㈠ 有哪些深度神經網路模型
目前經常使用的深度神經網路模型主要有卷積神經網路(CNN) 、遞歸神經網路(RNN)、深信度網路(DBN) 、深度自動編碼器(AutoEncoder) 和生成對抗網路(GAN) 等。
遞歸神經網路實際.上包含了兩種神經網路。一種是循環神經網路(Recurrent NeuralNetwork) ;另一種是結構遞歸神經網路(Recursive Neural Network),它使用相似的網路結構遞歸形成更加復雜的深度網路。RNN它們都可以處理有序列的問題,比如時間序列等且RNN有「記憶」能力,可以「模擬」數據間的依賴關系。卷積網路的精髓就是適合處理結構化數據。
關於深度神經網路模型的相關學習,推薦CDA數據師的相關課程,課程以項目調動學員數據挖掘實用能力的場景式教學為主,在講師設計的業務場景下由講師不斷提出業務問題,再由學員循序漸進思考並操作解決問題的過程中,幫助學員掌握真正過硬的解決業務問題的數據挖掘能力。這種教學方式能夠引發學員的獨立思考及主觀能動性,學員掌握的技能知識可以快速轉化為自身能夠靈活應用的技能,在面對不同場景時能夠自由發揮。點擊預約免費試聽課。
㈡ 5g無線接入的關鍵技術主要包含
5G網路技術主要分為三類:核心網、回傳和前傳網路、無線接入網。核心網關鍵技術主要包括:網路功能虛擬化(NFV)、軟體定義網路(SDN)、網路切片和多接入邊緣計算(MEC)。
NFV,就是通過IT虛擬化技術將網路功能軟體化,並運行於通用硬體設備之上,以替代傳統專用網路硬體設備。
NFV將網路功能以虛擬機的形式運行於通用硬體設備或白盒之上,以實現配置靈活性、可擴展性和移動性,並以此希望降低網路CAPEX和OPEX。
NFV要虛擬化的網路設備主要包括:交換機(比如OpenvSwitch)、路由器、HLR(歸屬位置寄存器)、SGSN、GGSN、CGSN、RNC(無線網路控制器)、SGW(服務網關)、PGW(分組數據網路網關)、RGW(接入網關)、BRAS(寬頻遠程接入伺服器)、CGNAT(運營商級網路地址轉換器)、DPI(深度包檢測)、PE路由器、MME(移動管理實體)等。NFV獨立於SDN,可單獨使用或與SDN結合使用。
㈢ 計算機網路技術包括哪些
計算機網路技術是通信技術與計算機技術相結合的產物。計算機網路是按照網路協議,將地球上分散的、獨立的計算機相互連接的集合。連接介質可以是電纜、雙絞線、光纖、微波、載波或通信衛星。計算機網路具有共享硬體、軟體和數據資源的功能,具有對共享數據資源集中處理及管理和維護的能力。計算機網路可按網路拓撲結構、網路涉轄范圍和互聯距離、網路數據傳輸和網路系統的擁有者、不同的服務對象等不同標准進行種類劃分。一般按網路范圍劃分為:(1)區域網(LAN);(2)城域網(MAN);(3)廣域網(WAN)。區域網的地理范圍一般在10千米以內,屬於一個部門或一組群體組建的小范圍網,例如一個學校、一個單位或一個系統等。廣域網涉轄范圍大,一般從幾十千米至幾萬千米,例如一個城市,一個國家或洲際網路,此時用於通信的傳輸裝置和介質一般由電信部門提供,能實現較大范圍的資源共享。城域網介於LAN和WAN之間,其范圍通常覆蓋一個城市或地區,距離從幾十千米到上百千米。
計算機網路由一組結點和鏈絡組成。網路中的結點有兩類:轉接結點和訪問結點。通信處理機、集中器和終端控制器等屬於轉接結點,它們在網路中轉接和交換傳送信息。主計算機和終端等是訪問結點,它們是信息傳送的源結點和目標結點。
計算機網路技術實現了資源共享。人們可以在辦公室、家裡或其他任何地方,訪問查詢網上的任何資源,極大地提高了工作效率,促進了辦公自動化、工廠自動化、家庭自動化的發展。
