『壹』 大數據的三大主要來源
1、開源數據
開源數據包括了互聯網數據、移動數據網數據,互聯網平台和移動互聯網平台通過采、編、發或者通過用戶互動產生的數據,公之於眾,供網民或用戶訪問、瀏覽。
2、業務數據
業務數據產生於各單位的信息化系統中,尤其是內部的信息化系統,我們統稱為業務系統。在目前的單位業務系統中,存在於單位的OA系統或者CRM之中,其中蘊含了大量的工作數據和交易數據,以及客戶管理數據,包括交易數據、流水數據、記帳數據、借款數據、貸款數據等業務數據,這些數據構建了每天的系統日誌,同時又是帳戶余額、信用額度、購買能力等的有力補充,這些數據不僅對生產系統起到計費支撐作用,同時也是用戶(銀行客戶、電力客戶、擔保公司等)進行相關決策的重要基礎,所以目前很多單位需要對這些數據進行查詢統計和分析。
3、線路數據
無論是互聯網還是各種內網,任何的網路行為都需要經過「線路」進行鏈接和交互,而在這條線路上,要經過無數的路由交換得以完成,這條線路在完成鏈接的同時,也記錄與存貯了大量的數據,我們統稱為線路數據。
『貳』 網路大數據在什麼地方獲取
社區、論壇、微博、知乎、FACEBOOK、Twitter、Ins等社交媒體
網路、搜狗、360、谷歌、必應、雅虎等搜索引擎
美團、大眾點評、58同城、趕集網等信息分類網站
企查查、天眼查等企業工商信息API
智聯、BooS直聘、拉勾、中華英才、領英等招聘網站
阿里巴巴、慧聰、商業新知、軟服之家等ToB類平台或行業網站
政府數據開放平台
北京市政務數據資源網、上海市政府數據服務網、天津市信息資源統一開放平台、開放廣東、浙江政務服務網「數據開放」專題網站、武漢市政務公開數據服務網、長沙市政府門戶網站數據開放平台、蘇州市政府數據開放平台、成都市公共數據開放平台、數據開放--四川省人民政府網站……
國家相關部門統計信息網站
中國人民銀行、中國銀行業監督管理委員會、中國證券監督管理委員會、中國銀保險監督管理委員會、中國國家統計局……
國外數據開放網站
紐約政府開放數據平台、美國官網數據超市、新加坡政府開放數據平台、休斯頓市開放數據門戶網站、Academic Torrents、hadoopilluminated.com、美國人口普查局、世界銀行開放數據搜索網站、費城開放數據平台……
資源節選自:
【Open Data】國外開放數據中心及政府數據開放平台匯總
最全的中國開放數據(open data)及政府數據開放平台匯總
『叄』 大數據來自哪裡大數據會去哪裡
大數據來自哪裡?大數據會去哪裡?
初識大數據,首先我們需要知道什麼是大數據呢?用通俗一點的話來說就是一堆一堆又一堆的、海量的數據。通過網路我們知道「大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。」
在當下的互聯網飛速發展的時代,任何一個技術都是為了達到某種目的而發展的,而大數據從根本上來說就是為了做決定存在的,大數據為企業的決策提供有力的依據。比如市場方針的制定,精準營銷的目標群體、營銷數據等等。大數據的存在不僅是為企業提供了數據支撐,而且為用戶提供了更為便捷的信息和數據服務。
大數據體現的是數據的數量多,數據類型豐富。我們需要通過對數據的關系的的挖掘,才能最終將數據進行更好地利用。
誰是物聯網?
物聯網是什麼呢?通俗的概念來講,物聯網就是通過網路信息技術和工業自動化控制技術將硬體和網路進行有效的集合並通過感測器進行對應的信息控制,以此達到對物件的自動控制的混合網路。通過網路我們知道「物聯網(The Internet of things)就是物物相連的互聯網」。這有兩層意思:第一,物聯網的核心和基礎仍然是互聯網,是在互聯網基礎上的延伸和擴展的網路;第二,其用戶端延伸和擴展到了任何物品與物品之間,進行信息交換和通信。物聯網通過智能感知、識別技術與普適計算、泛在網路的融合應用。」
隨著工業控制、信息識別和互聯網網路的發展,物聯網將是下一個信息浪潮。
大數據與物聯網的聯系既有區別也關聯。以小編的個人愚見,物聯網行業如果需要有較好的發展,那麼需要大數據強力的支持,而針對物聯網行業的大數據,則是不斷來源於物聯網超級終端的數據採集。所以,物聯網對大數據的要求相比於大數據對物聯網的依賴更為嚴重。
大數據來自哪裡?大數據會去哪裡?
