導航:首頁 > 網路營銷 > 哪些是經典的cnn網路模型

哪些是經典的cnn網路模型

發布時間:2022-01-19 01:01:31

❶ 深度學習的主要分類是什麼呀這些網路cnn dbn dnm rnn是怎樣的關系

簡單來說:

1)深度學習(Deep Learning)只是機器學習(Machine Learning)的一種類別,一個子領域。機器學習 > 深度學習

2)大數據(Big Data)不是具體的方法,甚至不算具體的研究學科,而只是對某一類問題,或需處理的數據的描述

具體來說:

1)機器學習(Machine Learning)是一個大的方向,裡麵包括了很多種 approach,比如 deep learning, GMM, SVM, HMM, dictionary learning, knn, Adaboosting...不同的方法會使用不同的模型,不同的假設,不同的解法。這些模型可以是線性,也可以是非線性的。他們可能是基於統計的,也可能是基於稀疏的....

不過他們的共同點是:都是 data-driven 的模型,都是學習一種更加 abstract 的方式來表達特定的數據,假設和模型都對特定數據廣泛適用。好處是,這種學習出來的表達方式可以幫助我們更好的理解和分析數據,挖掘數據隱藏的結構和關系。

Machine Learning 的任務也可以不同,可以是預測(prediction),分類(classification),聚類(clustering),識別(recognition),重建(reconstruction),約束(regularization),甚至降噪(denoising),超分辨(super-resolution),除馬賽克(Demosaicing)等等....

2)深度學習(Deep Learning)是機器學習的一個子類,一般特指學習高層數的網路結構。這個結構中通常會結合線性和非線性的關系。

Deep Learning 也會分各種不同的模型,比如 CNN, RNN, DBN...他們的解法也會不同。

Deep Learning 目前非常流行,因為他們在圖像,視覺,語音等各種應用中表現出了很好的 empirical performance。並且利用 gpu 的並行運算,在模型相當復雜,數據特別大量的情況下,依然可以達到很理想的學習速度。

因為 Deep Learning 往往會構建多層數,多節點,多復雜度的模型,人們依然缺乏多裡面學習的結構模型的理解。很多時候,Deep Learning 甚至會被認為擁有類似於人類神經網路的結構,並且這種類似性被當做 deep learning 居然更大 potential 的依據。但答主個人認為,其實這略有些牽強...聽起來更像是先有了這種 network 的結構,再找一個類似性。當然,這僅僅是個人觀點...(私貨私貨)

3)大數據(Big Data,我們也叫他逼格數據....)是對數據和問題的描述。通常被廣泛接受的定義是 3 個 V 上的「大」:Volume(數據量), Velocity(數據速度)還有 variety(數據類別)。大數據問題(Big-data problem)可以指那種在這三個 V 上因為大而帶來的挑戰。

Volume 很好理解。一般也可以認為是 Large-scale data(其實學術上用這個更准確,只是我們出去吹逼的時候就都叫 big data 了...)。「大」可以是數據的維度,也可以是數據的 size。一般 claim 自己是 big-data 的演算法會比較 scalable,復雜度上對這兩個不敏感。演算法和系統上,人們喜歡選擇並行(Parallel),分布(distributed)等屬性的方法來增加 capability。
ITjob----採集

❷ 有哪些深度神經網路模型

目前經常使用的深度神經網路模型主要有卷積神經網路(CNN) 、遞歸神經網路(RNN)、深信度網路(DBN) 、深度自動編碼器(AutoEncoder) 和生成對抗網路(GAN) 等。

遞歸神經網路實際.上包含了兩種神經網路。一種是循環神經網路(Recurrent NeuralNetwork) ;另一種是結構遞歸神經網路(Recursive Neural Network),它使用相似的網路結構遞歸形成更加復雜的深度網路。RNN它們都可以處理有序列的問題,比如時間序列等且RNN有「記憶」能力,可以「模擬」數據間的依賴關系。卷積網路的精髓就是適合處理結構化數據。

關於深度神經網路模型的相關學習,推薦CDA數據師的相關課程,課程以項目調動學員數據挖掘實用能力的場景式教學為主,在講師設計的業務場景下由講師不斷提出業務問題,再由學員循序漸進思考並操作解決問題的過程中,幫助學員掌握真正過硬的解決業務問題的數據挖掘能力。這種教學方式能夠引發學員的獨立思考及主觀能動性,學員掌握的技能知識可以快速轉化為自身能夠靈活應用的技能,在面對不同場景時能夠自由發揮。點擊預約免費試聽課。

❸ 目前深度學習的模型有哪幾種適用於哪些問題

核心有幾個
卷積神經網路CNN,用來做圖像處理的
循環神經網路RNN,用來處理帶順序關系的數據
對抗生成網路GAN,是一種概率生成模型
transformer注意力模型,用來做序列到序列計算的
更多的是他們的變種。數不清

❹ CNN卷積神經網路結構有哪些特點

局部連接,權值共享,池化操作,多層次結構。
1、局部連接使網路可以提取數據的局部特徵;

2、權值共享大大降低了網路的訓練難度,一個Filter只提取一個特徵,在整個圖片(或者語音/文本) 中進行卷積;

