導航:首頁 > 網路營銷 > 語音識別常用的神經網路有哪些

語音識別常用的神經網路有哪些

發布時間:2022-01-28 16:05:53

❶ 神經網路在語音情感識別中的應用都有哪些

啥意思?

❷ 是一種處理時序數據的神經網路,常用於語音識別,機器翻譯等領域

LSTM(Long Short-Term Memory)是長短期記憶網路,是一種時間循環神經網路,適合於處理和預測時間序列中間隔和延遲相對較長的重要事件。長短期記憶(Long short-term memory, LSTM)是一種特殊的RNN,主要是為了解決長序列訓練過程中的梯度消失和梯度爆炸問題。簡單來說,就是相比普通的RNN,LSTM能夠在更長的序列中有更好的表現。
LSTM 已經在科技領域有了多種應用。基於 LSTM 的系統可以學習翻譯語言、控制機器人、圖像分析、文檔摘要、語音識別圖像識別、手寫識別、控制聊天機器人、預測疾病、點擊率和股票、合成音樂等等任務。

❸ 人工神經網路有哪些類型

人工神經網路模型主要考慮網路連接的拓撲結構、神經元的特徵、學習規則等。目前,已有近40種神經網路模型,其中有反傳網路、感知器、自組織映射、Hopfield網路、波耳茲曼機、適應諧振理論等。根據連接的拓撲結構,神經網路模型可以分為:

(1)前向網路 網路中各個神經元接受前一級的輸入,並輸出到下一級,網路中沒有反饋,可以用一個有向無環路圖表示。這種網路實現信號從輸入空間到輸出空間的變換,它的信息處理能力來自於簡單非線性函數的多次復合。網路結構簡單,易於實現。反傳網路是一種典型的前向網路。

(2)反饋網路 網路內神經元間有反饋,可以用一個無向的完備圖表示。這種神經網路的信息處理是狀態的變換,可以用動力學系統理論處理。系統的穩定性與聯想記憶功能有密切關系。Hopfield網路、波耳茲曼機均屬於這種類型。

學習是神經網路研究的一個重要內容,它的適應性是通過學習實現的。根據環境的變化,對權值進行調整,改善系統的行為。由Hebb提出的Hebb學習規則為神經網路的學習演算法奠定了基礎。Hebb規則認為學習過程最終發生在神經元之間的突觸部位,突觸的聯系強度隨著突觸前後神經元的活動而變化。在此基礎上,人們提出了各種學習規則和演算法,以適應不同網路模型的需要。有效的學習演算法,使得神經網路能夠通過連接權值的調整,構造客觀世界的內在表示,形成具有特色的信息處理方法,信息存儲和處理體現在網路的連接中。
根據學習環境不同,神經網路的學習方式可分為監督學習和非監督學習。在監督學習中,將訓練樣本的數據加到網路輸入端,同時將相應的期望輸出與網路輸出相比較,得到誤差信號,以此控制權值連接強度的調整,經多次訓練後收斂到一個確定的權值。當樣本情況發生變化時,經學習可以修改權值以適應新的環境。使用監督學習的神經網路模型有反傳網路、感知器等。非監督學習時,事先不給定標准樣本,直接將網路置於環境之中,學習階段與工作階段成為一體。此時,學習規律的變化服從連接權值的演變方程。非監督學習最簡單的例子是Hebb學習規則。競爭學習規則是一個更復雜的非監督學習的例子,它是根據已建立的聚類進行權值調整。自組織映射、適應諧振理論網路等都是與競爭學習有關的典型模型。
研究神經網路的非線性動力學性質,主要採用動力學系統理論、非線性規劃理論和統計理論,來分析神經網路的演化過程和吸引子的性質,探索神經網路的協同行為和集體計算功能,了解神經信息處理機制。為了探討神經網路在整體性和模糊性方面處理信息的可能,混沌理論的概念和方法將會發揮作用。混沌是一個相當難以精確定義的數學概念。一般而言,「混沌」是指由確定性方程描述的動力學系統中表現出的非確定性行為,或稱之為確定的隨機性。「確定性」是因為它由內在的原因而不是外來的雜訊或干擾所產生,而「隨機性」是指其不規則的、不能預測的行為,只可能用統計的方法描述。混沌動力學系統的主要特徵是其狀態對初始條件的靈敏依賴性,混沌反映其內在的隨機性。混沌理論是指描述具有混沌行為的非線性動力學系統的基本理論、概念、方法,它把動力學系統的復雜行為理解為其自身與其在同外界進行物質、能量和信息交換過程中內在的有結構的行為,而不是外來的和偶然的行為,混沌狀態是一種定態。混沌動力學系統的定態包括:靜止、平穩量、周期性、准同期性和混沌解。混沌軌線是整體上穩定與局部不穩定相結合的結果,稱之為奇異吸引子。