淺談大數據的來源
大數據的來源這個問題其實很簡單,大數據的來源無非就是我們通過各種數據採集器、資料庫、開源的數據發布、GPS信息、網路痕跡(購物,搜索歷史等)、感測器收集的、用戶保存的、上傳的等等結構化或者非結構化的數據。
淺談大數據能夠帶給我們什麼
大數據能給我們帶來什麼?很多公司現在都在炒大數據的概念,但是真正能做好的有幾個呢?大數據重在積累、強在分析、利於運用。沒有經過多年的有意的數據收集、沒有經過嚴謹細心的數據分析。那麼,如何來談論大數據能給企業或者個人來帶來便捷呢?
大數據能帶給企業的項目立項的數據支撐、精準化營銷、電商的倉位儲備等等。但是針對個人用戶有時候就是麻煩了,因為你隨時都可以接收到很多的營銷簡訊、隱私暴露太多。另外對於個人用戶大數據的好處是可以快速找到自己想要東西、為用戶提供信息服務、獲取消費指導等等。換個角度看問題的話,小編認為應該是利大於弊。
大數據是怎麼帶給我們想要的支撐?
龐大的數據需要我們進行剝離、整理、歸類、建模、分析等操作,通過這些動作後,我們開始建立數據分析的維度,通過對不同的維度數據進行分析,最終我們才能得到我們想到的數據和信息。
1、 項目立項前的市場數據分析為決策提供支撐;
2、 目標用戶群體趨勢分析為產品提供支撐和商務支撐;
3、 通過對運營數據的挖掘和分析為企業提供運營數據支撐;
4、 通過對用戶行為數據進行分析,為用戶提供生活信息服務數據支撐和消費指導數據支撐。
如何通過大數據挖掘潛在的價值?
模型對於大數據的含義
模型有直觀模型,物理模型,思維模型,符合模型等。我們在進行數據挖掘前需要考慮我們需要用這些數據來干什麼?需要建立怎麼樣的模型?然後根據模型與數據的關系來不斷優化模型。
只有建立了正確的模型才能讓數據的挖掘和分析更有便捷。
『肆』 網站運營數據分析通過什麼途徑
中企動力信息化運營專家認為,需要分析的數據一般包括:哪些改變能吸引更多的網站瀏覽量(比如點擊網路廣告進入);哪些網頁的點擊量最大;網站訪問者進入網站的來源;通過什麼關鍵詞進入的;網站訪問者在各種網頁上逗留的時間有多長,等等。當然,最關鍵的指標是銷售轉換率(意向客戶轉化率)有多高,網站的注冊人數有多少,每個客戶的成本是多少等等。此外,企業還希望了解新的措施(如,定製新的當日遞送的價格,為提高銷售量在網站上開展促銷活動等)是否有效。網站運營數據分析所需要的數並嘩據可以通過多種途徑獲得: 企業網站的伺服器日誌記錄了用戶的IP地址,用戶使用的是什麼瀏覽器,進入網站以前他所在的位置,瀏覽的具體時間,以及用戶的注冊信息等。通過IP地址,企業可以了解用戶所在區域,例如jp表示用戶住在日本。 網路跟蹤文件是用戶在訪問網站時在硬碟上自動生成的文件。當客戶進入網站並進行操作(例如使用購物車)時這些文件能發揮作用。客戶再次訪問該網站時,這些文件中的數據可以調出,從而了解該客戶瀏覽的次數等信息。亞馬遜網站就是利用網路跟蹤器文件在主頁上自動生成用戶姓名的。 頁面標簽(page tags)其實就是頁面上的一個像元(pixel),用戶是看不見的。在用戶瀏覽一個頁面時,頁面標簽被用來激活頁面上的一個信息,例如何時將商品從購物車移出等。用戶計算機硬碟上的網路跟蹤器文件也可以用來激活標簽,顯示用戶何時回訪網站,在網站上做了哪些動作。
利用網站解析軟體,企業可以對伺服器的登錄信息進行分析,進而解析用戶的行為模式。
