『壹』 如何理解OSI參考模型網路中對等層次之間的通信
對等層,指在通信過程中,發送方和接收方中處於相同層次的兩個層。協議只發生在對等層之間。
協議也就是對等雙方約定好的規則,准則。為了說明對等層之間的關系,我們用一個較容易理解的現實中的寫信來舉例子。
假設作家A想和作家B討論下文學創作問題,東西寫在信紙上了,交給郵政局A說發給作家B。郵政局A於是給信紙套了個信封,註明發信人收信人的情況,交給郵遞員A送過去。郵遞員A騎著車啊送到另一個城市,交給郵遞員B。郵遞員B跑回郵政局B,把信件交上去。。郵政局B看了看信封,知道是送給作家B的,於是拆了信封,把信紙取出來,交給作家B。作家B於是認真地看起信的內容來了。一次通信完成。
當然,上面的例子有過些過程和現實相比誇張了些,不過卻貼切於OSI體系結構的思路。在這個通信例子里,發送端和接收端都是三層:作家層、郵政局層、郵遞員層。協議只作用在對等層之間。好比作家,他們討論那個文學創作問題,這玩意老深刻了,一般人整不明白,不過作家AB懂,這個懂就是說明他們之間明白那個規則。到了郵政局層,他們不需要明白文學創作是啥玩意,他們只需要懂信封的格式:知道這個發信人收信人的信息怎麼寫,位置怎麼排列,還有郵政編碼怎麼個編,懂這些就OK了。。到了郵遞員層,他們就不需要知道文學創作是咋回事,也不需要知道為什麼發信人地址要寫下面收信人地址寫上面這些個事,他們只要知道怎麼騎車或則跑步送信到對方就可以了。
作家AB懂文學創作;郵政局AB懂信封的格式識別;郵遞員AB懂信件的交接。好就OK了,他們不需要知道其他層的知識。。這就是對等層的通信。
『貳』 關於計算機網路我有些問題啊~這句話什麼意思
1層物理層:主要定義物理設備標准,如網線的介面類型、光線的介面類型、各種傳輸介質的傳輸速率等。它的主要作用是傳輸比特流(就是由1、0轉化為電流強弱來進行傳輸,到達目的地後在轉化為1、0,也就是我們常說的模數轉換與數模轉換)。這一層的數據叫做比特。
2層數據鏈路層:主要將從物理層接收的數據進行MAC地址(網卡的地址)的封裝與解封裝。常把這一層的數據叫做幀。在這一層工作的設備是交換機,數據通過換換機來傳輸。
3層網路層:主要將從下層接收到的數據進行IP地址(例192.168.0.1)的封裝與解封裝。在這一層工作的設備是路由器,常把這一層的數據叫做數據包。
4層傳輸層:定義了一些傳輸數據的協議和埠號(WWW埠80等),如:TCP(傳輸控制協議,傳輸效率低,可靠性強,用於傳輸可靠性要求高,數據量大的數據),UDP(用戶數據報協議,與TCP特性恰恰相反,用於傳輸可靠性要求不高,數據量小的數據,如QQ聊天數據就是通過這種方式傳輸的)。 主要是將從下層接收的數據進行分段進行傳輸,到達目的地址後在進行重組。常常把這一層數據叫做段。
5層會話層:通過傳輸層(埠號:傳輸埠與接收埠)建立數據傳輸的通路。主要在你的系統之間發起會話或或者接受會話請求(設備之間需要互相認識可以是IP也可以是MAC或者是主機名)
6層表示層:主要是進行對接收的數據進行解釋、加密與解密、壓縮與解壓縮等(也就是把計算機能夠識別的東西轉換成人能夠能識別的東西(如圖片、聲音等))
7層應用層 主要是一些終端的應用,比如說FTP(各種文件下載),WEB(IE瀏覽),QQ之類的(你就把它理解成我們在電腦屏幕上可以看到的東西.就 是終端應用)
『叄』 計算機網路上下層是通過什麼實現功能調度的,對等層是通過什麼進行通信的
建議直接研讀謝希仁的《計算機網路》,這東西一兩句話說不清
簡單點說吧,上下層之間是通過服務實現的,而對等層之間是通過協議實現的
『肆』 計算機網路分層體系結構包含哪兩方面的含義