❹ 人工神經網路在模式識別方面有哪些應用僅僅是用來分類嘛

不僅僅是分類,用途非常廣泛。經過多年的研究和發展,模式識別已成為當前比較先進的技術,被廣泛應用到文字識別、語音識別、指紋識別、遙感圖像識別、人臉識別、手寫體字元的識別、工業故障檢測、精確制導等方面。
模式識別的定義:是對表徵事物或現象的各種形式的信息進行處理和分析,來對事物或現象進行描述、辨認、分類和解釋的過程。該技術以貝葉斯概率論和申農的資訊理論為理論基礎,對信息的處理過程更接近人類大腦的邏輯思維過程。
現在有兩種基本的模式識別方法,即統計模式識別方法和結構模式識別方法。人工神經網路是模式識別中的常用方法,近年來發展起來的人工神經網路模式的識別方法逐漸取代傳統的模式識別方法。

❺ 語音識別需要使用人工神經網路嗎

連續的語音輸入可以用,而且最好用深度學習。不是唯一的辦法但是是目前比較可靠的。

❻ 語音識別演算法有哪些

DTW 特定人識別
HMM 非特定人識別
GMM
神經網路

❼ 語音識別 MFCC 神經網路

現在有相同的問題,請問當時是怎麼解決的呢

❽ 語言聊天機器人用哪些神經網路比較好

不一樣的a星方法是利用兩段評價進行路徑尋找對於障礙的處理需要進行改進所以有人用人工勢場處理障礙問題

❾ 語音識別技術的基本方法

一般來說,語音識別的方法有三種:基於聲道模型和語音知識的方法、模板匹配的方法以及利用人工神經網路的方法。 該方法起步較早,在語音識別技術提出的開始,就有了這方面的研究,但由於其模型及語音知識過於復雜,現階段沒有達到實用的階段。
通常認為常用語言中有有限個不同的語音基元,而且可以通過其語音信號的頻域或時域特性來區分。這樣該方法分為兩步實現:
第一步,分段和標號
把語音信號按時間分成離散的段,每段對應一個或幾個語音基元的聲學特性。然後根據相應聲學特性對每個分段給出相近的語音標號
第二步,得到詞序列
根據第一步所得語音標號序列得到一個語音基元網格,從詞典得到有效的詞序列,也可結合句子的文法和語義同時進行。 模板匹配的方法發展比較成熟,目前已達到了實用階段。在模板匹配方法中,要經過四個步驟:特徵提取、模板訓練、模板分類、判決。常用的技術有三種:動態時間規整(DTW)、隱馬爾可夫(HMM)理論、矢量量化(VQ)技術。
1、動態時間規整(DTW)
語音信號的端點檢測是進行語音識別中的一個基本步驟,它是特徵訓練和識別的基礎。所謂端點檢測就是在語音信號中的各種段落(如音素、音節、詞素)的始點和終點的位置,從語音信號中排除無聲段。在早期,進行端點檢測的主要依據是能量、振幅和過零率。但效果往往不明顯。60年代日本學者Itakura提出了動態時間規整演算法(DTW:DynamicTimeWarping)。演算法的思想就是把未知量均勻的升長或縮短,直到與參考模式的長度一致。在這一過程中,未知單詞的時間軸要不均勻地扭曲或彎折,以使其特徵與模型特徵對正。
2、隱馬爾可夫法(HMM)