中企動力信息化運營專家提醒:目前,谷歌的Analytics和網路統計都是智能的、功能非常強大的用來統計企業網站運營數據的專業工具,用戶非常多,備受推崇。
用戶下單和付款不一定會在同一天完成,但一周的數據相對是精準的,所以我們把每周數據作為逗蔽敏比對的參考對象,主要的用途在於,比對上周與上上周數據間的差別,運營做了某方面的工作,產品做出了某種調整,相對應的數據也會有一定的變化,如果沒有提高,說明方法有問題或者本身的問題並在與此。
1. 網站使用率:IP、PV、平均瀏覽頁數、在線時間、跳出率、回訪者比率、訪問深度比率、訪問時間比率。
這是最基本的,每項數據提高都不容易,這意味著要不斷改進每一個發現問題的細節,不斷去完善購物體驗。來說明下重要的數據指標:
1.1 跳出率:跳出率高絕不是好事,但跳出的問題在哪裡才是關鍵。我的經驗,在一些推廣活動或投放大媒體廣告時,跳出率都會很高,跳出率高可能意味著人群不精準,或者廣告訴求與訪問內容有巨大的差別,或者本身的訪問頁面有問題。常規性的跳出率我注於登錄、注冊、訂單流程1-3步、用戶中心等基礎頁面,如果跳出率高於20%,我覺得就有不少的問題,也根據跳出率來改進購物流程和用戶體驗。
1.2 回訪者比率=一周內2次回訪者/總來訪者,意味著網站吸引力,以及會員忠誠度,如果在流量穩定的情況下,此數據相對高一些會比較高,太高則說明新用戶開發的太少,太低則說明用戶的忠誠度太差,復購率也不會高。
1.3 訪問深度比率=訪問超過11頁的用戶/總的訪問數,訪問時間比率=訪問時間在10分鍾以上的用戶數/總用戶數,這兩項指標代表網站內容吸引力,數據比率越高越好。
2. 運營數據:總訂單、有效訂單、訂單有效率、總銷售額、客單價、毛利潤、毛利率、下單轉化率、付款轉化率、退貨率;
每日數據匯總,每周的數據一定是穩定的,主要比對於上上周的數據,重點指導運山枝營內部的工作,如產品引導、定價策略、促銷策略、包郵策略等。
2.1 比對數據,為什麼訂單數減少了?但銷售額增加了?這是否是好事?
2.2 對比數據,為什麼客單價提高了?但利潤率降低了?這是否是好事?
2.3 對比數據,能否做到:銷售額增長,利潤率提高,訂單數增加?這不是不可能。
所有的問題,在運營數據中都能夠找到答案。
一、如何入門互聯網數據分析
1、網站分析是一種能力
對於大部分人互聯網從業者而言,網站分析是一種能力,因為基於網站分析之上的結論可以指導運營、產品、設計、技術的同事的工作。
2、網站分析解決的問題
用戶是誰(目標用戶),
從哪裡來(流量從哪裡來,流量的價值等),
到哪裡去(為什麼離開,如何降低用戶流失)
3、對於產品OR運營,網站分析能做什麼
產品改版是否合理?
用戶的反饋如何?
哪些功能存在問題?
功能使用頻率?
轉化路徑是否靠譜?
對於運營:
用戶來源路徑?
用戶活躍度如何?
如何分配廣告預算
網站內容是否有效?
如何分解KPI?
4、為什麼進行網站分析
5、網站分析的核心
二、網站分析的流程
定義問題——測量——分析——改進——維持
三、定義問題
如何你已經知道如何有效的去描述一個問題,那麼你已經成功了一半了,因為你知道問題,而且也知道如何去問。
工作可不是試券設計好問題來問你,首先得你自己發現問題。
比如如注冊轉化率的降低就跟非常多的問題是正相關的。
產品支持度是否足夠?