在OSI出現之前,計算機網路中存在眾多的體系結構,其中以IBM公司的SNA(系統網路體系結構)和DEC公司的DNA(Digital Network Architecture)數字網路體系結構最為著名。為了解決不同體系結構的網路的互聯問題,國際標准化組織ISO(注意不要與OSI搞混))於1981年制定了開放系統互連參考模型(Open System Interconnection Reference Model,OSI/RM)。這個模型把網路通信的工作分為7層,它們由低到高分別是物理層(Physical Layer),數據鏈路層(Data Link Layer),網路層(Network Layer),傳輸層(Transport Layer),會話層(Session Layer),表示層(Presen tation Layer)和應用層(Application Layer)。第一層到第三層屬於OSI參考模型的低三層,負責創建網路通信連接的鏈路;第四層到第七層為OSI參考模型的高四層,具體負責端到端的數據通信。每層完成一定的功能,每層都直接為其上層提供服務,並且所有層次都互相支持,而網路通信則可以自上而下(在發送端)或者自下而上(在接收端)雙向進行。當然並不是每一通信都需要經過OSI的全部七層,有的甚至只需要雙方對應的某一層即可。物理介面之間的轉接,以及中繼器與中繼器之間的連接就只需在物理層中進行即可;而路由器與路由器之間的連接則只需經過網路層以下的三層即可。總的來說,雙方的通信是在對等層次上進行的,不能在不對稱層次上進行通信。OSI 標准制定過程中採用的方法是將整個龐大而復雜的問題劃分為若干個容易處理的小問題,這就是分層的體系結構辦法。在OSI中,採用了三級抽象,既體系結構,服務定義,協議規格說明。ISO將整個通信功能劃分為七個層次,劃分層次的原則是:1、網中各節點都有相同的層次。2、不同節點的同等層次具有相同的功能。3、同一節點能相鄰層之間通過介面通信。4、每一層使用下層提供的服務,並向其上層提供服務。5、不同節點的同等層按照協議實現對等層之間的通信。第一層:物理層(PhysicalLayer),規定通信設備的機械的、電氣的、功能的和過程的特性,用以建立、維護和拆除物理鏈路連接。具體地講,機械特性規定了網路連接時所需接插件的規格尺寸、引腳數量和排列情況等;電氣特性規定了在物理連接上傳輸bit流時線路上信號電平的大小、阻抗匹配、傳輸速率距離限制等;功能特性是指對各個信號先分配確切的信號含義,即定義了DTE和DCE之間各個線路的功能;規程特性定義了利用信號線進行bit流傳輸的一組操作規程,是指在物理連接的建立、維護、交換信息是,DTE和DCE雙放在各電路上的動作系列。在這一層,數據的單位稱為比特(bit)。屬於物理層定義的典型規范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45等。第二層:數據鏈路層(DataLinkLayer):在物理層提供比特流服務的基礎上,建立相鄰結點之間的數據鏈路,通過差錯控制提供數據幀(Frame)在信道上無差錯的傳輸,並進行各電路上的動作系列。 數據鏈路層在不可靠的物理介質上提供可靠的傳輸。該層的作用包括:物理地址定址、數據的成幀、流量控制、數據的檢錯、重發等。在這一層,數據的單位稱為幀(frame)。數據鏈路層協議的代表包括:SDLC、HDLC、PPP、STP、幀中繼等。 第三層是網路層(Network layer)在計算機網路中進行通信的兩個計算機之間可能會經過很多個數據鏈路,也可能還要經過很多通信子網。網路層的任務就是選擇合適的網間路由和交換結點, 確保數據及時傳送。網路層將數據鏈路層提供的幀組成數據包,包中封裝有網路層包頭,其中含有邏輯地址信息- -源站點和目的站點地址的網路地址。 如果你在談論一個IP地址,那麼你是在處理第3層的問題,這是「數據包」問題,而不是第2層的「幀」。IP是第3層問題的一部分,此外還有一些路由協議和地址解析協議(ARP)。有關路由的一切事情都在第3層處理。地址解析和路由是3層的重要目的。網路層還可以實現擁塞控制、網際互連等功能。在這一層,數據
