OSI七層模型、TCP/IP四層模型、五層體系結構
一、OSI七層模型
OSI七層協議模型主要是:應用層(Application)、表示層(Presentation)、會話層(Session)、傳輸層(Transport)、網路層(Network)、數據鏈路層(DataLink)、物理層(Physical)。
二、TCP/IP四層模型
TCP/IP是一個四層的體系結構,主要包括:應用層、運輸層、網際層和網路介面層。從實質上講,只有上邊三層,網路介面層沒有什麼具體的內容。
三、五層體系結構
五層體系結構包括:應用層、運輸層、網路層、數據鏈路層和物理層。五層協議只是OSI和TCP/IP的綜合,實際應用還是TCP/IP的四層結構。為了方便可以把下兩層稱為網路介面層。
(1)網路軟體中的網路體系結構有哪些擴展閱讀:
世界上第一個網路體系結構是美國IBM公司於1974年提出的,它取名為系統網路體系結構SNA(System Network Architecture)。凡是遵循SNA的設備就稱為SNA設備。這些SNA設備可以很方便地進行互連。此後,很多公司也紛紛建立自己的網路體系結構,這些體系結構大同小異,都採用了層次技術。
㈡ Internet中公認的協議標準是什麼它的四層體系結構是哪些常見的Internet提供
Internet中公認的協議標准:TCP/IP
它的四層體系結構是:鏈路層 網路層 傳輸層 應用層
一數據鏈路層
這是TCP/IP軟體的最低層,負責接收IP數據報並通過網路發送之,或者從網路上接收物理幀,抽出IP數據報,交給IP層。
二網路層
負責相鄰計算機之間的通信。其功能包括三方面:
1、處理來自傳輸層的分組發送請求,收到請求後,將分組裝入IP數據報,填充報頭,選擇去往信宿機的路徑,然後將數據報發往適當的網路介面。
2、處理輸入數據報:首先檢查其合法性,然後進行尋徑--假如該數據報已到達信宿機,則去掉報頭,將剩下部分交給適當的傳輸協議;假如該數據報尚未到達信宿,則轉發該數據報。
3、處理路徑、流控、擁塞等問題。
三傳輸層
提供應用程序間的通信。其功能包括:
1、格式化信息流;
2、提供可靠傳輸。為實現後者,傳輸層協議規定接收端必須發回確認,並且假如分組丟失,必須重新發送。
四應用層
向用戶提供一組常用的應用程序,比如電子郵件、文件傳輸訪問、遠程登錄等。遠程登錄TELNET使用TELNET協議提供在網路其它主機上注冊的介面。TELNET會話提供了基於字元的虛擬終端。文件傳輸訪問FTP使用FTP協議來提供網路內機器間的文件拷貝功能。
㈢ 目前的網路體系結構有哪些
是指通信系統的整體設計,它為網路硬體、軟體、協議、存取控制和拓撲提供標准。它廣泛採用的是國際標准化組織(ISO)在1979年提出的開放系統互連(OSI-Open System Interconnection)的參考模型。OSI參考模型用物理層、數據鏈路層、網路層、傳送層、對話層、表示層和應用層七個層次描述網路的結構,它的規范對所有的廠商是開放的,具有知道國際網路結構和開放系統走向的作用。它直接影響匯流排、介面和網路的性能。目前常見的網路體系結構有FDDI、乙太網、令牌環網和快速乙太網等。從網路互連的角度看,網路體系結構的關鍵要素是協議和拓撲。
網路體系結構 Network Architecture ↑