頭像上傳
郵箱驗證
必填資料
營銷是否到位?
新老訪客比如何
外界口碑如何
問題的要素:本質、現象、特徵、量化
定義一個問題:即給整個團隊確認一個方向,圍繞著這個目標往下分解,制定計劃,在計劃具體執行的過程中發現了某個問題,再來具體分析的。
所以作為一個網站分析師,立足點應該是從公司 戰略出發, 了解產品,運營,技術,商業邏輯等等層面的知識,給公司的發展提供大量的建議。
獻峰商業&產品&運營&設計,的推薦書單:
豆瓣豆列的推薦人數達 1316人,收藏人數達 6291。目前我讀看過的不到十分之一,但是確實有助於從事網站分析的同事提升商業格局。
互聯網產品經理 全方位入門
蘇傑 老師整理的互聯網產品經理全方位入門書籍。豆瓣豆列的推薦人數達986人,收藏人數達 7774。慚愧,只看過豆列裡面20%的書。
當當,僅僅通過讀書是無法培養行業格局的,還需要善於向人請教、善用網路資源、自己體驗、實踐等等。
求職互聯網數據分析,如何准備行業知識?
四、測量
收集數據。
目前常用的數據流量監測的工作:
Google AnalyticsGoogle 網站分析工具
Omniture Omniture SiteCatalys
網路統計 網路統計工具騰訊分析主要針對論壇
等等。。。。
比如教育行業的數據,可以從一些行業數據收集的網站中找到
另外,作為不會寫程序的產品OR運營,只能通過第三方的工具或者平台來拿到數據了,或者向技術同學提需求。
技術才是第一生產力。如果會一些 SQL或者Python,獲取的數據太要太精彩哇……
推薦書籍:做數據分析不得不看的書有哪些?
這個問答下面推薦的書,基本都是關於數據挖掘或者獲取的。
五、分析、改進、維持
比如某游戲的玩家行業軌跡是這樣的
於是分析的時候決定重點關注新用戶的流失問題
流失的任務類型分析:
操作復雜
任務不平滑、不流暢
升級緩慢
有組隊任務或者其他互動任務
然後就是不斷的循環優化著。分析出問題,確認用戶的需求,改進產品,進一步統計並維持提升結果。
分析的流程方法大概如此,比較好掌握,但是具體到工作當中,遠非這幾句話能解釋當的,所以慢慢實踐成長吧。
1.精益數據分析
2.轉化:提升網站流量和轉化率的技巧
3.數據分析 :企業的賢內助
4.網站數據分析:數據驅動的網站管理.優化和運營
5.人人都是網站分析師:從分析師的視角理解網站和解讀數據
6.圖解網站分析36大數據
網站數據是直接體現出網路營銷的效果的數據。
網路營銷的效果是需要網站數據體現出來的。
如果沒有網站的數據統計很難對網路營銷的成果作出量化,沒有量化的數據統計,就不能對網路營銷的效果有一個整體的分析,只有有了一個系統的分析才會有一個良好的 網路營銷效果。
康那裡士數字營銷,長期從事網路營銷策劃與推廣工作。
簡單的統計代碼還是跟蹤流量來源……或者根據網站運營目的,達到某一特定需求進行有效分析。早期的網站建設和運營,在數據很少的時候,網站更注重流量和渠道,而網站運營相對成熟的時候,數據分析更應該偏向於網站功能性發展方向,比如一家企業營銷型網站,對用戶購買率特別敏感,那麼數據分析就應該以此為核心,進行分析;而對於展示型網站來說,對於用戶留存率特別感興趣,數據分析依據就是興趣,如果是一個靠廣告獲得收益的網站,如何誘導用戶點擊廣告。
你想要實現什麼目的,數據分析都可以起到輔助支持決策的作用
從用戶方面入手分析包括以下幾點:(微問數據)
1、包括用戶增長統計和用戶屬性統計。
2、用戶增長統計,是按日統計,有4個維度:
3、新關注、取消關注、凈增關注、累積關注。