3、池化操作與多層次結構一起,實現了數據的降維,將低層次的局部特徵組合成為較高層次的特徵,從而對整個圖片進行表示。

❺ CNN、RNN、DNN的內部網路結構有什麼區別

從廣義上來說,NN(或是更美的DNN)確實可以認為包含了CNN、RNN這些具體的變種形式。在實際應用中,所謂的深度神經網路DNN,往往融合了多種已知的結構,包括卷積層或是LSTM單元。但是就題主的意思來看,這里的DNN應該特指全連接的神經元結構,並不包含卷積單元或是時間上的關聯。
因此,題主一定要將DNN、CNN、RNN等進行對比,也未嘗不可。其實,如果我們順著神經網路技術發展的脈絡,就很容易弄清這幾種網路結構發明的初衷,和他們之間本質的區別。神經網路技術起源於上世紀五、六十年代,當時叫感知機(perceptron),擁有輸入層、輸出層和一個隱含層。輸入的特徵向量通過隱含層變換達到輸出層,在輸出層得到分類結果。
早期感知機的推動者是Rosenblatt。(扯一個不相關的:由於計算技術的落後,當時感知器傳輸函數是用線拉動變阻器改變電阻的方法機械實現的,腦補一下科學家們扯著密密麻麻的導線的樣子…)但是,Rosenblatt的單層感知機有一個嚴重得不能再嚴重的問題,即它對稍復雜一些的函數都無能為力(比如最為典型的「異或」操作)。
連異或都不能擬合,你還能指望這貨有什麼實際用途么。隨著數學的發展,這個缺點直到上世紀八十年代才被Rumelhart、Williams、Hinton、LeCun等人(反正就是一票大牛)發明的多層感知機(multilayer perceptron)克服。多層感知機,顧名思義,就是有多個隱含層的感知機。

❻ 形色app用的卷積神經網路的什麼模型

CNN卷積神經網路是一種深度模型。它其實老早就已經可以成功訓練並且應用了(最近可能deep learning太火了,CNNs也往這裡面靠。雖然CNNs也屬於多層神經網路架構,但把它置身於DL家族,還是有不少人保留自己的理解的)。
它在原始的輸入中應用可訓練的濾波器trainable filters和局部鄰域池化操作local neighborhood pooling operations,得到一個分級的且逐漸復雜的特徵表示。有實踐表示,如果採用合適的規則化項來訓練,它可以達到非常好的效果。CNN還讓人青睞的一點就是它會對例如姿勢、光照和復雜背景存在不變性。

❼ CNN(卷積神經網路)是什麼

在數字圖像處理的時候我們用卷積來濾波是因為我們用的卷積模版在頻域上確實是高通低通帶通等等物理意義上的濾波器。然而在神經網路中,模版的參數是訓練出來的,我認為是純數學意義的東西,很難理解為在頻域上還有什麼意義,所以我不認為神經網路里的卷積有濾波的作用。接著談一下個人的理解。首先不管是不是卷積神經網路,只要是神經網路,本質上就是在用一層層簡單的函數(不管是sigmoid還是Relu)來擬合一個極其復雜的函數,而擬合的過程就是通過一次次back propagation來調參從而使代價函數最小。

❽ 圖像識別深度學慣用的模型有哪些

圖像識別,是指利用計算機對圖像進行處理、分析和理解,以識別各種不同模式的目標和對像的技術。一般工業使用中,採用工業相機拍攝圖片,然後再利用軟體根據圖片灰階差做進一步識別處理,圖像識別軟體國外代表的有康耐視等,國內代表的有圖智能等。另外在地理學中指將遙感圖像進行分類的技術。

❾ 什麼是CNN

CNN是美國有線電視新聞網(CABLE NEWS NETWORK)的英文簡稱,其創始人特德·特納於60年代初接管了家庭的廣告事業,到60年代末,他擁有了三家廣播電台,1976年特納買下了亞特蘭大的一個小型的UHF電視台,後來又買下了北卡羅納州夏洛特的一座電視台.70年代中期衛星已用於傳送有線電視節目,特納的小電視台由此實現了從地方電視台向潛在的全國性電視台的飛躍

❿ 主流的深度學習模型有哪些

主流的深度學習模型有很多CNN的各種變種,Bert,殘差網路,生成對抗網路

閱讀全文

與哪些是經典的cnn網路模型相關的資料

熱點內容
手機永久連接網路 瀏覽:90
顯示連接數據網路的標志叫什麼 瀏覽:983
不用網路也可以玩吃雞游戲有哪些 瀏覽:409
蘋果safari怎麼沒有網路 瀏覽:873
網路工程資格證書有哪些 瀏覽:418
數據網路和無線網為什麼會沖突 瀏覽:649
手機電信網路設置4g 瀏覽:625
手機沒網路了還有什麼辦法連接 瀏覽:57
網路輿情設置 瀏覽:380
電腦顯示本機無法連接到網路 瀏覽:685
家庭無線網路安裝 瀏覽:796
發給網路上女孩多少紅包合適 瀏覽:531
長安4g網路盒在哪裡安裝的呢 瀏覽:498
華碩搜無線網路 瀏覽:428
移動網路電視機頂盒看電影收費 瀏覽:552
網路營銷證書哪裡看 瀏覽:132
坦克網路游戲有哪些 瀏覽:239
興業銀行如何安裝網路 瀏覽:600
信號線沒網路是什麼原因 瀏覽:543
最後一個大學生如何正確使用網路 瀏覽:593

友情鏈接