導航:首頁 > 網路營銷 > 人工神經元網路包括哪些

人工神經元網路包括哪些

發布時間:2023-05-04 11:15:18

1. 人工神經網路由哪幾部分構成

"人工神經網路"共有13個神經元構成,4個為輸入神經元,1個為輸 出神經元。也就是說,這個程序最多能處理一個四元關系(包含了二元, 三元)。

2. 人工神經網路的分類 ann和bp是什麼意思

人工神經網路模型主要考慮網路連接的拓撲結構、神經元的特徵、學習規則等.目前,已有近40種神經網路模型,其中有反傳網路、感知器、自組織映射、Hopfield網路、波耳茲曼機、適應諧振理論等.
ann:人工神經網路(Artificial Neural Networks)
bp:Back Propagation網路是1986年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播演算法訓練的多層前饋網路,是目前應用最廣泛的神經網路模型之一.BP網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程.它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小.BP神經網路模型拓撲結構包括輸入層(input)、隱層(hide layer)和輸出層(output layer).

3. 人工神經元網路的拓撲結構主要有哪幾種謝謝大俠~~~

神經網路的拓撲結構包括網路層數、各層神經元數量以及各神經元之間相互連接的方式。

人工神經網路的模型從其拓撲結構角度去看,可分為層次型和互連型。層次型模型是將神經網路分為輸入層(Input Layer)、隱層(Hidden Layer)和輸出層(Output Layer),各層順序連接。其中,輸入層神經元負責接收來自外界的輸入信息,並將其傳遞給隱層神經元。隱層負責神經網路內部的信息處理、信息變換。通常會根據變換的需要,將隱層設計為一層或多層。

(3)人工神經元網路包括哪些擴展閱讀:

人工神經網路模型主要考慮網路連接的拓撲結構、神經元的特徵、學習規則等。目前,已有近40種神經網路模型,其中有反傳網路、感知器、自組織映射、Hopfield網路、波耳茲曼機、適應諧振理論等。

人工神經網路採用了與傳統人工智慧和信息處理技術完全不同的機理,克服了傳統的基於邏輯符號的人工智慧在處理直覺、非結構化信息方面的缺陷,具有自適應、自組織和實時學習的特點。

4. 人工神經網路有哪些類型

人工神經網路模型主要考慮網路連接的拓撲結構、神經元的特徵、學習規則等。目前,已有近40種神經網路模型,其中有反傳網路、感知器、自組織映射、Hopfield網路、波耳茲曼機、適應諧振理論等。根據連接的拓撲結構,神經網路模型可以分為:

(1)前向網路 網路中各個神經元接受前一級的輸入,並輸出到下一級,網路中沒有反饋,可以用一個有向無環路圖表示。這種網路實現信號從輸入空間到輸出空間的變換,它的信息處理能力來自於簡單非線性函數的多次復合。網路結構簡單,易於實現。反傳網路是一種典型的前向網路。

(2)反饋網路 網路內神經元間有反饋,可以用一個無向的完備圖表示。這種神經網路的信息處理是狀態的變換,可以用動力學系統理論處理。系統的穩定性與聯想記憶功能有密切關系。Hopfield網路、波耳茲曼機均屬於這種類型。

