A. 常用的多址接入方式有哪些
1、第二代時分多址。時分多址(time division multiple access,TDMA)把唯晌時間分割成互不重疊的時段(幀),再將幀分割成互不重疊的時隙(信道)與用戶具有一一對應關系,依據時隙區分來自不同地址的用戶信號,從而完成的多址連接。這是通信技術中基本多址技術之一,一種數字傳輸技術,將無線電頻率分成不同的時間間隙來分配給若干個通話。在2G(為GSM)移動通信系統中多被採用,衛星通信和光纖通信的多址技術中。TDMA較之FDMA具有通信口號質量高,保密較好,系統容量較大等優點,但它橡皮必須有精確定時和同步以保證移動終端和基站間正常通信,技術上比較復雜。
2、第一代頻分多址。FDMA (Frequency Division Multiple Access/Address),有許多不同技術可以用來實現信道共享。把信道頻帶分割為若干更窄的互不相交的頻帶(稱為子頻帶),把每個子頻帶分給一個用戶專用(稱為地址)。這種技術被稱為「頻分多址」技術。頻分復用(FDM)是指載波帶寬被劃分為多種不同頻帶的子信道,每個子信道可以並行傳送一路信號的一種技術。頻分復用技術下,多個用戶可以共享一個物理通信信道,該過程即為頻分多址復用(FDMA)。FDMA 模擬傳輸是效率最低的網路,這主要體現在模擬信道每次只能供一個用戶使用,使得帶寬得不到充分利用。
3、第三代碼分多址。CDMA是碼分多址的英文縮寫(CodeDivisionMultipleAccess),它是在數字技術的分支--擴指如鋒頻通信技術上發展起來的一種嶄新而成熟的無線通信技術。CDMA技術的原理是基於擴頻技術,即將需傳送的具有一定信號帶寬信息數據,用一個帶寬遠大於信號帶寬的高速偽隨機碼進行調制,使原數據信號的帶寬被擴展,再經載波調制並發送出去。
4、空分多址。空分多址(Space Division Multiple Access, SDMA),也稱為多光束頻率復用,通過標記不同方位相同頻率的天線光束來進行頻率的復用。5.4G是第四代移動通信及其技術的簡稱,是集3G與WLAN於一體並能夠傳輸高質量視頻圖象的技術產品.4G系統能夠以100Mbps的速度下載,上傳的速度也能達到20Mbps,並能夠滿足幾乎所有用戶對於無線服務的要求.4G手機傳遞信息依靠的是電磁波來實現的
B. 列舉點對點式有那些廣播式網路有哪些
真的沒明白你說的是什麼意思!你說的是網路廣播嘛 ?
網路廣播就是通過我們現有的互聯網為平台,通過交換機實現音頻傳送。可以做到主機對任意點進行尋呼,也可以做到點與點雙向尋呼,還可以做到每個點選擇主機上的東西進行自動單獨播放。。
C. 網路地址和廣播地址是什麼
網路地址:是用於隔離主機地址的,通俗的說電話的區號就是來隔離不同城市的電話號碼的,有了網路地址就可以很好的對不同環境、不同領域、不同地理環境等主機地址的規劃和管理。例如192.168.1、192.168.2等這就是網路地址,處於此網路地址下的主機地址就是一個獨立的網路體系。
廣播地址:顧名思義是對網路上所有的ip地址進行廣播自己的地址信息,廣播又分為網內廣播和網段廣播,例如192.168.1.255,這就是你一個廣播地址,對192.168.1這個網路的所有主機地址進行廣播,192.168.255.255,這個就是對整個c類網段的廣播,255.255.255.255,這個就不得了了,是對整個互聯網的廣播,就像早在win95年代的ping就可以發廣播包,往往形成攻擊,因為這個回應包是相當可觀的!