Network Architecture 網路體系結構 網路體系結構定義計算機設備和其他設備如何連接在一起以形成一個允許用戶共享信息和資源的通信系統。存在專用網路體系結構,如IBM的系統網路系統結構(SNA)和DEC的數字網路體系結構(DNA),也存在開放體系結構,如國際標准化組織(ISO)定義的開放式系統互聯(OSI)模型。網路體系結構在層中定義(參見「分層體系結構」)。如果這個標準是開放的,它就向廠商們提供了設計與其他廠商產品具有協作能力的軟體和硬體的途徑。然而,OSI模型還保持在模型階段,它並不是一個已經被完全接受的國際標准。考慮到大量的現存事實上的標准,許多廠商只能簡單地決定提供支持許多在工業界使用的不同協議,而不是僅僅接受一個標准。
分層在一個「協議棧」的不同級別說明不同的功能。這些協議定義通信如何發生,例如在系統之間的數據流、錯誤檢測和糾錯、數據的格式、數據的打包和其它特徵。基本結構如圖N-9所示。
通信是任何網路體系結構的基本目標。在過去,一個廠商需要非常關心它自己的產品可以相互之間進行通信,並且如果它公開這種體系結構,那麼其它廠商就也可以生產和此競爭的產品了,這樣就使得這些產品之間的兼容通常是很困難的。在任何情況下,協議都是定義通信如何在不同操作的級別發生的一組規則和過程。一些層定義物理連接,例如電纜類型、訪問方式、網路拓樸,以及數據是如何在網路之上進行傳輸的。向上是一些關於在系統之間建立連接和進行通信的協議,再向上就是定義應用如何訪問低層的網路通信功能,以及如何連接到這個網路的其它應用
如上所述,OSI模型已經成為所有其它網路體系結構和協議進行比較的一個模型。這種OSI模型的目的就是協調不同廠商之間的通信標准。雖然一些廠商還在繼續追求他們自己的標准,但是象DEC和IBM這樣的一些公司已經將OSI和象TCP/IP這樣的Internet標准一起集成到他們的聯網策略中了。
當許多LAN被連接成企業網時,互操作性是很重要的。可以使用許多不同的技術來達到這一目的,其中包括在單一系統中使用多種協議或使用可以隱藏協議的「中間件」的技術。中間件還可以提供一個介面來允許在不同平台上的應用交換信息。使用這些技術,用戶就可以從他們的台式應用來訪問不同的多廠商產品了。
㈣ 計算機網路技術:TCP/IP體系結構將網路分為哪幾層TCP/IP體系結構與OSI模型的對應關系是
計算機網路技術:TCP/IP體系結構將網路分為應用層,表示層,會話層,傳輸層,網路層,數據鏈路層,物理層。
TCP/IP體系結構與OSI模型的對應關系是:osi的上三層對應tcp的應用層,傳輸層與網路層是一一對應的。
應用層、表示層、會話層三個層次提供的服務相差不是很大,所以在TCP/IP協議中,它們被合並為應用層一個層次。由於運輸層和網路層在網路協議中的地位十分重要,所以在TCP/IP協議中它們被作為獨立的兩個層次。
(4)網路軟體中的網路體系結構有哪些擴展閱讀:
對不同種類的應用程序它們會根據自己的需要來使用應用層的不同協議,郵件傳輸應用使用了SMTP協議、萬維網應用使用了HTTP協議、遠程登錄服務應用使用了有TELNET協議。
在TCP/IP協議中,網路介面層位於第四層。由於網路介面層兼並了物理層和數據鏈路層所以,網路介面層既是傳輸數據的物理媒介,也可以為網路層提供一條准確無誤的線路。
㈤ 緗戠粶浣撶郴緇撴瀯鏈夊摢浜涘垎綾
緗戠粶浣撶郴緇撴瀯鏈夊摢浜涘垎綾伙紵
緗戠粶浣撶郴緇撴瀯鏈夊摢浜涘垎綾伙紵