學習是神經網路研究的一個重要內容,它的適應性是通過學習實現的。根據環境的變化,對權值進行調整,改善系統的行為。由Hebb提出的Hebb學習規則為神經網路的學習演算法奠定了基礎。Hebb規則認為學習過程最終發生在神經元之間的突觸部位,突觸的聯系強度隨著突觸前後神經元的活動而變化。在此基礎上,人們提出了各種學習規則和演算法,以適應不同網路模型的需要。有效的學習演算法,使得神經網路能夠通過連接權值的調整,構造客觀世界的內在表示,形成具有特色的信息處理方法,信息存儲和處理體現在網路的連接中。
根據學習環境不同,神經網路的學習方式可分為監督學習和非監督學習。在監督學習中,將訓練樣本的數據加到網路輸入端,同時將相應的期望輸出與網路輸出相比較,得到誤差信號,以此控制權值連接強度的調整,經多次訓練後收斂到一個確定的權值。當樣本情況發生變化時,經學習可以修改權值以適應新的環境。使用監督學習的神經網路模型有反傳網路、感知器等。非監督學習時,事先不給定標准樣本,直接將網路置於環境之中,學習階段與工作階段成為一體。此時,學習規律的變化服從連接權值的演變方程。非監督學習最簡單的例子是Hebb學習規則。競爭學習規則是一個更復雜的非監督學習的例子,它是根據已建立的聚類進行權值調整。自組織映射、適應諧振理論網路等都是與競爭學習有關的典型模型。
研究神經網路的非線性動力學性質,主要採用動力學系統理論、非線性規劃理論和統計理論,來分析神經網路的演化過程和吸引子的性質,探索神經網路的協同行為和集體計算功能,了解神經信息處理機制。為了探討神經網路在整體性和模糊性方面處理信息的可能,混沌理論的概念和方法將會發揮作用。混沌是一個相當難以精確定義的數學概念。一般而言,「混沌」是指由確定性方程描述的動力學系統中表現出的非確定性行為,或稱之為確定的隨機性。「確定性」是因為它由內在的原因而不是外來的雜訊或干擾所產生,而「隨機性」是指其不規則的、不能預測的行為,只可能用統計的方法描述。混沌動力學系統的主要特徵是其狀態對初始條件的靈敏依賴性,混沌反映其內在的隨機性。混沌理論是指描述具有混沌行為的非線性動力學系統的基本理論、概念、方法,它把動力學系統的復雜行為理解為其自身與其在同外界進行物質、能量和信息交換過程中內在的有結構的行為,而不是外來的和偶然的行為,混沌狀態是一種定態。混沌動力學系統的定態包括:靜止、平穩量、周期性、准同期性和混沌解。混沌軌線是整體上穩定與局部不穩定相結合的結果,稱之為奇異吸引子。

5. 人工神經網路(ANN)簡述

我們從下面四點認識人工神經網路(ANN: Artificial Neutral Network):神經元結構、神經元的激活函數、神經網路拓撲結構、神經網路選擇權值和學習演算法。

1. 神經元:
我們先來看一組對比圖就能了解是怎樣從生物神經元建模為人工神經元。

下面分別講述:
生物神經元的組成包括細胞體、樹突、軸突、突觸。樹突可以看作輸入端,接收從其他細胞傳遞過來的電信號;軸突可以看作輸出端,傳遞電荷給其他細胞;突觸可以看作I/O介面,連接神經元,單個神經元可以和上千個神經元連接。細胞體內有膜電位,從外界傳遞過來的電流使膜電位發生變化,並且不斷累加,當膜電位升高到超過一個閾值時,神經元被激活,產生一個脈沖,傳遞到下一個神經元。

為了更形象理解神經元傳遞信號過程,把一個神經元比作一個水桶。水桶下側連著多根水管(樹突),水管既可以把桶里的水排出去(抑制性),又可以將其他水桶的水輸進來(興奮性),水管的粗細不同,對桶中水的影響程度不同(權重),水管對水桶水位(膜電位)的改變就是水桶內水位的改變,當桶中水達到一定高度時,就能通過另一條管道(軸突)排出去。

按照這個原理,科學家提出了M-P模型(取自兩個提出者的姓名首字母),M-P模型是對生物神經元的建模,作為人工神經網路中的一個神經元。

由MP模型的示意圖,我們可以看到與生物神經元的相似之處,x_i表示多個輸入,W_ij表示每個輸入的權值,其正負模擬了生物神經元中突出的興奮和抑制;sigma表示將全部輸入信號進行累加整合,f為激活函數,O為輸出。下圖可以看到生物神經元和MP模型的類比:

往後誕生的各種神經元模型都是由MP模型演變過來。

2. 激活函數
激活函數可以看作濾波器,接收外界各種各樣的信號,通過調整函數,輸出期望值。ANN通常採用三類激活函數:閾值函數、分段函數、雙極性連續函數(sigmoid,tanh):

3. 學習演算法
神經網路的學習也稱為訓練,通過神經網路所在環境的刺激作用調整神經網路的自由參數(如連接權值),使神經網路以一種新的方式對外部環境做出反應的一個過程。每個神經網路都有一個激活函數y=f(x),訓練過程就是通過給定的海量x數據和y數據,擬合出激活函數f。學習過程分為有導師學習和無導師學習,有導師學習是給定期望輸出,通過對權值的調整使實際輸出逼近期望輸出;無導師學習給定表示方法質量的測量尺度,根據該尺度來優化參數。常見的有Hebb學習、糾錯學習、基於記憶學習、隨機學習、競爭學習。

