導航:首頁 > 網路連接 > 圖神經網路與計算機網路

圖神經網路與計算機網路

發布時間:2022-04-11 13:25:05

A. 圖計算軟體Gelly和Graphscope有什麼區別

Gelly是Flink的圖API庫,而GraphScope是阿里研發的圖計算平台,是一個完整的平台,包括圖數據管理,執行引擎還支持多種圖演算法

B. 什麼是圖神經網路

圖說的是計算機拓撲裡面的圖
就是那個有邊和節點,有向圖,無向圖的那個。
以這種數據結構為輸入並進行處理的神經網路就是圖神經網路了,結構會不太一樣,但是大同小異了。

C. 將來若想研發神經網路計算機應該報什麼專業

神經網路計算機,大白話就是人工智慧了
人工智慧可以說是一門高尖端學科,屬於社會科學和自然科學的交叉,涉及了數學、心理學、神經生理學、資訊理論、計算機科學、哲學和認知科學、不定性論以及控制論。
研究范疇包括自然語言處理、機器學習、神經網路、模式識別、智能搜索等。應用領域包括機器翻譯、語言和圖像理解、自動程序設計、專家系統等。

要想研究人工智慧,本科專業是數學、計算機、自動化、控制工程相關專業對以後深入學習會比較有優勢,但是人工智慧如與交通運輸相結合,所以學交通運輸工程也是很好的選擇。

你起碼要修好的基礎有:高等數學(特別微分,求導),矩陣論(線性代數),概率,和英語(高水平的論文都是英文)
以上完成以後恭喜你點開人工智慧基礎天賦樹。
然後你就可以愉快的找在網上找公開課上課了。推薦cs229(吳恩達教授,斯坦福大學)深度學習課程,台灣李宏毅老師機器學習課程(國語,對中國人比較友好)。
第二階段完,這個階段完了以後你應該對於編程和機器學習有一些基本認識了。然後你可以找找自己的興趣。想走計算機視覺的去看看ted李飛飛的演講,如何教計算機認識圖片,想走自然語言處理的也可以找找相關素材,我是cv(計算機視覺)
走cv可以繼續cs231(李飛飛 el,斯坦福)
走nlp(自然語言處理)的cs224(斯坦福課程)
第三階段完

第四階段就是看論文,敲代碼,復現實驗什麼的了。估計3年過去了,你看見我這個回答的時候可能已經做出了自己的決定,給後來人一點微小的貢獻把。
幫你在網上找幾份,歸納了下的。覺得有道理。
總結下就是,想玩人工智慧啊,不是某一學科的事情。請認真考慮。
望採納

D. 前饋神經網路、BP神經網路、卷積神經網路的區別與聯系

一、計算方法不同

1、前饋神經網路:一種最簡單的神經網路,各神經元分層排列。每個神經元只與前一層的神經元相連。接收前一層的輸出,並輸出給下一層.各層間沒有反饋。

2、BP神經網路:是一種按照誤差逆向傳播演算法訓練的多層前饋神經網路。

3、卷積神經網路:包含卷積計算且具有深度結構的前饋神經網路。

二、用途不同

1、前饋神經網路:主要應用包括感知器網路、BP網路和RBF網路。

2、BP神經網路:

(1)函數逼近:用輸入向量和相應的輸出向量訓練一個網路逼近一個函數;

(2)模式識別:用一個待定的輸出向量將它與輸入向量聯系起來;

(3)分類:把輸入向量所定義的合適方式進行分類;

(4)數據壓縮:減少輸出向量維數以便於傳輸或存儲。

3、卷積神經網路:可應用於圖像識別、物體識別等計算機視覺、自然語言處理、物理學和遙感科學等領域。

聯系:

