neural Networks, CNN)是一類包含卷積計算且具有深度結構的前饋神經網路(Feedforward Neural Networks),是深度學習的代表演算法之一。
循環神經網路(Recurrent Neural Network, RNN)是一類以序列數據為輸入,在序列的演進方向進行遞歸且所有節點(循環單元)按鏈式連接的遞歸神經網路。
生成對抗網路(GAN, Generative Adversarial Networks )是一種深度學習模型,是最近兩年十分熱門的一種無監督學習演算法。

閱讀全文

與卷積網路用到了哪些演算法相關的資料

熱點內容
三g手機能不能用四g網路 瀏覽:781
網路面試共享屏幕操作 瀏覽:888
聯通卡進屋無網路信號 瀏覽:460
網路約定不能退貨怎麼辦 瀏覽:38
boot網路啟動項是哪個 瀏覽:662
網路只能連5g怎麼辦 瀏覽:21
網路電視如何直播海南 瀏覽:280
迅捷網路路由器速度慢 瀏覽:102
如何評價網路文學的超越性 瀏覽:632
雨衣網路營銷 瀏覽:690
查詢網路怎麼設置 瀏覽:863
俄羅斯mts網路頻段是多少 瀏覽:719
手機支持3g網路有用嗎 瀏覽:934
蘋果無線網為什麼連上顯示網路不安全 瀏覽:814
搬新家網路太差怎麼辦 瀏覽:891
gprs為什麼沒有網路 瀏覽:753
數字電視網路電視有線電視哪個好 瀏覽:934
榮耀手機在哪測試網路 瀏覽:479
移動網路能不能直播 瀏覽:717
電視有連接無線網路的萬能鑰匙不 瀏覽:881

友情鏈接