D. 1、廣播網路類型有哪些2、OSI模型有哪些層3、路由器和交換機的作用
1、廣播網路類型分類
(1)、地理位置
1.區域網(LAN):一般限定在較小的區域內,小於10km的范圍,通常採用有線的方式連接起來。
2.城域網(MAN):規模局限在一座城市的范圍內,10~100km的區域。
3.廣域網(WAN):網路跨越國界、洲界,甚至全球范圍。
區域網和廣域網是網路的熱點。區域網是組成其他兩種類型網路的基礎,城域網一般都加入了廣域網。廣域網的典型代表是internet網。
4.個人網:個人區域網就是在個人工作地方把屬於個人使用的電子設備(如便攜電腦等)用無線技術連接起來的網路,因此也常稱為無線個人區域網WPAN,其范圍大約在10m左右。
(2、)傳輸介質
1.有線網:採用同軸電纜和雙絞線來連接的計算機網路。
同軸電纜網是常見的一種連網方式。它比較經濟,安裝較為便利,傳輸率和抗干擾能力一般,傳輸距離較短。
雙絞線網是目前最常見的連網方式。它價格便宜,安裝方便,但易受干擾,傳輸率較低,傳輸距離比同軸電纜要短。
2.光纖網:光纖網也是有線網的一種,但由於其特殊性而單獨列出,光纖網採用光導纖維作傳輸介質。光纖傳輸距離長,傳輸率高,可達數千兆bps,抗干擾性強,不會受到電子監聽設備的監聽,是高安全性網路的理想選擇。不過由於其價格較高,且需要高水平的安裝技術,所以尚未普及。
3.無線網:用電磁波作為載體來傳輸數據,無線網聯網費用較高,還不太普及。但由於聯網方式靈活方便,是一種很有前途的連網方式。
區域網常採用單一的傳輸介質,而城域網和廣域網採用多種傳輸介質。
(3)、拓撲結構
網路的拓撲結構是指網路中通信線路和站點(計算機或設備)的幾何排列形式。
星型網路:各站點通過點到點的鏈路與中心站相連。特點是很容易在網路中增加新的站點,數據的安全性和優先順序容易控制,易實現網路監控,但中心節點的故障會引起整個網路癱瘓。
匯流排型網路
樹型網、簇星型網、網狀網等其他類型拓撲結構的網路都是以上述三種拓撲結構為基礎的。
(4)、通信分類
1.點對點:數據以點到點的方式在計算機或通信設備中傳輸。星型網、環形網採用這種傳輸方式。
2.廣播式:數據在共用介質中傳輸。無線網和匯流排型網路屬於這種類型。
(5)、使用目的
1.共享資源:使用者可共享網路中的各種資源,如文件、掃描儀、繪圖儀、列印機以及各種服務。internet網是典型的共享資源網。
2.數據處理網:用於處理數據的網路,例如科學計算網路、企業經營管理用網路。
3.數據傳輸網:用來收集、交換、傳輸數據的網路,如情報檢索網路等。
網路使用目的都不是唯一的。
(6)、服務分類
1.客戶機/伺服器網路:伺服器是指專門提供服務的高性能計算機或專用設備,客戶機是用戶計算機。這是客戶機向伺服器發出請求並獲得服務的一種網路形式,多台客戶機可以共享伺服器提供的各種資源。這是最常用、最重要的一種網路類型。不僅適合於同類計算機聯網,也適合於不同類型的計算機聯網,如pc機(personal computer個人計算機)、mac機的混合聯網。這種網路安全性容易得到保證,計算機的許可權、優先順序易於控制,監控容易實現,網路管理能夠規范化。網路性能在很大程度上取決於伺服器的性能和客戶機的數量。針對這類網路有很多優化性能的伺服器稱為專用伺服器。銀行、證券公司都採用這種類型的網路。
2.對等網:對等網不要求文件伺服器,每台客戶機都可以與其他每台客戶機對話,共享彼此的信息資源和硬體資源,組網的計算機一般類型相同。這種網路方式靈活方便,但是較難實現集中管理與監控,安全性也低,較適合於部門內部協同工作的小型網路。
(7)、其他分類
如按信息傳輸模式的特點來分類的atm網,網內數據採用非同步傳輸模式,數據以53位元組單元進行傳輸,提供高達1.2gbps的傳輸率,有預測網路延時的能力。可以傳輸語音、視頻等實時信息,是最有發展前途的網路類型之一。
2、OSI七層網路模型
應用層 (Application):網路服務與最終用戶的一個介面。
協議有:HTTP FTP TFTP SMTP SNMP DNS