21世紀已進入計算機網路時代。計算機網路極大普及,計算機應用已進入更高層次,計算機網路成了計算機行業的一部分。新一代的計算機已將網路介面集成到主板上,網路功能已嵌入到操作系統之中,智能大樓的興建已經和計算機網路布線同時、同地、同方案施工。隨著通信和計算機技術緊密結合和同步發展,我國計算機網路技術飛躍發展。
㈣ 深度神經網路有哪些
深度神經網路有卷積神經網路,循環神經網路,生成對抗網咯
㈤ 計算機網路技術包括哪些
簡單地說,計算機網路技術就是學會建網、管網、用網。建網就是規劃、設計網路;管網就是網路設備如交換機、路由器、防火牆的配置管理、伺服器的部署、網路的安全設置;用網是網路的應用,包括網站的部署、郵件伺服器的部署、其他應用軟體的部署等。網路的關鍵技術有網路結點、寬頻網路系統,資源管理和任務調度工具,應用層的可視化工具,網路計算
1、網路結點是網路計算資源的提供者,包括高端伺服器,集群系統,MPP系統大型存儲設備、資料庫等;
2、寬頻網路系統是在網路計算環境中,提供高性能通信的必要手段;
3、資源管理和任務調度工具用來解決資源的描述,組織和管理等關鍵問題,任務調度工具根據當前系統的負載情況,對系統內的任務進行動態調度,提高系統的運行效率;
4、網路計算主要是科學計算,它往往伴隨著海量數據,如果把計算結果轉換成直觀的圖形信息,就能幫助研究人員擺脫理解數據的困難。這需要開發能在網路計算中傳輸和讀取,並提供友好用戶界面的可視化工具。
㈥ 深度學習,包括哪些
作為人工智慧最稀缺的人才之一,深度學習工程師面臨近百萬的缺口,成為了各大企業競相爭奪的香餑餑,月薪大都在30K-80K之間。越來越多的程序員、院校學生開始學習深度學習演算法。
可以說,如果你想要提升技能,在專業領域更上一步,《AI深度學習》可以成為你當下的選擇!
㈦ 什麼是互聯網信息服務深度合成技術
互聯網信息服務深度合成技術是指利用學習、虛擬現實等生成合成類演算法製作文本、圖像、音頻、視頻、虛擬場景等網路信息技術。具體包括篇章生成、文本風格轉換、問答對話等生成或者編輯文本內容的技術,文本轉換語音、語音轉換、語音屬性編輯、人臉操控、姿態操控等生成或者編輯圖像、視頻內容中生物特徵的技術等。
㈧ CNN、RNN、DNN的一般解釋
CNN(卷積神經網路)、RNN(循環神經網路)、DNN(深度神經網路)的內部網路結構有什麼區別?
轉自知乎 科言君 的回答
神經網路技術起源於上世紀五、六十年代,當時叫 感知機 (perceptron),擁有輸入層、輸出層和一個隱含層。輸入的特徵向量通過隱含層變換達到輸出層,在輸出層得到分類結果。早期感知機的推動者是Rosenblatt。 (扯一個不相關的:由於計算技術的落後,當時感知器傳輸函數是用線拉動變阻器改變電阻的方法機械實現的,腦補一下科學家們扯著密密麻麻的導線的樣子…)
但是,Rosenblatt的單層感知機有一個嚴重得不能再嚴重的問題,即它對稍復雜一些的函數都無能為力(比如最為典型的「異或」操作)。連異或都不能擬合,你還能指望這貨有什麼實際用途么o(╯□╰)o
隨著數學的發展,這個缺點直到上世紀八十年代才被Rumelhart、Williams、Hinton、LeCun等人(反正就是一票大牛)發明的 多層感知機 (multilayerperceptron)克服。多層感知機,顧名思義,就是有多個隱含層的感知機(廢話……)。好好,我們看一下多層感知機的結構:
圖1 上下層神經元全部相連的神經網路——多層感知機
多層感知機可以擺脫早期離散傳輸函數的束縛,使用sigmoid或tanh等連續函數模擬神經元對激勵的響應,在訓練演算法上則使用Werbos發明的反向傳播BP演算法。對,這貨就是我們現在所說的 神經網路 NN ——神經網路聽起來不知道比感知機高端到哪裡去了!這再次告訴我們起一個好聽的名字對於研(zhuang)究(bi)很重要!