4. 神經網路拓撲結構
常見的拓撲結構有單層前向網路、多層前向網路、反饋網路,隨機神經網路、競爭神經網路。

5. 神經網路的發展

(不能貼公式不好解釋啊 -_-!)sigma是誤差信號,yita是學習率,net是輸入之和,V是輸入層到隱含層的權重矩陣,W是隱含層到輸出層的權重矩陣。

之後還有幾種

隨著計算機硬體計算能力越來越強,用來訓練的數據越來越多,神經網路變得越來越復雜。在人工智慧領域常聽到DNN(深度神經網路)、CNN(卷積神經網路)、RNN(遞歸神經網路)。其中,DNN是總稱,指層數非常多的網路,通常有二十幾層,具體可以是CNN或RNN等網路結構。

參考資料

6. 人工神經網路綜述

文章主要分為:
一、人工神經網路的概念;
二、人工神經網路的發展歷史;
三、人工神經網路的特點;
四、人工神經網路的結構。
。。

人工神經網路(Artificial Neural Network,ANN)簡稱神經網路(NN),是基於生物學中神經網路的基本原理,在理解和抽象了人腦結構和外界刺激響應機制後,以網路拓撲知識為理論基礎,模擬人腦的神經系統對復雜信息的處理機制的一種數學模型。該模型以並行分布的處理能力、高容錯性、智能化和自學習等能力為特徵,將信息的加工和存儲結合在一起,以其獨特的知識表示方式和智能化的自適應學習能力,引起各學科領域的關注。它實際上是一個有大量簡單元件相互連接而成的復雜網路,具有高度的非線性,能夠進行復雜的邏輯操作和非線性關系實現的系統。

神經網路是一種運算模型,由大量的節點(或稱神經元)之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激活函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重(weight),神經網路就是通過這種方式來模擬人類的記憶。網路的輸出則取決於網路的結構、網路的連接方式、權重和激活函數。而網路自身通常都是對自然界某種演算法或者函數的逼近,也可能是對一種邏輯策略的表達。神經網路的構築理念是受到生物的神經網路運作啟發而產生的。人工神經網路則是把對生物神經網路的認識與數學統計模型相結合,藉助數學統計工具來實現。另一方面在人工智慧學的人工感知領域,我們通過數學統計學的方法,使神經網路能夠具備類似於人的決定能力和簡單的判斷能力,這種方法是對傳統邏輯學演算的進一步延伸。

人工神經網路中,神經元處理單元可表示不同的對象,例如特徵、字母、概念,或者一些有意義的抽象模式。網路中處理單元的類型分為三類:輸入單元、輸出單元和隱單元。輸入單元接受外部世界的信號與數據;輸出單元實現系統處理結果的輸出;隱單元是處在輸入和輸出單元之間,不能由系統外部觀察的單元。神經元間的連接權值反映了單元間的連接強度,信息的表示和處理體現在網路處理單元的連接關系中。人工神經網路是一種非程序化、適應性、大腦風格的信息處理,其本質是通過網路的變換和動力學行為得到一種並行分布式的信息處理功能,並在不同程度和層次上模仿人腦神經系統的信息處理功能。

神經網路,是一種應用類似於大腦神經突觸連接結構進行信息處理的數學模型,它是在人類對自身大腦組織結合和思維機制的認識理解基礎之上模擬出來的,它是根植於神經科學、數學、思維科學、人工智慧、統計學、物理學、計算機科學以及工程科學的一門技術。

在介紹神經網路的發展歷史之前,首先介紹一下神經網路的概念。神經網路主要是指一種仿造人腦設計的簡化的計算模型,這種模型中包含了大量的用於計算的神經元,這些神經元之間會通過一些帶有權重的連邊以一種層次化的方式組織在一起。每一層的神經元之間可以進行大規模的並行計算,層與層之間進行消息的傳遞。

下圖展示了整個神經網路的發展歷程:

神經網路的發展有悠久的歷史。其發展過程大致可以概括為如下4個階段。

(1)、M-P神經網路模型:20世紀40年代,人們就開始了對神經網路的研究。1943 年,美國心理學家麥克洛奇(Mcculloch)和數學家皮茲(Pitts)提出了M-P模型,此模型比較簡單,但是意義重大。在模型中,通過把神經元看作個功能邏輯器件來實現演算法,從此開創了神經網路模型的理論研究。
(2)、Hebb規則:1949 年,心理學家赫布(Hebb)出版了《The Organization of Behavior》(行為組織學),他在書中提出了突觸連接強度可變的假設。這個假設認為學習過程最終發生在神經元之間的突觸部位,突觸的連接強度隨之突觸前後神經元的活動而變化。這一假設發展成為後來神經網路中非常著名的Hebb規則。這一法則告訴人們,神經元之間突觸的聯系強度是可變的,這種可變性是學習和記憶的基礎。Hebb法則為構造有學習功能的神經網路模型奠定了基礎。
(3)、感知器模型:1957 年,羅森勃拉特(Rosenblatt)以M-P 模型為基礎,提出了感知器(Perceptron)模型。感知器模型具有現代神經網路的基本原則,並且它的結構非常符合神經生理學。這是一個具有連續可調權值矢量的MP神經網路模型,經過訓練可以達到對一定的輸入矢量模式進行分類和識別的目的,它雖然比較簡單,卻是第一個真正意義上的神經網路。Rosenblatt 證明了兩層感知器能夠對輸入進行分類,他還提出了帶隱層處理元件的三層感知器這一重要的研究方向。Rosenblatt 的神經網路模型包含了一些現代神經計算機的基本原理,從而形成神經網路方法和技術的重大突破。
(4)、ADALINE網路模型: 1959年,美國著名工程師威德羅(B.Widrow)和霍夫(M.Hoff)等人提出了自適應線性元件(Adaptive linear element,簡稱Adaline)和Widrow-Hoff學習規則(又稱最小均方差演算法或稱δ規則)的神經網路訓練方法,並將其應用於實際工程,成為第一個用於解決實際問題的人工神經網路,促進了神經網路的研究應用和發展。ADALINE網路模型是一種連續取值的自適應線性神經元網路模型,可以用於自適應系統。

人工智慧的創始人之一Minsky和Papert對以感知器為代表的網路系統的功能及局限性從數學上做了深入研究,於1969年發表了轟動一時《Perceptrons》一書,指出簡單的線性感知器的功能是有限的,它無法解決線性不可分的兩類樣本的分類問題,如簡單的線性感知器不可能實現「異或」的邏輯關系等。這一論斷給當時人工神經元網路的研究帶來沉重的打擊。開始了神經網路發展史上長達10年的低潮期。
(1)、自組織神經網路SOM模型:1972年,芬蘭的KohonenT.教授,提出了自組織神經網路SOM(Self-Organizing feature map)。後來的神經網路主要是根據KohonenT.的工作來實現的。SOM網路是一類無導師學習網路,主要用於模式識別﹑語音識別及分類問題。它採用一種「勝者為王」的競爭學習演算法,與先前提出的感知器有很大的不同,同時它的學習訓練方式是無指導訓練,是一種自組織網路。這種學習訓練方式往往是在不知道有哪些分類類型存在時,用作提取分類信息的一種訓練。
(2)、自適應共振理論ART:1976年,美國Grossberg教授提出了著名的自適應共振理論ART(Adaptive Resonance Theory),其學習過程具有自組織和自穩定的特徵。