『伍』 解釋下列名詞:實體對等層、協議數據單元、服務訪問點
對等層:在網路體系結構中,通信雙方實現同樣功能的層。
協議數據單元:對等層實體進行信息交換的數據單位。
服務訪問點:在同一系統中相鄰兩層的實體進行交互(即交換信息)的地方。
『陸』 計算機網路中的對等層
對等層(Peer Layers)是指在計算機網路協議層次中,將數據(即數據單元加上控制信息)直接(邏輯上)傳遞給對方的任何兩個同樣的層次。
『柒』 網路協議中的高低層次是什麼有什麼作用
7層
物理層:
物理層(physical layer)的主要功能是完成相鄰結點之間原始比特流傳輸。物理層協議關心的典型問題是使用什麼樣的物理信號來表示數據0和1。1位持續的時間多長。數據傳輸是否可同時在兩個方向上進行。最初的廉潔如何建立以及完成通信後連接如何終止。物理介面(插頭和插座)有多少針以及各針的作用。物理層的設計主要涉及物理層介面的機械、電氣、功能和過電特性,以及物理層介面連接的傳輸介質等問題。物理層的實際還涉及到通信工程領域內的一些問題。
數據鏈路層:
數據鏈路層(data link layer)的主要功能是如何在不可靠的物理線路上進行數據的可靠傳輸。數據鏈路層完成的是網路中相鄰結點之間可靠的數據通信。為了保證書覺得可靠傳輸,發送出的數據針,並按順序傳送個針。由於物理線路不可靠,因此發送方發出的數據針有可能在線路上出錯或丟失,從而導致接受方無法正確接收數據。為了保證能讓接收方對接收到的數據進行正確的判斷,發送方位每個數據塊計算出CRC(循環冗餘檢驗)並加入到針中,這樣接收方就可以通過重新計算CRC來判斷接收到的數據是否正確。一旦接收方發現接收到的數據有錯誤,則發送方必須重新傳送這一數據。然而,相同的數據多次傳送也可能是接收方收到重復的數據。
數據鏈路層要解決的另一個問題是防止高速發送方的數據把低速接收方「淹沒」。因此需要某種信息流量控制機制使發送方得知接收方當前還有多少緩存空間。為了控制的方便,流量控制常常和差錯處理一同實現。
在廣域網中,數據鏈路層負責主機IMP、IMP-IMP之間數據的可靠傳送。在區域網中,數據鏈路層負責制及之間數據的可靠傳輸。
網路層:
網路層(network layer)的主要功能是完成網路中主機間的報文傳輸,其關鍵問題之一是使用數據鏈路層的服務將每個報文從源端傳輸到目的端。在廣域網中,這包括產生從源端到目的端的路由,並要求這條路徑經過盡可能少的IMP。如果在子網中同時出現過多的報文,子網就可能形成擁塞,因為必須加以避免這種情況的出現。
當報文不得不跨越兩個或多個網路時,又會帶來很多新問題。比
在單個區域網中,網路層是冗餘的,因為報文是直接從一台計算機傳送到另一台計算機的,因此網路層所要做的工作很少。
傳輸層:
傳輸層(transport layer)的主要功能是實現網路中不同主機上的用戶進程之間可靠的數據通信。
傳輸層要決定會話層用戶(最終對網路用戶)提供什麼樣的服務。最好的傳輸連接是一條無差錯的、按順序傳送數據的管道,即傳輸層連接時真正的點到點。