表示層(Presentation Layer):數據的表示、安全、壓縮。(在五層模型裡面已經合並到了應用層)
格式有,JPEG、ASCll、DECOIC、加密格式等
會話層(Session Layer):建立、管理、終止會話。(在五層模型裡面已經合並到了應用層)
對應主機進程,指本地主機與遠程主機正在進行的會話
傳輸層 (Transport):定義傳輸數據的協議埠號,以及流控和差錯效驗。
協議有:TCP UDP,數據包一旦離開網卡即進入網路傳輸層
網路層 (Network):進行邏輯地址定址,實現不同網路之間的路徑選擇。
協議有:ICMP IGMP IP(IPV4 IPV6) ARP RARP
數據鏈路層 (Link):建立邏輯連接、進行硬體地址定址、差錯效驗等功能。(由底層網路定義協議),將比特組合成位元組進而組合成幀,用MAC地址訪問介質,錯誤發現但不能糾正。
物理層(Physical Layer):建立、維護、斷開物理連接。(由底層網路定義協議),另外還有一些非正規的分類方法:如企業網、校園網,根據名稱便可理解。
3、路由器的作用:
連通不同的網路
從過濾網路流量的角度來看,路由器的作用與交換機和網橋非常相似。但是與工作在網路物理層,從物理上劃分網段的交換機不同,路由器使用專門的軟體協議從邏輯上對整個網路進行劃分。例如,一台支持IP協議的路由器可以把網路劃分成多個子網段,只有指向特殊IP地址的網路流量才可以通過路由器。對於每一個接收到的數據包,路由器都會重新計算其校驗值,並寫入新的物理地址。因此,使用路由器轉發和過濾數據的速度往往要比只查看數據包物理地址的交換機慢。但是,對於那些結構復雜的網路,使用路由器可以提高網路的整體效率。路由器的另外一個明顯優勢就是可以自動過濾網路廣播。從總體上說,在網路中添加路由器的整個安裝過程要比即插即用的交換機復雜很多。
有的路由器僅支持單一協議,但大部分路由器可以支持多種協議的傳輸,即多協議路由器。由 於每一種協議都有自己的規則,要在一個路由器中完成多種協議的演算法,勢必會降低路由器的性能。路由器的主要工作就是為經過路由器的每個數據幀尋找一條最佳傳輸路徑,並將該數據有效地傳送到目的站點。由此可見,選擇最佳路徑的策略即路由演算法是路由器的關鍵所在。為了完成這項工作,在路由器中保存著各種傳輸路徑的相關數據--路徑表(Routing Table),供路由選擇時使用。路徑表中保存著子網的標志信息、網上路由器的個數和下一個路由器的名字等內容。路徑表可以是由系統管理員固定設置好的,也可以由系統動態修改,可以由路由器自動調整,也可以由主機控制。
靜態路由表:由系統管理員事先設置好固定的路徑表稱之為靜態(static)路徑表,一般是在系統安裝時就根據網路的配置情況預先設定的,它不會隨未來網路結構的改變而改變。
動態路由表:動態(Dynamic)路徑表是路由器根據網路系統的運行情況而自動調整的路徑表。路由器根據路由選擇協議(Routing Protocol)提供的功能,自動學習和記憶網路運行情況,在需要時自動計算數據傳輸的最佳路徑。
交換機的作用:
交換機作用:交換機的作用包括:物理編址、網路拓撲結構、錯誤校驗、幀序列以及流控等,在一些最新的思科交換機上,還能夠支持VLAN、支持鏈路匯聚功能。
不僅能夠連接同類型的網路,還能夠連接不同類型的網路環境。
交換機功能:交換機可以提供大量的連接埠,能夠實現星型拓撲布線,並且當交換機轉發幀時,的交換機會產生一種不會失真的電信號,而且,交換機的每個埠都可以進行轉發和過濾,交換機的每個區域網都是沖突域都有自己獨立的寬頻,最大程度上的提高區域網的寬頻,交換機還能夠支持VLAN、支持鏈路匯聚功能。
E. 什麼是廣播式多路訪問網路,非廣播式多路訪問網路,點到點網路和點到多點網路
廣播式多路訪問網路,大概是廣播型的網路,可以連接多餘2台的設備,所有設備可以接收到傳送的報文,像乙太網,令牌環網和光纖分布式數字網。
非廣播式多路訪問網路,NBMA網路,像2.25,幀中繼和ATM等,可以連接2台以上的路由器,但他們沒有廣播的能力。
點到點網路,連接單獨一台路由器的。eg :PPP HDLC
點到多點網路,多個點到點鏈路的集合.