緗戠粶鏄榪炴帴涓栫晫鐨勯噸瑕佸伐鍏鳳紝瀹冪殑浣撶郴緇撴瀯涔熸湁涓嶅悓鐨勫垎綾繪柟寮忋傚湪鏈綃囨枃絝犱腑錛屾垜浠灝嗕粙緇嶅嚑縐嶅父瑙佺殑緗戠粶浣撶郴緇撴瀯鍒嗙被鏂瑰紡銆
1.闆嗕腑寮忎綋緋葷粨鏋
闆嗕腑寮忎綋緋葷粨鏋勬槸涓縐嶄紶緇熺殑緗戠粶緇撴瀯錛屽畠鐨勪腑蹇冭妭鐐硅礋璐f墍鏈夌殑緗戠粶綆$悊鍜屾帶鍒躲傝繖縐嶇粨鏋勬渶甯歌佺殑渚嬪瓙灝辨槸灞鍩熺綉錛屽備紒涓氬唴閮ㄧ殑灞鍩熺綉錛屽畠浠閫氬父鍦ㄤ竴涓涓蹇冭妭鐐逛笅榪炴帴澶氫釜瀹㈡埛絝璁懼囥備紭鐐規槸鏄撲簬緇存姢鍜岀$悊錛屼絾涔熸湁欏剁駭鑺傜偣鍗曠偣鏁呴殰鐨勫紛絝銆
2.鍒嗗竷寮忎綋緋葷粨鏋
鍒嗗竷寮忎綋緋葷粨鏋勬槸涓縐嶆洿鍔犲嶆潅鐨勭綉緇滅粨鏋勶紝鍏朵腑姣忎釜鑺傜偣閮芥槸鑷涓葷殑瀹炰綋錛屽畠浠鍏變韓鏁版嵁鍜屼俊鎮錛屽叿鏈夊垎鏁f帶鍒剁殑鑳藉姏銆傝繖縐嶇粨鏋勬渶甯歌佺殑渚嬪瓙鏄疘nternet錛屽叾涓姣忎釜涓繪満閮芥槸鐙絝嬬殑瀹炰綋錛屽畠浠閫氳繃鈥滆礬鐢卞崗璁鈥濇潵浜掔浉閫氫俊銆傚垎甯冨紡緇撴瀯鐨勪紭鐐規槸瀹歸敊鑳藉姏寮猴紝鍥犱負娌℃湁涓蹇冭妭鐐癸紝浣嗙淮鎶ゆ垚鏈涔熼珮銆
3.闆嗙兢浣撶郴緇撴瀯
闆嗙兢浣撶郴緇撴瀯鏄灝嗗氫釜璁$畻鏈虹粍鎴愪竴涓鏁翠綋錛屾瘡涓鑺傜偣騫跺垪錛屽叿鏈夌浉鍚岀殑鍦頒綅銆傚洜姝わ紝闆嗙兢緇撴瀯姣旈泦涓寮忕粨鏋勬洿鍏峰彲鎵╁睍鎬у拰鍙闈犳э紝闆嗙兢鍙浠ラ氳繃鏂板炶妭鐐規垨鏇存敼鍙傛暟鏉ヨВ鍐蟲ц兘鐡墮堝拰璐熻澆騫寵闂棰樸傞泦緹ょ粨鏋勬渶甯歌佺殑渚嬪瓙鏄疻eb鏈嶅姟鍣ㄩ泦緹ゃ
4.瀵圭瓑緗戠粶浣撶郴緇撴瀯
瀵圭瓑緗戠粶浣撶郴緇撴瀯涔熺О涓虹偣瀵圭偣緗戠粶緇撴瀯錛屽畠鏄涓縐嶅圭瓑寮忕殑緗戠粶緇撴瀯錛屾瘡涓鑺傜偣鍙浠ュ厖褰撴湇鍔″櫒鍜屽㈡埛絝錛屼換浣曡妭鐐歸兘鍙浠ュ悜鍏朵粬鑺傜偣璇鋒眰鎴栨彁渚涙湇鍔★紝浠庤屽疄鐜版暟鎹鐨勫叡浜鍜屼紶杈撱傚圭瓑緗戠粶緇撴瀯鏈甯歌佺殑渚嬪瓙鏄鏂囦歡鍏變韓錛屽侭itTorrent銆
鎬葷粨錛
緗戠粶浣撶郴緇撴瀯鍙浠ユ寜鐓ч泦涓寮忋佸垎甯冨紡銆侀泦緹ゅ拰瀵圭瓑寮忕粨鏋勬潵鍒嗙被銆備笉鍚岀殑緇撴瀯鍏鋒湁鍚勮嚜鐨勪紭鐐瑰拰緙虹偣錛屽湪瀹炶返涓闇瑕佹牴鎹涓嶅悓鐨勫簲鐢ㄥ満鏅鏉ラ夋嫨閫傚綋鐨勭粨鏋勩
㈥ 計算機網路的結構有那些
網路的拓撲結構是拋開網路物理連接來討論網路系統的連接形式,網路中各站點相互連接的方法和形式稱為網路拓撲。拓撲圖給出網路伺服器、工作站的網路配置和相互間的連接,它的結構主要有星型結構、匯流排結構、樹型結構、網狀結構、蜂窩狀結構、分布式結構等。
星型結構
星型結構是指各工作站以星型方式連接成網。網路有中央節點,其他節點(工作站、伺服器)都與中央節點直接相連,這種結構以中央節點為中心,因此又稱為集中式網路。它具有如下特點:結構簡單,便於管理;控制簡單,便於建網;網路延遲時間較小,傳輸誤差較低。但缺點也是明顯的:成本高、可靠性較低、資源共享能力也較差。
環型結構
環型結構由網路中若干節點通過點到點的鏈路首尾相連形成一個閉合的環,這種結構使公共傳輸電纜組成環型連接,數據在環路中沿著一個方向在各個節點間傳輸,信息從一個節點傳到另一個節點。
環型結構具有如下特點:信息流在網中是沿著固定方向流動的,兩個節點僅有一條道路,故簡化了路徑選擇的控制;環路上各節點都是自舉控制,故控制軟體簡單;由於信息源在環路中是串列地穿過各個節點,當環中節點過多時,勢必影響信息傳輸速率,使網路的響應時間延長;環路是封閉的,不便於擴充;可靠性低,一個節點故障,將會造成全網癱瘓;維護難,對分支節點故障定位較難。