BP神經網路和卷積神經網路都屬於前饋神經網路,三者都屬於人工神經網路。因此,三者原理和結構相同。

三、作用不同

1、前饋神經網路:結構簡單,應用廣泛,能夠以任意精度逼近任意連續函數及平方可積函數.而且可以精確實現任意有限訓練樣本集。

2、BP神經網路:具有很強的非線性映射能力和柔性的網路結構。網路的中間層數、各層的神經元個數可根據具體情況任意設定,並且隨著結構的差異其性能也有所不同。

3、卷積神經網路:具有表徵學習能力,能夠按其階層結構對輸入信息進行平移不變分類。

(4)圖神經網路與計算機網路擴展閱讀

1、BP神經網路優劣勢

BP神經網路無論在網路理論還是在性能方面已比較成熟。其突出優點就是具有很強的非線性映射能力和柔性的網路結構。網路的中間層數、各層的神經元個數可根據具體情況任意設定,並且隨著結構的差異其性能也有所不同。但是BP神經網路也存在以下的一些主要缺陷。

①學習速度慢,即使是一個簡單的問題,一般也需要幾百次甚至上千次的學習才能收斂。

②容易陷入局部極小值。

③網路層數、神經元個數的選擇沒有相應的理論指導。

④網路推廣能力有限。

2、人工神經網路的特點和優越性,主要表現在以下三個方面

①具有自學習功能。例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網路,網路就會通過自學習功能,慢慢學會識別類似的圖像。自學習功能對於預測有特別重要的意義。預期未來的人工神經網路計算機將為人類提供經濟預測、效益預測,其應用前途是很遠大的。

②具有聯想存儲功能。用人工神經網路的反饋網路就可以實現這種聯想。

③具有高速尋找優化解的能力。尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網路,發揮計算機的高速運算能力,可能很快找到優化解。

E. 如何通過人工神經網路實現圖像識別

人工神經網路(Artificial Neural Networks)(簡稱ANN)系統從20 世紀40 年代末誕生至今僅短短半個多世紀,但由於他具有信息的分布存儲、並行處理以及自學習能力等優點,已經在信息處理、模式識別、智能控制及系統建模等領域得到越來越廣泛的應用。尤其是基於誤差反向傳播(Error Back Propagation)演算法的多層前饋網路(Multiple-Layer Feedforward Network)(簡稱BP 網路),可以以任意精度逼近任意的連續函數,所以廣泛應用於非線性建模、函數逼近、模式分類等方面。


目標識別是模式識別領域的一項傳統的課題,這是因為目標識別不是一個孤立的問題,而是模式識別領域中大多數課題都會遇到的基本問題,並且在不同的課題中,由於具體的條件不同,解決的方法也不盡相同,因而目標識別的研究仍具有理論和實踐意義。這里討論的是將要識別的目標物體用成像頭(紅外或可見光等)攝入後形成的圖像信號序列送入計算機,用神經網路識別圖像的問題。


一、BP 神經網路


BP 網路是採用Widrow-Hoff 學習演算法和非線性可微轉移函數的多層網路。一個典型的BP 網路採用的是梯度下降演算法,也就是Widrow-Hoff 演算法所規定的。backpropagation 就是指的為非線性多層網路計算梯度的方法。一個典型的BP 網路結構如圖所示。

六、總結

從上述的試驗中已經可以看出,採用神經網路識別是切實可行的,給出的例子只是簡單的數字識別實驗,要想在網路模式下識別復雜的目標圖像則需要降低網路規模,增加識別能力,原理是一樣的。