F. 廣播式網路拓撲結構有幾種形式
廣播型網路,又叫做BMA網路。Broadcast Multiple Access 廣播型多路訪問結構。典型表現為乙太網,而乙太網中最為常見的是以下四種:
1. 星型結構
2. 環型結構
3. 匯流排型結構
4. 星型和匯流排型結合的復合型結構
還有其他疑問的話,可以Hi我。
G. 多播的網路通信中的多播
IP多播(也稱多址廣播或組播)技術,是一種允許一台或多台主機(多播源)發送單一數據包到多台主機(一次的,同時的)的TCP/IP網路技術。多播作為一點對多點的通信,是節省網路帶寬的有效方法之一。在網路音頻/視頻廣播的應用中,當需要將一個節點的信號傳送到多個節點時,無論是採用重復點對點通信方式,還是採用廣播方式,都會嚴重浪費網路帶寬,只有多播才是最好的選擇。多播能使一個或多個多播源只把數據包發送給特定的多播組,而只有加入該多播組的主機才能接收到數據包。目前,IP多播技術被廣泛應用在網路音頻/視頻廣播、AOD/VOD、網路視頻會議、多媒體遠程教育、「push」技術(如股票行情等)和虛擬現實游戲等方面。
有些應用會有這樣的要求:一些分布在各處的進程需要以組的方式協同工作,組中的進程通常要給其他所有的成員發送消息。即有這樣的一種方法能夠給一些明確定義的組發送消息,這些組的成員數量雖然很多,但是與整個網路規模相比卻很小。給這樣一個組發送消息稱為多點點播送,簡稱多播。
一、IP多播技術簡介
1.IP多播地址和多播組
IP多播通信必須依賴於IP多播地址,在IPv4中它是一個D類IP地址,范圍從224.0.0.0到239.255.255.255,並被劃分為局部鏈接多播地址、預留多播地址和管理許可權多播地址三類。其中,局部鏈接多播地址范圍在224.0.0.0~224.0.0.255,這是為路由協議和其它用途保留的地址,路由器並不轉發屬於此范圍的IP包;預留多播地址為224.0.1.0~238.255.255.255,可用於全球范圍(如Internet)或網路協議;管理許可權多播地址為239.0.0.0~239.255.255.255,可供組織內部使用,類似於私有IP地址,不能用於Internet,可限制多播范圍。
使用同一個IP多播地址接收多播數據包的所有主機構成了一個主機組,也稱為多播組。一個多播組的成員是隨時變動的,一台主機可以隨時加入或離開多播組,多播組成員的數目和所在的地理位置也不受限制,一台主機也可以屬於幾個多播組。此外,不屬於某一個多播組的主機也可以向該多播組發送數據包。
2.IP多播技術的硬體支持
要實現IP多播通信,要求介於多播源和接收者之間的路由器、集線器、交換機以及主機均需支持IP多播。目前,IP多播技術已得到硬體、軟體廠商的廣泛支持。
(1)主機
支持IP多播通信的平台包括Windows CE 2.1、Windows 95、Windows 98、Windows NT 4和Windows 2000等,運行這些操作系統的主機都可以進行IP多播通信。此外,新生產的網卡也幾乎都提供了對IP多播的支持。
(2)集線器和交換機
目前大多數集線器、交換機只是簡單地把多播數據當成廣播來發送接收,但一些中、高檔交換機提供了對IP多播的支持。例如,在3COM SuperStack 3 Swith 3300交換機上可啟用802.1p或IGMP多播過濾功能,只為已偵測到IGMP數據包的埠轉發多播數據包。
(3)路由器
多播通信要求多播源節點和目的節點之間的所有路由器必須提供對Internet組管理協議(IGMP)、多播路由協議(如PIM、DVMRP等)的支持。
當一台主機欲加入某個多播組時,會發出「主機成員報告」的IGMP消息通知多播路由器。當多播路由器接收到發給那個多播組的數據時,便會將其轉發給所有的多播主機。多播路由器還會周期性地發出「主機成員查詢」的IGMP消息,向子網查詢多播主機,若發現某個多播組已沒有任何成員,則停止轉發該多播組的數據。此外,當支持IGMP v2的主機(如Windows 98/2000計算機)退出某個多播組時,還會向路由器發送一條「離開組」的IGMP消息,以通知路由器停止轉發該多播組的數據。但只有當子網上所有主機都退出某個多播組時,路由器才會停止向該子網轉發該多播組的數據。
使用多播路由協議,路由器可建立起從多播源節點到所有目的節點的多播路由表,從而實現在子網間轉發多播數據包。例如,PIM(協議獨立多播)就是一種多播路由協議,它有兩種類型:稀疏模式(sparse-mode)和密集模式(dense-mode)。以Cisco 2621路由器為例,啟用IP多播轉發功能的基本設置如下:
c2621(config)# ip multicast-routing 啟動IP多播,使路由器成為一個多播路由器
c2621(config)# int f0/0 配置快速乙太網埠0
c2621(config-if)# ip pim dense-mode(或sparse-mode)啟動PIM,同時激活IGMP協議
c2621(config-if)# int f0/1 配置快速乙太網埠1
c2621(config-if)# ip pim dense-mode(或sparse-mode)
二、IP多播應用的編程方法
在實際應用中,編程人員通常需要自己編制底層網路應用程序來實現網上的底層通信,如具體實現IP多播通信的功能。編制底層網路應用程序通常要藉助於網路數據通信編程介面,而在不同的操作系統中所提供的網路編程介面是有所不同的,如在Microsoft Windows環境下的網路編程介面就是Windows套接字(Windows Socket,簡稱Winsock)。
Winsock提供了包括TCP/IP、IPX等多種通信協議下的編程介面。不同的Windows版本支持不同的Winsock版本,其中Windows 95等早期版本本身只支持Winsock1.1(16位)下的編程(可以通過安裝相關的軟體包使其支持Winsock2.0),而Windows98、Windows NT4.0、Windows 2000則直接支持Winsock2.0(32位)。Winsock2.0是Winsock1.1的擴展,除兼容Winsock1.1 API外,還定義了一套可支持IP多播的與協議無關的API。
使用Winsock 2.0實現IP多播的一般步驟如下:
1.初始化Winsock資源
在使用Winsock之前,必須調用WSAStartup()函數初始化Windows Sockets DLL。它允許應用程序或DLL指定Windows Sockets API要求的版本。
2.創建套接字
調用WSASocket()函數可以創建一個使用UDP協議的套接字,它是加入多播組的初始化套接字,並且以後數據的發送和接收都在該套接字上進行。針對IP多播通信,可將參數dwFlags設置為WSA_FLAG_MULTIPOINT_C_LEAF、WSA_FLAG_MULTIPOINT_D_LEAF和WSA_FLAG_OVERLAPPED的位和,指明IP多播通信在控制層面和數據層面都是「無根的」,只存在葉節點,它們可以任意加入一個多播組,而且從一個葉節點發送的數據會傳送到每一個葉節點(包括它自己);創建的套接字具有重疊屬性。
3.設置套接字的選項
調用setsockopt()函數為套接字設置SO_REUSEADDR選項,以允許套接字綁扎到一個已在使用的地址上。
4.綁定套接字
調用bind()函數綁定套接字,從而將創建好的套接字與本地地址和本地埠聯系起來。對於多播通信來說,發送和接收數據通常採用同一個埠。
5.設置多播套接字的模式
WSAIoctl()函數的命令碼SIO_MULTICAST_LOOP用來允許或禁止多播通信時發送出去的通信流量是否也能夠在同一個套接字上被接收(即多播返回)。值得注意的是,在Windows 95/98/NT 4中,默認是允許多播返回,但不能設置禁止,否則會出錯;只有在Windows 2000以上版本中,才能設置允許/禁止多播返回。
WSAIoctl()函數的命令碼SIO_MULTICAST_SCOPE用來設置多播傳播的范圍,即生存時間TTL。每當多播路由器轉發多播數據包時,數據包中的TTL值都會被減1,若數據包的TTL減少到0,則路由器將拋棄該數據包。TTL的值是多少,多播數據便最多能經過多少個多播路由器。例如,TTL值為0,則多播只能在本地主機的多個套接字間傳播,而不能傳播到「網線」上;TTL值為1(默認值),則多播數據遇到第一個路由器,便會被它「無情」地丟棄,不允許傳出本地網路之外,即只有同一個網路內的多播組成員才能收到多播數據。
c#中的多播
在c#中一般的代理實例(指一個代理僅可以調用一個方法)被默認為Delegate類的對象,所以通常使用delegate關鍵字來定義代理,利用new運算符來創建代理實例,然後使用Delegate類的方法和屬性管理代理實例。
而MulticastDelegate類是用來支持多重代理的,其調用列表中可以擁有多個方法的代理。
多重代理是指將一組代理組成一個集合,由MuticastDelegate類的一個對象來管理這個代理集合,利用這個代理集合執行多個方法,這個功能叫多播。