(1)、Hopfield模型:1982年,美國物理學家霍普菲爾德(Hopfield)提出了一種離散神經網路,即離散Hopfield網路,從而有力地推動了神經網路的研究。在網路中,它首次將李雅普諾夫(Lyapunov)函數引入其中,後來的研究學者也將Lyapunov函數稱為能量函數。證明了網路的穩定性。1984年,Hopfield 又提出了一種連續神經網路,將網路中神經元的激活函數由離散型改為連續型。1985 年,Hopfield和Tank利用Hopfield神經網路解決了著名的旅行推銷商問題(Travelling Salesman Problem)。Hopfield神經網路是一組非線性微分方程。Hopfield的模型不僅對人工神經網路信息存儲和提取功能進行了非線性數學概括,提出了動力方程和學習方程,還對網路演算法提供了重要公式和參數,使人工神經網路的構造和學習有了理論指導,在Hopfield模型的影響下,大量學者又激發起研究神經網路的熱情,積極投身於這一學術領域中。因為Hopfield 神經網路在眾多方面具有巨大潛力,所以人們對神經網路的研究十分地重視,更多的人開始了研究神經網路,極大地推動了神經網路的發展。
(2)、Boltzmann機模型:1983年,Kirkpatrick等人認識到模擬退火演算法可用於NP完全組合優化問題的求解,這種模擬高溫物體退火過程來找尋全局最優解的方法最早由Metropli等人1953年提出的。1984年,Hinton與年輕學者Sejnowski等合作提出了大規模並行網路學習機,並明確提出隱單元的概念,這種學習機後來被稱為Boltzmann機。
Hinton和Sejnowsky利用統計物理學的感念和方法,首次提出的多層網路的學習演算法,稱為Boltzmann 機模型。
(3)、BP神經網路模型:1986年,儒默哈特(D.E.Ru melhart)等人在多層神經網路模型的基礎上,提出了多層神經網路權值修正的反向傳播學習演算法----BP演算法(Error Back-Propagation),解決了多層前向神經網路的學習問題,證明了多層神經網路具有很強的學習能力,它可以完成許多學習任務,解決許多實際問題。
(4)、並行分布處理理論:1986年,由Rumelhart和McCkekkand主編的《Parallel Distributed Processing:Exploration in the Microstructures of Cognition》,該書中,他們建立了並行分布處理理論,主要致力於認知的微觀研究,同時對具有非線性連續轉移函數的多層前饋網路的誤差反向傳播演算法即BP演算法進行了詳盡的分析,解決了長期以來沒有權值調整有效演算法的難題。可以求解感知機所不能解決的問題,回答了《Perceptrons》一書中關於神經網路局限性的問題,從實踐上證實了人工神經網路有很強的運算能力。
(5)、細胞神經網路模型:1988年,Chua和Yang提出了細胞神經網路(CNN)模型,它是一個細胞自動機特性的大規模非線性計算機模擬系統。Kosko建立了雙向聯想存儲模型(BAM),它具有非監督學習能力。
(6)、Darwinism模型:Edelman提出的Darwinism模型在90年代初產生了很大的影響,他建立了一種神經網路系統理論。
(7)、1988年,Linsker對感知機網路提出了新的自組織理論,並在Shanon資訊理論的基礎上形成了最大互信息理論,從而點燃了基於NN的信息應用理論的光芒。
(8)、1988年,Broomhead和Lowe用徑向基函數(Radialbasis function, RBF)提出分層網路的設計方法,從而將NN的設計與數值分析和線性適應濾波相掛鉤。
(9)、1991年,Haken把協同引入神經網路,在他的理論框架中,他認為,認知過程是自發的,並斷言模式識別過程即是模式形成過程。
(10)、1994年,廖曉昕關於細胞神經網路的數學理論與基礎的提出,帶來了這個領域新的進展。通過拓廣神經網路的激活函數類,給出了更一般的時滯細胞神經網路(DCNN)、Hopfield神經網路(HNN)、雙向聯想記憶網路(BAM)模型。
(11)、90年代初,Vapnik等提出了支持向量機(Supportvector machines, SVM)和VC(Vapnik-Chervonenkis)維數的概念。
經過多年的發展,已有上百種的神經網路模型被提出。

深度學習(Deep Learning,DL)由Hinton等人於2006年提出,是機器學習的一個新領域。深度學習本質上是構建含有多隱層的機器學習架構模型,通過大規模數據進行訓練,得到大量更具代表性的特徵信息。深度學習演算法打破了傳統神經網路對層數的限制,可根據設計者需要選擇網路層數。

突觸是神經元之間相互連接的介面部分,即一個神經元的神經末梢與另一個神經元的樹突相接觸的交界面,位於神經元的神經末梢尾端。突觸是軸突的終端。
大腦可視作為1000多億神經元組成的神經網路。神經元的信息傳遞和處理是一種電化學活動.樹突由於電化學作用接受外界的刺激,通過胞體內的活動體現為軸突電位,當軸突電位達到一定的值則形成神經脈沖或動作電位;再通過軸突末梢傳遞給其它的神經元.從控制論的觀點來看;這一過程可以看作一個多輸入單輸出非線性系統的動態過程。
神經元的功能特性:(1)時空整合功能;(2)神經元的動態極化性;(3)興奮與抑制狀態;(4)結構的可塑性;(5)脈沖與電位信號的轉換;(6)突觸延期和不應期;(7)學習、遺忘和疲勞。

