① 人工神經網路分類方法
從20世紀80年代末期,人工神經網路方法開始應用於遙感圖像的自動分類。目前,在遙感圖像的自動分類方面,應用和研究比較多的人工神經網路方法主要有以下幾種:
(1)BP(Back Propagation)神經網路,這是一種應用較廣泛的前饋式網路,屬於有監督分類演算法,它將先驗知識融於網路學習之中,加以最大限度地利用,適應性好,在類別數少的情況下能夠得到相當高的精度,但是其網路的學習主要採用誤差修正演算法,識別對象種類多時,隨著網路規模的擴大,需要的計算過程較長,收斂緩慢而不穩定,且識別精度難以達到要求。
(2)Hopfield神經網路。屬於反饋式網路。主要採用Hebb規則進行學習,一般情況下計算的收斂速度較快。這種網路是美國物理學家J.J.Hopfield於1982年首先提出的,它主要用於模擬生物神經網路的記憶機理。Hopfield神經網路狀態的演變過程是一個非線性動力學系統,可以用一組非線性差分方程來描述。系統的穩定性可用所謂的「能量函數」進行分析,在滿足一定條件下,某種「能量函數」的能量在網路運行過程中不斷地減少,最後趨於穩定的平衡狀態。Hopfield網路的演變過程是一種計算聯想記憶或求解優化問題的過程。
(3)Kohonen網路。這是一種由芬蘭赫爾辛基大學神經網路專家Kohonen(1981)提出的自組織神經網路,其採用了無導師信息的學習演算法,這種學習演算法僅根據輸入數據的屬性而調整權值,進而完成向環境學習、自動分類和聚類等任務。其最大的優點是最終的各個相鄰聚類之間是有相似關系的,即使識別時把樣本映射到了一個錯誤的節點,它也傾向於被識別成同一個因素或者一個相近的因素,這就十分接近人的識別特性。