F. 為什麼有圖卷積神經網路

本質上說,世界上所有的數據都是拓撲結構,也就是網路結構,如果能夠把這些網路數據真正的收集、融合起來,這確實是實現了AI智能的第一步。所以,如何利用深度學習處理這些復雜的拓撲數據,如何開創新的處理圖數據以及知識圖譜的智能演算法是AI的一個重要方向。
深度學習在多個領域的成功主要歸功於計算資源的快速發展(如 GPU)、大量訓練數據的收集,還有深度學習從歐幾里得數據(如圖像、文本和視頻)中提取潛在表徵的有效性。但是,盡管深度學習已經在歐幾里得數據中取得了很大的成功,但從非歐幾里得域生成的數據已經取得更廣泛的應用,它們需要有效分析。如在電子商務領域,一個基於圖的學習系統能夠利用用戶和產品之間的交互以實現高度精準的推薦。在化學領域,分子被建模為圖,新葯研發需要測定其生物活性。在論文引用網路中,論文之間通過引用關系互相連接,需要將它們分成不同的類別。自2012年以來,深度學習在計算機視覺以及自然語言處理兩個領域取得了巨大的成功。假設有一張圖,要做分類,傳統方法需要手動提取一些特徵,比如紋理,顏色,或者一些更高級的特徵。然後再把這些特徵放到像隨機森林等分類器,給到一個輸出標簽,告訴它是哪個類別。而深度學習是輸入一張圖,經過神經網路,直接輸出一個標簽。特徵提取和分類一步到位,避免了手工提取特徵或者人工規則,從原始數據中自動化地去提取特徵,是一種端到端(end-to-end)的學習。相較於傳統的方法,深度學習能夠學習到更高效的特徵與模式。
圖數據的復雜性對現有機器學習演算法提出了重大挑戰,因為圖數據是不規則的。每張圖大小不同、節點無序,一張圖中的每個節點都有不同數目的鄰近節點,使得一些在圖像中容易計算的重要運算(如卷積)不能再直接應用於圖。此外,現有機器學習演算法的核心假設是實例彼此獨立。然而,圖數據中的每個實例都與周圍的其它實例相關,含有一些復雜的連接信息,用於捕獲數據之間的依賴關系,包括引用、朋友關系和相互作用。
最近,越來越多的研究開始將深度學習方法應用到圖數據領域。受到深度學習領域進展的驅動,研究人員在設計圖神經網路的架構時借鑒了卷積網路、循環網路和深度自編碼器的思想。為了應對圖數據的復雜性,重要運算的泛化和定義在過去幾年中迅速發展。

G. 深度神經網路dnn怎麼調節參數

深度神經網路(DNN)目前是許多現代AI應用的基礎。
自從DNN在語音識別和圖像識別任務中展現出突破性的成果,使用DNN的應用數量呈爆炸式增加。這些DNN方法被大量應用在無人駕駛汽車,癌症檢測,游戲AI等方面。
在許多領域中,DNN目前的准確性已經超過人類。與早期的專家手動提取特徵或制定規則不同,DNN的優越性能來自於在大量數據上使用統計學習方法,從原始數據中提取高級特徵的能力,從而對輸入空間進行有效的表示。

然而,DNN超高的准確性是以超高的計算復雜度為代價的。
通常意義下的計算引擎,尤其是GPU,是DNN的基礎。因此,能夠在不犧牲准確性和增加硬體成本的前提下,提高深度神經網路的能量效率和吞吐量的方法,對於DNN在AI系統中更廣泛的應用是至關重要的。研究人員目前已經更多的將關注點放在針對DNN計算開發專用的加速方法。
鑒於篇幅,本文主要針對論文中的如下幾部分詳細介紹:
DNN的背景,歷史和應用
DNN的組成部分,以及常見的DNN模型
簡介如何使用硬體加速DNN運算
DNN的背景
人工智慧與深度神經網路

深度神經網路,也被稱為深度學習,是人工智慧領域的重要分支,根據麥卡錫(人工智慧之父)的定義,人工智慧是創造像人一樣的智能機械的科學工程。深度學習與人工智慧的關系如圖1所示:

圖1:深度神經網路與人工智慧的關系
人工智慧領域內,一個大的子領域是機器學習,由Arthur Samuel在1959年定義為:讓計算機擁有不需要明確編程即可學習的能力。
這意味著創建一個程序,這個程序可以被訓練去學習如何去做一些智能的行為,然後這個程序就可以自己完成任務。而傳統的人工啟發式方法,需要對每個新問題重新設計程序。
高效的機器學習演算法的優點是顯而易見的。一個機器學習演算法,只需通過訓練,就可以解決某一領域中每一個新問題,而不是對每個新問題特定地進行編程。
在機器學習領域,有一個部分被稱作brain-inspired computation。因為人類大腦是目前學習和解決問題最好的「機器」,很自然的,人們會從中尋找機器學習的方法。
盡管科學家們仍在探索大腦工作的細節,但是有一點被公認的是:神經元是大腦的主要計算單元。
人類大腦平均有860億個神經元。神經元相互連接,通過樹突接受其他神經元的信號,對這些信號進行計算之後,通過軸突將信號傳遞給下一個神經元。一個神經元的軸突分支出來並連接到許多其他神經元的樹突上,軸突分支和樹突之間的連接被稱為突觸。據估計,人類大腦平均有1014-1015個突觸。
突觸的一個關鍵特性是它可以縮放通過它的信號大小。這個比例因子可以被稱為權重(weight),普遍認為,大腦學習的方式是通過改變突觸的權重實現的。因此,不同的權重導致對輸入產生不同的響應。注意,學習過程是學習刺激導致的權重調整,而大腦組織(可以被認為是程序)並不改變。
大腦的這個特徵對機器學習演算法有很好的啟示。
神經網路與深度神經網路