匯流排型結構
匯流排結構是指各工作站和伺服器均掛在一條匯流排上,各工作站地位平等,無中心節點控制,公用匯流排上的信息多以基帶形式串列傳遞,其傳遞方向總是從發送信息的節點開始向兩端擴散,如同廣播電台發射的信息一樣,因此又稱廣播式計算機網路。各節點在接受信息時都進行地址檢查,看是否與自己的工作站地址相符,相符則接收網上的信息。
匯流排型結構的網路特點如下:結構簡單,可擴充性好。當需要增加節點時,只需要在匯流排上增加一個分支介面便可與分支節點相連,當匯流排負載不允許時還可以擴充匯流排;使用的電纜少,且安裝容易;使用的設備相對簡單,可靠性高;維護難,分支節點故障查找難。
分布式結構
分布式結構的網路是將分布在不同地點的計算機通過線路互連起來的一種網路形式,分布式結構的網路具有如下特點:由於採用分散控制,即使整個網路中的某個局部出現故障,也不會影響全網的操作,因而具有很高的可靠性;網中的路徑選擇最短路徑演算法,故網上延遲時間少,傳輸速率高,但控制復雜;各個節點間均可以直接建立數據鏈路,信息流程最短;便於全網范圍內的資源共享。缺點為連接線路用電纜長,造價高;網路管理軟體復雜;報文分組交換、路徑選擇、流向控制復雜;在一般區域網中不採用這種結構。
樹型結構
樹型結構是分級的集中控制式網路,與星型相比,它的通信線路總長度短,成本較低,節點易於擴充,尋找路徑比較方便,但除了葉節點及其相連的線路外,任一節點或其相連的線路故障都會使系統受到影響。
網狀拓撲結構
在網狀拓撲結構中,網路的每台設備之間均有點到點的鏈路連接,這種連接不經濟,只有每個站點都要頻繁發送信息時才使用這種方法。它的安裝也復雜,但系統可靠性高,容錯能力強。有時也稱為分布式結構。
蜂窩拓撲結構
蜂窩拓撲結構是無線區域網中常用的結構。它以無線傳輸介質(微波、衛星、紅外等)點到點和多點傳輸為特徵,是一種無線網,適用於城市網、校園網、企業網。
在計算機網路中還有其他類型的拓撲結構,如匯流排型與星型混合。匯流排型與環型混合連接的網路。在區域網中,使用最多的是匯流排型和星型結構。
㈦ 計算機網路的組成和體系結構
一、計算機網路的基本組成
計算機網路是一個很復雜的系統,它由許多計算機軟體、硬體和通信設備組合而成。下面對一個計算機網路所需的主要部分,即伺服器、工作站、外圍設備、網路軟體作簡要介紹。
1.伺服器(Server)
在計算機網路中,伺服器是整個網路系統的核心,一般是指分散在不同地點擔負一定數據處理任務和提供資源的計算機,它為網路用戶提供服務並管理整個網路,它影響著網路的整體性能。一般在大型網路中採用大型機、中型機和小型機作為網路伺服器,可保證網路的可靠性。對於網點不多,網路通信量不大,數據安全性要求不太高的網路,可以選用高檔微機作網路伺服器。根據伺服器在網路中擔負的網路功能的不同,又可分為文件伺服器、通信伺服器和列印伺服器等。在小型區域網中,最常用的是文件伺服器。一般來說網路越大、用戶越多、伺服器負荷越大,對伺服器性能要求越高。
2.工作站(Workstation)
工作站有時也稱為「節點」或「客戶機(Client)」,是指通過網路適配器和線纜連接到網路上的計算機,是網路用戶進行信息處理的個人計算機。它和伺服器不同,伺服器是為整個網路提供服務並管理整個網路,而工作站只是一個接入網路的設備,它保持原有計算機的功能,作為獨立的計算機為用戶服務,同時又可按一定的許可權訪問伺服器,享用網路資源。