神經網路從兩個方面模擬大腦:
(1)、神經網路獲取的知識是從外界環境中學習得來的。
(2)、內部神經元的連接強度,即突觸權值,用於儲存獲取的知識。
神經網路系統由能夠處理人類大腦不同部分之間信息傳遞的由大量神經元連接形成的拓撲結構組成,依賴於這些龐大的神經元數目和它們之間的聯系,人類的大腦能夠收到輸入的信息的刺激由分布式並行處理的神經元相互連接進行非線性映射處理,從而實現復雜的信息處理和推理任務。
對於某個處理單元(神經元)來說,假設來自其他處理單元(神經元)i的信息為Xi,它們與本處理單元的互相作用強度即連接權值為Wi, i=0,1,…,n-1,處理單元的內部閾值為θ。那麼本處理單元(神經元)的輸入為:

,而處理單元的輸出為:

式中,xi為第i個元素的輸入,wi為第i個處理單元與本處理單元的互聯權重即神經元連接權值。f稱為激活函數或作用函數,它決定節點(神經元)的輸出。θ表示隱含層神經節點的閾值。

神經網路的主要工作是建立模型和確定權值,一般有前向型和反饋型兩種網路結構。通常神經網路的學習和訓練需要一組輸入數據和輸出數據對,選擇網路模型和傳遞、訓練函數後,神經網路計算得到輸出結果,根據實際輸出和期望輸出之間的誤差進行權值的修正,在網路進行判斷的時候就只有輸入數據而沒有預期的輸出結果。神經網路一個相當重要的能力是其網路能通過它的神經元權值和閾值的不斷調整從環境中進行學習,直到網路的輸出誤差達到預期的結果,就認為網路訓練結束。

對於這樣一種多輸入、單輸出的基本單元可以進一步從生物化學、電生物學、數學等方面給出描述其功能的模型。利用大量神經元相互連接組成的人工神經網路,將顯示出人腦的若干特徵,人工神經網路也具有初步的自適應與自組織能力。在學習或訓練過程中改變突觸權重wij值,以適應周圍環境的要求。同一網路因學習方式及內容不同可具有不同的功能。人工神經網路是一個具有學習能力的系統,可以發展知識,以至超過設計者原有的知識水平。通常,它的學習(或訓練)方式可分為兩種,一種是有監督(supervised)或稱有導師的學習,這時利用給定的樣本標准進行分類或模仿;另一種是無監督(unsupervised)學習或稱無導師學習,這時,只規定學習方式或某些規則,而具體的學習內容隨系統所處環境(即輸入信號情況)而異,系統可以自動發現環境特徵和規律性,具有更近似於人腦的功能。
在人工神經網路設計及應用研究中,通常需要考慮三個方面的內容,即神經元激活函數、神經元之間的連接形式和網路的學習(訓練)。

7. 人工神經網路分層結構包括

品牌型號:華為MateBook D15
系統:Windows 11

人工神經網路分層結構包括神經元、層和網路三個部分。

1、神經元是人工神經網路最基本的單元。單元以層的方式組,每一層的每個神經元和前一層、後一層的神經元連接,共分為輸入層、輸出層和隱藏層,三層連接形成一個神經網路。

2、輸入層只從外部環境接收信息,是由輸入單元組成,而這些輸入單元可接收樣本中各種不同的特徵信息。該層的每個神經元相當於自變數,不完成任何計算,只為下一層傳遞信息;隱藏層介於輸入層和輸出層之間,這些層完全用於分析,其函數聯系輸入層變數和輸出層變數,使其更配適數據。而最後,輸出層生成最終結果,每個輸出單元會對應到某一種特定的分類,為網路送給外部系統的結果值,,整個網路由調整鏈接強度的程序來達成學習的目的。

3、神經網路是一種運算模型,由大量的節點(或稱神經元)之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激勵函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重,這相當於人工神經網路的記憶。網路的輸出則依網路的連接方式,權重值和激勵函數的不同而不同。