神經元的計算是輸入值的加權和這個概念啟發了神經網路的研究。這些加權和對應於突觸的縮放值以及神經元所接收的值的組合。此外,神經元並不僅僅是輸入信號的加權和,如果是這樣的話,級聯的神經元的計算將是一種簡單的線性代數運算。
相反的是,神經元組合輸入的操作似乎是一種非線性函數,只有輸入達到某個閾值的時候,神經元才會生成輸出。因此,通過類比,我們可以知道神經網路在輸入值的加權和的基礎上應用了非線性函數。
圖2(a)展示了計算神經網路的示意圖,圖的最左邊是接受數值的「輸入層」。這些值被傳播到中間層神經元,通常也叫做網路的「隱藏層」。通過一個或更多隱藏層的加權和最終被傳播到「輸出層」,將神經網路的最終結果輸出給用戶。

圖2:神經網路示意圖

在神經網路領域,一個子領域被稱為深度學習。最初的神經網路通常只有幾層的網路。而深度網路通常有更多的層數,今天的網路一般在五層以上,甚至達到一千多層。
目前在視覺應用中使用深度神經網路的解釋是:將圖像所有像素輸入到網路的第一層之後,該層的加權和可以被解釋為表示圖像不同的低階特徵。隨著層數的加深,這些特徵被組合,從而代表更高階的圖像特徵。
例如,線可以被組合成形狀,再進一步,可以被組合成一系列形狀的集合。最後,再訓練好這些信息之後,針對各個圖像類別,網路給出由這些高階特徵組成各個對象的概率,即分類結果。
推理(Inference)與訓練(Training)
既然DNN是機器學習演算法中的一員,那麼它的基本編程思想仍然是學習。DNN的學習即確定網路的權重值。通常,學習過程被稱為訓練網路(training)。一旦訓練完成,程序可以使用由訓練確定的權值進行計算,這個使用網路完成任務的操作被被稱為推斷(inference)。
接下來,如圖3所示,我們用圖像分類作為例子來展示如何訓練一個深度神經網路。當我們使用一個DNN的時候,我們輸入一幅圖片,DNN輸出一個得分向量,每一個分數對應一個物體分類;得到最高分數的分類意味著這幅圖片最有可能屬於這個分類。
訓練DNN的首要目標就是確定如何設置權重,使得正確分類的得分最高(圖片所對應的正確分類在訓練數據集中標出),而使其他不正確分類的得分盡可能低。理想的正確分類得分與目前的權重所計算出的得分之間的差距被稱為損失函數(loss)。
因此訓練DNN的目標即找到一組權重,使得對一個較大規模數據集的loss最小。

圖3:圖像分類

權重(weight)的優化過程類似爬山的過程,這種方法被稱為梯度下降(gradient decent)。損失函數對每個權值的梯度,即損失函數對每個權值求偏導數,被用來更新權值(例:第t到t+1次迭代:,其中α被稱為學習率(Learning rate)。梯度值表明權值應該如何變化以減小loss。這個減小loss值的過程是重復迭代進行的。
梯度可以通過反向傳播(Back-Propagation)過程很高效地進行計算,loss的影響反向通過網路來計算loss是如何被每個權重影響的。
訓練權重有很多種方法。前面提到的是最常見的方法,被稱為監督學習,其中所有的訓練樣本是有標簽的。
無監督學習是另一種方法,其中所有訓練樣本都沒有標簽,最終目標是在數據中查找結構或聚類。半監督學習結合了兩種方法,只有訓練數據的一小部分被標記(例如,使用未標記的數據來定義集群邊界,並使用少量的標記數據來標記集群)。
最後,強化學習可以用來訓練一個DNN作為一個策略網路,對策略網路給出一個輸入,它可以做出一個決定,使得下一步的行動得到相應的獎勵;訓練這個網路的過程是使網路能夠做出使獎勵(即獎勵函數)最大化的決策,並且訓練過程必須平衡嘗試新行為(Exploration)和使用已知能給予高回報的行為(Exploitation)兩種方法。