多層感知機解決了之前無法模擬異或邏輯的缺陷,同時更多的層數也讓網路更能夠刻畫現實世界中的復雜情形。相信年輕如Hinton當時一定是春風得意。
多層感知機給我們帶來的啟示是, 神經網路的層數直接決定了它對現實的刻畫能力 ——利用每層更少的神經元擬合更加復雜的函數[1]。
(Bengio如是說:functions that can be compactly
represented by a depth k architecture might require an exponential number of
computational elements to be represented by a depth k − 1 architecture.)
即便大牛們早就預料到神經網路需要變得更深,但是有一個夢魘總是縈繞左右。隨著神經網路層數的加深, 優化函數越來越容易陷入局部最優解 ,並且這個「陷阱」越來越偏離真正的全局最優。利用有限數據訓練的深層網路,性能還不如較淺層網路。同時,另一個不可忽略的問題是隨著網路層數增加, 「梯度消失」現象更加嚴重 。具體來說,我們常常使用sigmoid作為神經元的輸入輸出函數。對於幅度為1的信號,在BP反向傳播梯度時,每傳遞一層,梯度衰減為原來的0.25。層數一多,梯度指數衰減後低層基本上接受不到有效的訓練信號。
2006年,Hinton利用預訓練方法緩解了局部最優解問題,將隱含層推動到了7層[2],神經網路真正意義上有了「深度」,由此揭開了深度學習的熱潮。這里的「深度」並沒有固定的定義——在語音識別中4層網路就能夠被認為是「較深的」,而在圖像識別中20層以上的網路屢見不鮮。為了克服梯度消失,ReLU、maxout等傳輸函數代替了sigmoid,形成了如今DNN的基本形式。單從結構上來說, 全連接的 DNN 和圖 1 的多層感知機是沒有任何區別的 。
值得一提的是,今年出現的高速公路網路(highway network)和深度殘差學習(deep resial learning)進一步避免了梯度消失,網路層數達到了前所未有的一百多層(深度殘差學習:152層)[3,4]!具體結構題主可自行搜索了解。如果你之前在懷疑是不是有很多方法打上了「深度學習」的噱頭,這個結果真是深得讓人心服口服。
圖2 縮減版的深度殘差學習網路,僅有34 層,終極版有152 層,自行感受一下
如圖1所示,我們看到 全連接 DNN 的結構里下層神經元和所有上層神經元都能夠形成連接 ,帶來的潛在問題是 參數數量的膨脹 。假設輸入的是一幅像素為1K*1K的圖像,隱含層有1M個節點,光這一層就有10^12個權重需要訓練,這不僅容易過擬合,而且極容易陷入局部最優。另外,圖像中有固有的局部模式(比如輪廓、邊界,人的眼睛、鼻子、嘴等)可以利用,顯然應該將圖像處理中的概念和神經網路技術相結合。此時我們可以祭出題主所說的卷積神經網路CNN。對於CNN來說,並不是所有上下層神經元都能直接相連,而是 通過「卷積核」作為中介。同一個卷積核在所有圖像內是共享的,圖像通過卷積操作後仍然保留原先的位置關系。 兩層之間的卷積傳輸的示意圖如下:
圖3 卷積神經網路隱含層(摘自Theano 教程)
通過一個例子簡單說明卷積神經網路的結構。假設圖3中m-1=1是輸入層,我們需要識別一幅彩色圖像,這幅圖像具有四個通道ARGB(透明度和紅綠藍,對應了四幅相同大小的圖像),假設卷積核大小為100*100,共使用100個卷積核w1到w100(從直覺來看,每個卷積核應該學習到不同的結構特徵)。用w1在ARGB圖像上進行卷積操作,可以得到隱含層的第一幅圖像;這幅隱含層圖像左上角第一個像素是四幅輸入圖像左上角100*100區域內像素的加權求和,以此類推。同理,算上其他卷積核,隱含層對應100幅「圖像」。每幅圖像對是對原始圖像中不同特徵的響應。按照這樣的結構繼續傳遞下去。CNN中還有max-pooling等操作進一步提高魯棒性。
圖4 一個典型的卷積神經網路結構,注意到最後一層實際上是一個全連接層(摘自Theano 教程)