8. 人工神經網路

本文討論的神經網路是從生物學領域引入計算機科學和工程領域的一個仿生學概念,又稱人工神經網路(英語:artificial neural network,縮寫ANN)。是一種模仿生物神經網路(動物的中樞神經系統,特別是大腦)的結構和功能的數學模型或計算模型,用於對函數進行估計或近似。參考 wiki定義 。

如圖,一個神經元通常具有多個樹突,主要用來接受傳入信息;而軸突只有一條,軸突尾端有許多軸突末梢可以給其他多個神經元傳遞信息。軸突末梢跟其他神經元的樹突產生連接,從而傳遞信號。這個連接的位置在生物學上叫做「突觸」。
基於此,1943年,心理學家McCulloch和數學家Pitts參考了生物神經元的結構,發表了抽象的神經元模型MP,神經元模型是一個包含輸入,輸出與計算功能的模型。輸入可以類比為神經元的樹突,而輸出可以類比為神經元的軸突,計算則可以類比為細胞核。如下圖:

圖中X代表輸入信號,W代表權重,∑代表將X和W的矩陣運算,ψ對運算結果應用sgn函數,最終得到輸出y。
然而,改模型對許可權W是通過指定好的,因此不存在在計算工程中動態調配許可權W的能力,也就是不存在學習的能力。

1958年,計算科學家Rosenblatt提出了由兩層神經元組成的神經網路:「感知器」(Perceptron)。

可以看到,一個感知器有如下組成部分:
輸入權值: 一個感知器可以接收多個輸入,每個輸入上有一個權值,此外還有一個偏置項,就是上圖中的。
激活函數: 感知器的激活函數可以有很多選擇,比如我們可以選擇Sigmoid函數來作為激活函數。
其中,因為生物學上,外接信號傳導到神經元上,神經元不會立刻做出反應,而是會抑制輸入,直到輸入增強,強大到可以觸發輸出。也就是說,在產生輸出之前,輸入必須達到一個閾值。在數學上,這種隨著變數值增大,函數值發生跳躍的函數成為激活函數。下圖是一個常用的激活函數,Sigmoid函數曲線圖:

上節我們看到,感知器其實是單層的神經網路,神經網路可以理解成多個感知器組合而成的一個結構,如下圖:

神經網路的學習過程就是對權重矩陣的更新過程。所謂的訓練過程就是比較當前網路的預測值和我們真正想要的目標值,再根據兩者差異來更新每一層的權重矩陣。因此,必須先定義好如何比較預測值和目標值的差異,這便是損失函數(loss function)。損失函數輸出值loss越高表示差異性越大,神經網路的訓練就變成了盡可能的縮小loss的過程。

所謂梯度下降法,就是通過使loss值向當前點對應梯度點反方向不斷移動,來降低loss。一次移動多少通過學習率(learning rate)控制。
通俗來講,所謂梯度下降法,其實就如同漆黑的夜晚拿著手電筒站在山頂,每次只能看到眼前的一米遠距離,想要下到山腳,我們採用每次都選擇最陡峭的地方向下挪動,反復這一過程,最終到達山腳。

閱讀全文

與人工神經元網路包括哪些相關的資料

熱點內容
新鄉哪裡有網路推廣系統 瀏覽:595
發視頻就顯示網路異常 瀏覽:120
濟南網路營銷外包 瀏覽:833
適合學習的網路軟體 瀏覽:980
網路視聽基地有哪些 瀏覽:89
網路秘密如何修改 瀏覽:97
無線網路規劃的准備工作有哪兩項 瀏覽:73
台式電腦上有一個不識別網路 瀏覽:410
手機上e網路是什麼 瀏覽:92
學編程和網路營銷哪個好 瀏覽:423
移動網路類型哪個網速最快 瀏覽:726
網路適配器哪個是正在使用的網卡 瀏覽:803
不是網路電視機可以連接wifi嗎 瀏覽:758
安卓手機怎麼重置網路接入點 瀏覽:635
考研網路平台哪個好一點 瀏覽:209
戰場信息網路包括哪些軟體 瀏覽:66
計算機網路dx考試 瀏覽:182
360長沙網路安全業務 瀏覽:401
網路電視哪裡可以看奧運會直播 瀏覽:471
共享網路需要藍牙嗎 瀏覽:787

友情鏈接