隱馬爾可夫法(HMM)是70年代引入語音識別理論的,它的出現使得自然語音識別系統取得了實質性的突破。HMM方法現已成為語音識別的主流技術,目前大多數大詞彙量、連續語音的非特定人語音識別系統都是基於HMM模型的。HMM是對語音信號的時間序列結構建立統計模型,將之看作一個數學上的雙重隨機過程:一個是用具有有限狀態數的Markov鏈來模擬語音信號統計特性變化的隱含的隨機過程,另一個是與Markov鏈的每一個狀態相關聯的觀測序列的隨機過程。前者通過後者表現出來,但前者的具體參數是不可測的。人的言語過程實際上就是一個雙重隨機過程,語音信號本身是一個可觀測的時變序列,是由大腦根據語法知識和言語需要(不可觀測的狀態)發出的音素的參數流。可見HMM合理地模仿了這一過程,很好地描述了語音信號的整體非平穩性和局部平穩性,是較為理想的一種語音模型。
3、矢量量化(VQ)
矢量量化(VectorQuantization)是一種重要的信號壓縮方法。與HMM相比,矢量量化主要適用於小詞彙量、孤立詞的語音識別中。其過程是:將語音信號波形的k個樣點的每一幀,或有k個參數的每一參數幀,構成k維空間中的一個矢量,然後對矢量進行量化。量化時,將k維無限空間劃分為M個區域邊界,然後將輸入矢量與這些邊界進行比較,並被量化為「距離」最小的區域邊界的中心矢量值。矢量量化器的設計就是從大量信號樣本中訓練出好的碼書,從實際效果出發尋找到好的失真測度定義公式,設計出最佳的矢量量化系統,用最少的搜索和計算失真的運算量,實現最大可能的平均信噪比。
核心思想可以這樣理解:如果一個碼書是為某一特定的信源而優化設計的,那麼由這一信息源產生的信號與該碼書的平均量化失真就應小於其他信息的信號與該碼書的平均量化失真,也就是說編碼器本身存在區分能力。
在實際的應用過程中,人們還研究了多種降低復雜度的方法,這些方法大致可以分為兩類:無記憶的矢量量化和有記憶的矢量量化。無記憶的矢量量化包括樹形搜索的矢量量化和多級矢量量化。 利用人工神經網路的方法是80年代末期提出的一種新的語音識別方法。人工神經網路(ANN)本質上是一個自適應非線性動力學系統,模擬了人類神經活動的原理,具有自適應性、並行性、魯棒性、容錯性和學習特性,其強的分類能力和輸入-輸出映射能力在語音識別中都很有吸引力。但由於存在訓練、識別時間太長的缺點,目前仍處於實驗探索階段。
由於ANN不能很好的描述語音信號的時間動態特性,所以常把ANN與傳統識別方法結合,分別利用各自優點來進行語音識別。

❿ 常用的人工神經網路軟體有哪些

matlab。
spss裡面也有的。

閱讀全文

與語音識別常用的神經網路有哪些相關的資料

熱點內容
悅盒連接無線網路 瀏覽:161
中國電信改移動網路 瀏覽:286
如果網線沒接好網路會出什麼問題 瀏覽:589
疫情期間網路異常活躍 瀏覽:841
網路打車平台投訴找哪個部門 瀏覽:679
搶單軟體顯示網路異常是咋回事 瀏覽:784
網路分析儀測量相位校準設置 瀏覽:253
mp3電腦傳歌需要網路嗎 瀏覽:27
不能拉黑的網路電話哪個好 瀏覽:264
周口下樓無線網路管理中心 瀏覽:692
網路欺詐金額多少錢才能立案 瀏覽:745
如何做一張網路虛擬電話卡 瀏覽:44
如何打開共享網路搜索 瀏覽:28
如何看待網路的普及和危害 瀏覽:536
蘋果xr玩游戲網路卡頓 瀏覽:365
邢台淘寶網路運營電話多少 瀏覽:539
手機的網路經常斷開 瀏覽:572
黑鯊手機wifi網路連接受限 瀏覽:360
怎麼查看同一網路下的其他電腦 瀏覽:68
網路核相儀公司有哪些 瀏覽:176

友情鏈接