工作站通常都是普通的個人計算機,有時為了節約經費,不配軟、硬碟,稱為「無盤工作站」。
3.網路外圍設備
是指連接伺服器和工作站的一些連線或連接設備,如同軸電纜、雙絞線、光纖等傳輸介質,網卡(NIC)、中繼器(Repeater)、集線器(Hub)、交換機(Switch)、網橋(Bridge)等,又如用於廣域網的設備:數據機(Modem)、路由器(Router)、網關(Gateway)等,介面設備:T型頭、BNC連接器、終端匹配器、RJ45頭、ST頭、SC頭、FC頭等。
4.網路軟體
前面介紹的都是網路硬體設備。要想網路能很好地運行,還必須有網路軟體。
通常網路軟體包括網路操作系統(NOS)、網路協議軟體和網路通信軟體等。其中,網路操作系統是為了使計算機具備正常運行和連接上網的能力,常見的網路操作系統有UNIX、Linux、Novell Netware、Windows NT、Windows 2000 Server、Windows XP等;網路協議軟體是為了各台計算能使用統一的協議,可以看成是計算機之間相互會話使用的語言;而運用協議進行實際的通信則是由通信軟體完成的。
網路軟體功能的強弱直接影響到網路的性能,因為網路中的資源共享、相互通信、訪問控制和文件管理等都是通過網路軟體實現的。
二、計算機網路的拓撲結構
所謂計算機網路的拓撲結構是指網路中各結點(包括連接到網路中的設備、計算機)的地理分布和互連關系的幾何構形,即網路中結點的互連模式。
網路的拓撲結構影響著整個網路的設計、功能、可靠性和通信費用等指標,常見的網路拓撲結構有匯流排型、星型、環型等,通過使用路由器和交換機等互連設備,可在此基礎上構建一個更大網路。
1.匯流排型
在匯流排型結構中,將所有的入網計算機接入到一條通信傳輸線上,為防止信號反射,一般在匯流排兩端連有終端匹配器如圖6-1(a)。匯流排型結構的優點是信道利用率高,可擴充性好,結構簡單,價格便宜。當數據在匯流排上傳遞時,會不斷地「廣播」,第一節點均可收到此信息,各節點會對比數據送達的地址與自己的地址是否相同,若相同,則接收該數據,否則不必理會該數據。缺點是同一時刻只能有兩個網路結點在相互通信,網路延伸距離有限,網路容納的節點數有限。在匯流排上只要有一個結點連接出現問題,會影響整個網路運行,且不易找到故障點。
圖6-1 網路拓撲結構
2.星型
在星型結構中,以中央結點為中心,其他結點都與中央結點相連。每台計算機通過單獨的通信線路連接到中央結點,由該中央結點向目的結點傳送信息,如圖6-1(b),因此,中央結點必須有較強的功能和較高的可靠性。
在已實現的網路拓撲結構中,這是最流行的一種。跟匯流排型拓撲結構相比,它的主要的優勢是一旦某一個電纜線段被損壞了,只有連接到那個電纜段的主機才會受到影響,結構簡單,建網容易,便於管理。缺點是該拓撲是以點對點方式布線的,故所需線材較多,成本相對較高,此外中央結點易成為系統的「瓶頸」,且一旦發生故障,將導致全網癱瘓。
3.環型
在環型結構中,如圖6-1(c)所示,各網路結點連成封閉環路,數據只能是單向傳遞,每個收到數據包的結點都向它的下一結點轉發該數據包,環游一圈後由發送結點回收。當數據包經過目標結點時,目標結點根據數據包中的目標地址判斷出是自己接收,並把該數據包拷貝到自己的接收緩沖中。
環型拓撲結構的優點是:結構簡單,網路管理比較簡單,實時性強。缺點是:成本較高,可靠性差,網路擴充復雜,網路中若有任一結點發生故障都會使整個網路癱瘓。