在這個例子里,我們注意到 輸入層到隱含層的參數瞬間降低到了 100*100*100=10^6 個 !這使得我們能夠用已有的訓練數據得到良好的模型。題主所說的適用於圖像識別,正是由於 CNN 模型限制參數了個數並挖掘了局部結構的這個特點 。順著同樣的思路,利用語音語譜結構中的局部信息,CNN照樣能應用在語音識別中。
全連接的DNN還存在著另一個問題——無法對時間序列上的變化進行建模。然而, 樣本出現的時間順序對於自然語言處理、語音識別、手寫體識別等應用非常重要 。對了適應這種需求,就出現了題主所說的另一種神經網路結構——循環神經網路RNN。
在普通的全連接網路或CNN中,每層神經元的信號只能向上一層傳播,樣本的處理在各個時刻獨立,因此又被成為前向神經網路(Feed-forward Neural Networks)。而在 RNN 中,神經元的輸出可以在下一個時間戳直接作用到自身 ,即第i層神經元在m時刻的輸入,除了(i-1)層神經元在該時刻的輸出外,還包括其自身在(m-1)時刻的輸出!表示成圖就是這樣的:
圖5 RNN 網路結構
我們可以看到在隱含層節點之間增加了互連。為了分析方便,我們常將RNN在時間上進行展開,得到如圖6所示的結構:
圖6 RNN 在時間上進行展開
Cool, ( t+1 )時刻網路的最終結果O(t+1) 是該時刻輸入和所有歷史共同作用的結果 !這就達到了對時間序列建模的目的。
不知題主是否發現,RNN可以看成一個在時間上傳遞的神經網路,它的深度是時間的長度!正如我們上面所說, 「梯度消失」現象又要出現了,只不過這次發生在時間軸上 。對於t時刻來說,它產生的梯度在時間軸上向歷史傳播幾層之後就消失了,根本就無法影響太遙遠的過去。因此,之前說「所有歷史」共同作用只是理想的情況,在實際中,這種影響也就只能維持若干個時間戳。
為了解決時間上的梯度消失,機器學習領域發展出了 長短時記憶單元 LSTM ,通過門的開關實現時間上記憶功能,並防止梯度消失 ,一個LSTM單元長這個樣子:
圖7 LSTM 的模樣
除了題主疑惑的三種網路,和我之前提到的深度殘差學習、LSTM外,深度學習還有許多其他的結構。舉個例子,RNN既然能繼承歷史信息,是不是也能吸收點未來的信息呢?因為在序列信號分析中,如果我能預知未來,對識別一定也是有所幫助的。因此就有了 雙向 RNN 、雙向 LSTM ,同時利用歷史和未來的信息。
圖8 雙向RNN
事實上, 不論是那種網路,他們在實際應用中常常都混合著使用,比如 CNN 和RNN 在上層輸出之前往往會接上全連接層,很難說某個網路到底屬於哪個類別。 不難想像隨著深度學習熱度的延續,更靈活的組合方式、更多的網路結構將被發展出來。盡管看起來千變萬化,但研究者們的出發點肯定都是為了解決特定的問題。題主如果想進行這方面的研究,不妨仔細分析一下這些結構各自的特點以及它們達成目標的手段。入門的話可以參考:
Ng寫的Ufldl: UFLDL教程 - Ufldl
也可以看Theano內自帶的教程,例子非常具體: Deep Learning Tutorials
歡迎大家繼續推薦補充。
當然啦,如果題主只是想湊個熱鬧時髦一把,或者大概了解一下方便以後把妹使,這樣看看也就罷了吧。
參考文獻:
[1]
Bengio Y. Learning Deep
Architectures for AI[J]. Foundations & Trends® in Machine Learning, 2009,
2(1):1-127.
[2]
Hinton G E, Salakhutdinov R R.
Recing the Dimensionality of Data with Neural Networks[J]. Science, 2006,
313(5786):504-507.
[3]
He K, Zhang X, Ren S, Sun J. Deep
Resial Learning for Image Recognition. arXiv:1512.03385, 2015.
[4]
Srivastava R K, Greff K,
Schmidhuber J. Highway networks. arXiv:1505.00387, 2015.