挺專業的,站長必備啊~~也就外出用手機關心一下網站流量,要不能在電腦上網,直接後網頁GA,還辛辛苦苦弄3G看多麻煩。
這個問題問的比較廣泛,你需要的是。如何去了解自己的店鋪的一些數據,然後根據數據結合,改變店鋪的整個布吉。
1
行業數據
行業數據對於一個APP來說,至關重要。了解行業數據,可以知道自己的APP在整個行業的水平,可以從新增用戶、活躍用戶、啟動次數、使用時長等多個維度去對比自己產品與行業平均水平的差異以及自己產品的對應的指標在整個行業的排名,從而知道自己產品的不足之處。這種縱向的對比,會讓自己的產品定位、發展方向更加清晰。
2
評估渠道效果
在國內,獲取用戶的渠道是非常多的,如微博、微信、運營商商店、操作系統商店、應用商店、手機廠商預裝、CPA廣告、交叉推廣、限時免費等等。看一個APP的數據,首先要知道用戶從哪裡來,哪裡的用戶質量最高,這樣開發者就會面臨一個選擇和評估渠道的難問題。但是通過統計分析工具,開發者可以從多個維度的數據來對比不同渠道的效果,比如從新增用戶、活躍用戶、次日留存率、單次使用時長等角度對比不同來源的用戶,這樣就可以根據數據找到最適合自身的渠道,從而獲得最好的推廣效果。
3
用戶分析
產品吸引到用戶下載和使用之後,首先要知道的就是用戶是誰。所以,我們需要詳盡地了解到用戶的設備終端類型、網路及運營商、地域的分布特徵。這些數據可以幫助了解用戶的屬性,在產品改進以及產品推廣中,就可以充分利用這些數據制定精準的策略。
4
用戶行為分析
在關注完用戶的屬性後,我們還要高度關注用戶在應用內的行為,因為這些行為最終決定著產品所能夠帶來的價值。開發者可以通過設置自定義事件以及漏斗來關注應用內每一步的轉化率,以及轉化率對收入水平的影響。通過分析事件和漏斗數據,可以針對性的優化轉化率低的步驟,切實提高整體轉化水平。
5
產品受歡迎程度
在了解了用戶的行為之後,我們應該看一下自己的產品是否足夠受歡迎,這是一個應用保持生命力的根本。開發者可以從留存用戶、用戶參與度(使用時長、使用頻率、訪問頁面、使用間隔)等維度評價用戶粘度。進行數據對比分析的時候,要充分利用時間控制項和渠道控制項,可以對比不同時段不同渠道的用戶粘度,了解運營推廣手段對不同渠道的效果。
『伍』 運營商的流量哪來的
運營商通過建造移動通信基站來接收並傳遞移動信號和流量,通過電磁波來傳遞和接收流量,而且運營商的流量是無限制的。
運營商的流量是無限制的,手機發射的一個信號,通過基站傳給另外一個基站,中間只是一個信號的傳輸。不管是手機通話,還是上網,都是通過無線電磁波來傳輸的,運營商就是通過建通訊基站來保證手機信號的發射和接收的。
流量是根據使用的多少計算的,運營商之所以要收取流量費是因為上網的通道是它搭建的,使用的每一k的流量,都經過服務基站,也就可以計算使用的流量的多少了,從而收取相應的費用。
(5)廣東網路運營商大數據哪裡來擴展閱讀:
流量收費的原因——
1、基礎設施建設投入費用。基礎設施建設是運營商向我們提供各類服務的硬體基礎,基礎設施越完善,所能享受到的服務也就越好。
通常,城市裡的基礎設施建設是最完善的。所以4G信號、3G信號,到了偏遠的山區可能就變成了2G甚至沒有信號。
在基礎設施這一 塊,運營商的投入是非常大的,全國這么大的范圍,需要的基站、機房、光纖等基礎設施的投入。以中國移動的4G投入為例,前期的投入就達到750億。
2、設施維護費用。運營商的設施,需要設備的維護和更換。這些,都會產生費用。
3、人員和營銷費用。除了基礎設施建設,運營商還需要投入人力和物力宣傳自己的服務,這些又會產生一筆不小的費用。