三、計算機網路的體系結構
要弄清網路的體系結構,需先弄清網路協議是什麼。
網路協議是兩台網路上的計算機進行通信時使用的語言,是通信的規則和約定。為了在網路上傳輸數據,網路協議定義了數據應該如何被打成包、並且定義了在接收數據時接收計算機如何解包。在同一網路中的兩台計算機為了相互通信,必須運行同一協議,就如同兩個人交談時,必須採用對方聽得懂的語言和語速。
由於網路結點之間的連接可能是很復雜的,因此,為了減少協議設計的復雜性,在制定協議時,一般把復雜成分分解成一些簡單成分,再將它們復合起來,而大多數網路都按層來組織,並且規定:(1)一般是將用戶應用程序作為最高層,把物理通信線路作為最低層,將其間再分為若干層,規定每層處理的任務,也規定每層的介面標准;(2)每一層向上一層提供服務,而與再上一層不發生關系;(3)每一層可以調用下一層的服務傳輸信息,而與再下一層不發生關系。(4)相鄰兩層有明顯的介面。
除最低層可水平通信外,其他層只能垂直通信。
層和協議的集合被稱為網路的體系結構。為了幫助大家理解,我們從現實生活中的一個例子來理解網路的層次關系。假如一個只懂得法語的法國文學家和一個只懂得中文的中國文學家要進行學術交流,那麼他們可將論文翻譯成英語或某一種中間語言,然後交給各自的秘書選一種通信方式發給對方,如圖6-2所示。
圖6-2 中法文學家學術交流方式
下面介紹兩個重要的網路體系結構:OSI參考模型和TCP/IP參考模型。
1.OSI參考模型
由於世界各大型計算機廠商推出各自的網路體系結構,不同計算機廠商的設備相互通信困難。為建立更大范圍內的計算機網路,必然要解決異構網路的互連,因而國際標准化組織ISO於1977年提出「開放系統互連參考模型」,即著名的OSI(Open system interconnection/Reference Model)。它將計算機網路規定為物理層、數據鏈路層、網路層、傳輸層、會話層、表示層、應用層等七層,受到計算機界和通信界的極大關注。
2.TCP/IP參考模型
TCP/IP(Transmission Control Protocol/Internet protocol)協議是Internet使用的通信協議,由ARPANET研究中心開發。TCP/IP是一組協議集(Internet protocol suite),而TCP、IP是該協議中最重要最普遍使用的兩個協議,所以用TCP/IP來泛指該組協議。
TCP/IP協議的體系結構被分為四層:
(1)網路介面層 是該模型的最低層,其作用是負責接收IP數據報,並通過網路發送出去,或者從網路上接收網路幀,分離IP數據報。
(2)網路層 IP協議被定義駐留在這一層中,它負責將信息從一台主機傳到指定接收的另一台主機。主要功能是:定址、打包和路由選擇。
(3)傳輸層 提供了兩個協議用於數據傳輸,即傳輸控制協議TCP和通用數據協議UDP,負責提供准確可靠和高效的數據傳送服務。
(4)應用層 位於TCP/IP最高層,為用戶提供一組常用的應用程序協議。例如:簡單郵件傳輸協議SMTP、文件傳協議FTP、遠程登錄協議Telnet、超文本傳輸協議HTTP(該協議是後來擴充的)等。隨著Internet的發展,又開發了許多實用的應用層協議。
圖6-3是TCP/IP模型和OSI模型的簡單比較:
圖6-3 TCP/IP模型和OSI模型的對比