㈨ 深度學習目前主要有哪些研究方向
礦壓岩層控制「實用礦壓岩層控制理論」的開創者和奠基人創造性地建立了以岩層運動為核心的理論體系,包括岩層運動預測與控制、礦山壓力控制、控制效果設計與決策。我們建立並完善了以岩層移動為中心的實用礦井。
長期以來,語音識別系統大多採用高斯混合模型來描述每個建模單元的概率模型
該模型簡單、方便,適合大規模數據培訓。該模型具有較好的切分訓練演算法,保證了模型的良好訓練。長期以來在語音識別應用領域占據主導地位。
㈩ 深度學習的職業發展方向有哪些
當前,人工智慧發展藉助深度學習技術突破得到了全面關注和助力推動,各國政府高度重視、資本熱潮仍在加碼,各界對其成為發展熱點也達成了共識。本文旨在分析深度學習技術現狀,研判深度學習發展趨勢,並針對我國的技術水平提出發展建議。
一、深度學習技術現狀
深度學習是本輪人工智慧爆發的關鍵技術。人工智慧技術在計算機視覺和自然語言處理等領域取得的突破性進展,使得人工智慧迎來新一輪爆發式發展。而深度學習是實現這些突破性進展的關鍵技術。其中,基於深度卷積網路的圖像分類技術已超過人眼的准確率,基於深度神經網路的語音識別技術已達到95%的准確率,基於深度神經網路的機器翻譯技術已接近人類的平均翻譯水平。准確率的大幅提升使得計算機視覺和自然語言處理進入產業化階段,帶來新產業的興起。
深度學習是大數據時代的演算法利器,成為近幾年的研究熱點。和傳統的機器學習演算法相比,深度學習技術有著兩方面的優勢。一是深度學習技術可隨著數據規模的增加不斷提升其性能,而傳統機器學習演算法難以利用海量數據持續提升其性能。二是深度學習技術可以從數據中直接提取特徵,削減了對每一個問題設計特徵提取器的工作,而傳統機器學習演算法需要人工提取特徵。因此,深度學習成為大數據時代的熱點技術,學術界和產業界都對深度學習展開了大量的研究和實踐工作。
深度學習各類模型全面賦能基礎應用。卷積神經網路和循環神經網路是兩類獲得廣泛應用的深度神經網路模型。計算機視覺和自然語言處理是人工智慧兩大基礎應用。卷積神經網路廣泛應用於計算機視覺領域,在圖像分類、目標檢測、語義分割等任務上的表現大大超越傳統方法。循環神經網路適合解決序列信息相關問題,已廣泛應用於自然語言處理領域,如語音識別、機器翻譯、對話系統等。
深度學習技術仍不完美,有待於進一步提升。一是深度神經網路的模型復雜度高,巨量的參數導致模型尺寸大,難以部署到移動終端設備。二是模型訓練所需的數據量大,而訓練數據樣本獲取、標注成本高,有些場景樣本難以獲取。三是應用門檻高,演算法建模及調參過程復雜繁瑣、演算法設計周期長、系統實施維護困難。四是缺乏因果推理能力,圖靈獎得主、貝葉斯網路之父Judea Pearl指出當前的深度學習不過只是「曲線擬合」。五是存在可解釋性問題,由於內部的參數共享和復雜的特徵抽取與組合,很難解釋模型到底學習到了什麼,但出於安全性考慮以及倫理和法律的需要,演算法的可解釋性又是十分必要的。因此,深度學習仍需解決以上問題。
二、深度學習發展趨勢
深度神經網路呈現層數越來越深,結構越來越復雜的發展趨勢。為了不斷提升深度神經網路的性能,業界從網路深度和網路結構兩方面持續進行探索。神經網路的層數已擴展到上百層甚至上千層,隨著網路層數的不斷加深,其學習效果也越來越好,2015年微軟提出的ResNet以152層的網路深度在圖像分類任務上准確率首次超過人眼。新的網路設計結構不斷被提出,使得神經網路的結構越來越復雜。如:2014年穀歌提出了Inception網路結構、2015年微軟提出了殘差網路結構、2016年黃高等人提出了密集連接網路結構,這些網路結構設計不斷提升了深度神經網路的性能。