用於確定權重的另一種常用方法是fine-tune,使用預先訓練好的模型的權重用作初始化,然後針對新的數據集(例如,傳遞學習)或新的約束(例如,降低的精度)調整權重。與從隨機初始化開始相比,能夠更快的訓練,並且有時會有更好的准確性。

H. 神經網路的歷史是什麼

沃倫·麥卡洛克和沃爾特·皮茨(1943)基於數學和一種稱為閾值邏輯的演算法創造了一種神經網路的計算模型。這種模型使得神經網路的研究分裂為兩種不同研究思路。一種主要關注大腦中的生物學過程,另一種主要關注神經網路在人工智慧里的應用。

一、赫布型學習

二十世紀40年代後期,心理學家唐納德·赫布根據神經可塑性的機制創造了一種對學習的假說,現在稱作赫布型學習。赫布型學習被認為是一種典型的非監督式學習規則,它後來的變種是長期增強作用的早期模型。從1948年開始,研究人員將這種計算模型的思想應用到B型圖靈機上。

法利和韋斯利·A·克拉克(1954)首次使用計算機,當時稱作計算器,在MIT模擬了一個赫布網路。納撒尼爾·羅切斯特(1956)等人模擬了一台 IBM 704計算機上的抽象神經網路的行為。

弗蘭克·羅森布拉特創造了感知機。這是一種模式識別演算法,用簡單的加減法實現了兩層的計算機學習網路。羅森布拉特也用數學符號描述了基本感知機里沒有的迴路,例如異或迴路。這種迴路一直無法被神經網路處理,直到保羅·韋伯斯(1975)創造了反向傳播演算法。

在馬文·明斯基和西摩爾·派普特(1969)發表了一項關於機器學習的研究以後,神經網路的研究停滯不前。他們發現了神經網路的兩個關鍵問題。

第一是基本感知機無法處理異或迴路。第二個重要的問題是電腦沒有足夠的能力來處理大型神經網路所需要的很長的計算時間。直到計算機具有更強的計算能力之前,神經網路的研究進展緩慢。

二、反向傳播演算法與復興

後來出現的一個關鍵的進展是保羅·韋伯斯發明的反向傳播演算法(Werbos 1975)。這個演算法有效地解決了異或的問題,還有更普遍的訓練多層神經網路的問題。

在二十世紀80年代中期,分布式並行處理(當時稱作聯結主義)流行起來。戴維·魯姆哈特和詹姆斯·麥克里蘭德的教材對於聯結主義在計算機模擬神經活動中的應用提供了全面的論述。

神經網路傳統上被認為是大腦中的神經活動的簡化模型,雖然這個模型和大腦的生理結構之間的關聯存在爭議。人們不清楚人工神經網路能多大程度地反映大腦的功能。

支持向量機和其他更簡單的方法(例如線性分類器)在機器學習領域的流行度逐漸超過了神經網路,但是在2000年代後期出現的深度學習重新激發了人們對神經網路的興趣。

三、2006年之後的進展

人們用CMOS創造了用於生物物理模擬和神經形態計算的計算設備。最新的研究顯示了用於大型主成分分析和卷積神經網路的納米設備具有良好的前景。

如果成功的話,這會創造出一種新的神經計算設備,因為它依賴於學習而不是編程,並且它從根本上就是模擬的而不是數字化的,雖然它的第一個實例可能是數字化的CMOS設備。

在2009到2012年之間,Jürgen Schmidhuber在Swiss AI Lab IDSIA的研究小組研發的循環神經網路和深前饋神經網路贏得了8項關於模式識別和機器學習的國際比賽。

例如,Alex Graves et al.的雙向、多維的LSTM贏得了2009年ICDAR的3項關於連筆字識別的比賽,而且之前並不知道關於將要學習的3種語言的信息。

IDSIA的Dan Ciresan和同事根據這個方法編寫的基於GPU的實現贏得了多項模式識別的比賽,包括IJCNN 2011交通標志識別比賽等等。

他們的神經網路也是第一個在重要的基準測試中(例如IJCNN 2012交通標志識別和NYU的揚·勒丘恩(Yann LeCun)的MNIST手寫數字問題)能達到或超過人類水平的人工模式識別器。

類似1980年Kunihiko Fukushima發明的neocognitron和視覺標准結構(由David H. Hubel和Torsten Wiesel在初級視皮層中發現的那些簡單而又復雜的細胞啟發)那樣有深度的、高度非線性的神經結構可以被多倫多大學傑弗里·辛頓實驗室的非監督式學習方法所訓練。

2012年,神經網路出現了快速的發展,主要原因在於計算技術的提高,使得很多復雜的運算變得成本低廉。以AlexNet為標志,大量的深度網路開始出現。

2014年出現了殘差神經網路,該網路極大解放了神經網路的深度限制,出現了深度學習的概念。

構成

典型的人工神經網路具有以下三個部分:

1、結構(Architecture)結構指定了網路中的變數和它們的拓撲關系。例如,神經網路中的變數可以是神經元連接的權重(weights)和神經元的激勵值(activities of the neurons)。

2、激勵函數(Activation Rule)大部分神經網路模型具有一個短時間尺度的動力學規則,來定義神經元如何根據其他神經元的活動來改變自己的激勵值。一般激勵函數依賴於網路中的權重(即該網路的參數)。

3、學習規則(Learning Rule)學習規則指定了網路中的權重如何隨著時間推進而調整。這一般被看做是一種長時間尺度的動力學規則。一般情況下,學習規則依賴於神經元的激勵值。它也可能依賴於監督者提供的目標值和當前權重的值。

例如,用於手寫識別的一個神經網路,有一組輸入神經元。輸入神經元會被輸入圖像的數據所激發。在激勵值被加權並通過一個函數(由網路的設計者確定)後,這些神經元的激勵值被傳遞到其他神經元。

這個過程不斷重復,直到輸出神經元被激發。最後,輸出神經元的激勵值決定了識別出來的是哪個字母。

I. 計算機神經網路控制系統能幹嘛

具有模仿人的大腦判斷能力和適應能力、可並行處理多種數據功能的神經網路計算機,可以判斷對象的性質與狀態,並能採取相應的行動,而且可同時並行處理實時變化的大量數據,並引出結論。神經電腦除有許多處理器外,還有類似神經的節點,每個節點與許多點相連。若把每一步運算分配給每台微處理器,它們同時運算,其信息處理速度和智能會大大提高。神經電子計算機的信息不是存在存儲器中,而是存儲在神經元之間的聯絡網中。若有節點斷裂,電腦仍有重建資料的能力,它還具有聯想記憶、視覺和聲音識別能力。

閱讀全文

與圖神經網路與計算機網路相關的資料

熱點內容
移動網路部給力是什麼原因 瀏覽:667
網路屬性看得出來是多少兆的網么 瀏覽:812
橋接的路由器經常網路不可用 瀏覽:410
出門微信支付不了錢顯示網路異常 瀏覽:138
連上網路了為什麼用不了 瀏覽:816
如何製作網路遠程教學 瀏覽:939
5g網路哪個優先 瀏覽:754
十代思域中控怎麼連接手機網路 瀏覽:388
偏遠山區哪個網路的移動信號強 瀏覽:706
央企考核網路安全 瀏覽:329
除了共享熱點還可以共享網路嗎 瀏覽:620
蘋果如何用網路路由器改畫質 瀏覽:106
雙網路代號圖怎麼看工作延誤幾天 瀏覽:54
共享網路文明資料 瀏覽:906
遠程桌面連接報錯由於網路問題 瀏覽:244
如何增強網路通信信號 瀏覽:10
網路游戲退錢的方式有哪些 瀏覽:582
信號滿格沒有網路是什麼原因 瀏覽:772
無線網路共享上網 瀏覽:618
移動網路怎麼登路由器 瀏覽:239

友情鏈接