深度神經網路節點功能不斷豐富。為了克服目前神經網路存在的局限性,業界探索並提出了新型神經網路節點,使得神經網路的功能越來越豐富。2017年,傑弗里辛頓提出了膠囊網路的概念,採用膠囊作為網路節點,理論上更接近人腦的行為,旨在克服卷積神經網路沒有空間分層和推理能力等局限性。2018年,DeepMind、谷歌大腦、MIT的學者聯合提出了圖網路的概念,定義了一類新的模塊,具有關系歸納偏置功能,旨在賦予深度學習因果推理的能力。
深度神經網路工程化應用技術不斷深化。深度神經網路模型大都具有上億的參數量和數百兆的佔用空間,運算量大,難以部署到智能手機、攝像頭和可穿戴設備等性能和資源受限的終端類設備。為了解決這個問題,業界採用模型壓縮技術降低模型參數量和尺寸,減少運算量。目前採用的模型壓縮方法包括對已訓練好的模型做修剪(如剪枝、權值共享和量化等)和設計更精細的模型(如MobileNet等)兩類。深度學習演算法建模及調參過程繁瑣,應用門檻高。為了降低深度學習的應用門檻,業界提出了自動化機器學習(AutoML)技術,可實現深度神經網路的自動化設計,簡化使用流程。
深度學習與多種機器學習技術不斷融合發展。深度學習與強化學習融合發展誕生的深度強化學習技術,結合了深度學習的感知能力和強化學習的決策能力,克服了強化學習只適用於狀態為離散且低維的缺陷,可直接從高維原始數據學習控制策略。為了降低深度神經網路模型訓練所需的數據量,業界引入了遷移學習的思想,從而誕生了深度遷移學習技術。遷移學習是指利用數據、任務或模型之間的相似性,將在舊領域學習過的模型,應用於新領域的一種學習過程。通過將訓練好的模型遷移到類似場景,實現只需少量的訓練數據就可以達到較好的效果。
三、未來發展建議
加強圖網路、深度強化學習以及生成式對抗網路等前沿技術研究。由於我國在深度學習領域缺乏重大原創性研究成果,基礎理論研究貢獻不足,如膠囊網路、圖網路等創新性、原創性概念是由美國專家提出,我國研究貢獻不足。在深度強化學習方面,目前最新的研究成果大都是由DeepMind和OpenAI等國外公司的研究人員提出,我國尚沒有突破性研究成果。近幾年的研究熱點生成式對抗網路(GAN)是由美國的研究人員Goodfellow提出,並且谷歌、facebook、twitter和蘋果等公司紛紛提出了各種改進和應用模型,有力推動了GAN技術的發展,而我國在這方面取得的研究成果較少。因此,應鼓勵科研院所及企業加強深度神經網路與因果推理模型結合、生成式對抗網路以及深度強化學習等前沿技術的研究,提出更多原創性研究成果,增強全球學術研究影響力。
加快自動化機器學習、模型壓縮等深度學習應用技術研究。依託國內的市場優勢和企業的成長優勢,針對具有我國特色的個性化應用需求,加快對深度學習應用技術的研究。加強對自動化機器學習、模型壓縮等技術的研究,加快深度學習的工程化落地應用。加強深度學習在計算機視覺領域應用研究,進一步提升目標識別等視覺任務的准確率,以及在實際應用場景中的性能。加強深度學習在自然語言處理領域的應用研究,提出性能更優的演算法模型,提升機器翻譯、對話系統等應用的性能。
來源:產業智能官
END
更多精彩內容請登錄http://www.innov100.com官方網站
往期精選▼
1. 飲鹿網2018-2019年中國人工智慧產業創新百強榜單發布!
2. 飲鹿網2018-2019年中國人工智慧產業Top20投資機構榜單發布!
3. 飲鹿網2018-2019年中國大數據產業創新百強榜單發布!
4. 飲鹿網2018-2019年中國大數據產業Top20投資機構榜單發布!
5. 飲鹿網2018-2019年中國物聯網產業創新百強榜單發布!
6. 飲鹿網2018-2019年中國5G與物聯網產業TOP20投資機構榜單發布!
7. 飲鹿網2018-2019年中國集成電路產業創新百強榜單發布!
8. 飲鹿網2018-2019年中國集成電路產業Top20投資機構榜單發布!
9. 飲鹿網2018-2019年中國企業服務產業創新百強榜單發布!
10. 飲鹿網2018-2019年中國企業服務產業TOP20投資機構榜單發布!