由於絕大多數的主機都支持多用戶操作,因而機器上有多道程序就意味著將有多條連接進出於這些主機,因此需要以某種方式區別報文屬於哪條連接。識別這些連接的信息可以放入傳輸層的報文頭中除了將幾個報文流多路復用到一條通道上,傳輸層還必須管理跨網連接的建立和取消。這就需要某種命名機制,使機器內的進程能夠講明它希望交談的對象。另外,還需要有一種機制來調節信息流,使高速主機不會過快的向低速主機傳送數據。盡管主機之間的流量控制與IMP之間的流量控制不盡相同。
會話層:
會話層(SESSION LAYER)允許不同機器上的用戶之間建立會話關系。會話層循序進行類似的傳輸層的普通數據的傳送,在某某些場合還提供了一些有用的增強型服務。允許用戶利用一次會話在遠端的分時系統上登陸,或者在兩台機器間傳遞文件。
會話層提供的服務之一是管理對話控制。會話層允許信息同時雙向傳輸,或任一時刻只能單向傳輸。如果屬於後者,類似於物理信道上的半雙工模式,會話層將記錄此時該輪到哪一方。一種與對話控制有關的服務是令牌管理(token management)。有些協議會保證雙方不能同時進行同樣的操作,這一點很重要。為了管理這些活動,會話層提供了令牌,令牌可以在會話雙方之間移動,只有持有令牌的一方可以執行某種關鍵性操作。另一種會話層服務是同步。如果在平均每小時出現一次大故障的網路上,兩台機器簡要進行一次兩小時的文件傳輸,試想會出現什麼樣的情況呢?每一次傳輸中途失敗後,都不得不重新傳送這個文件。當網路再次出現大故障時,可能又會半途而廢。為解決這個問題,會話層提供了一種方法,即在數據中插入同步點。每次網路出現故障後,僅僅重傳最後一個同步點以後的數據(這個其實就是斷點下載的原理)。
表示層:
表示層(presentation layer)用於完成某些特定功能,對這些功能人們常常希望找到普遍的解決辦法,而不必由每個用戶自己來實現。表示層以下各層只關心從源端機到目標機到目標機可靠的傳送比特流,而表示層關心的是所傳送的信息的語法和語義。表示層服務的一個典型例子就是大家一致選定的標准方法對數據進行編碼。大多數用戶程序之間並非交換隨機比特,而是交換諸如人名、日期、貨幣數量和發票之類的信息。這些對象使用字元串、整型數、浮點數的形式,以及由幾種簡單類型組成的數據結構來表示的。
在網路上計算機可能採用不同的數據表示,所以需要在數據傳輸時進行數據格式轉換。為了讓採用不同數據表示法的計算機之間能夠相互通信而且交換數據,就要在通信過程中使用抽象的數據結構來表示所傳送的數據。而在機器內部仍然採用各自的標准編碼。管理這些抽象數據結構,並在發送方將機器的內部編碼轉換為適合網上傳輸的傳送語法以及在接收方做相反的轉換等噢年工作都是由表示層來完成的。
另外,表示層還涉及數據壓縮和解壓、數據加密和解米等工作(winrar的那一套)。
應用層:
連網的目的在於支持運行於不同計算機的進程彼此之間的通信,而這些進程則是為用戶完成不同人物而設計的。可能的應用是多方面的,不受網路結構的限制。應用層(app;ocation layer)包括大量人們普遍需要的協議。雖然,對於需要通信的不同應用來說,應用層的協議都是必須的。例如:http、ftp、TCP/IP。
由於每個應用有不同的要求,應用層的協議集在OSI模型中並沒有定義。但是,有些確定的應用層協議,包括虛擬終端、文件傳輸、電子郵件等都可以作為標准化的候選。
『捌』 計算機網路中客戶伺服器方式和對等方式有什麼異同
1、網路結構不同:
伺服器-客戶機,即Client-Server(C/S)結構。C/S結構通常採取兩層結構。伺服器負責數據的管理,客戶機負責完成與用戶的交互任務。對等網路是一種網路結構的思想,與客戶端/伺服器(Client/Server)結構的一個本質區別是,整個網路結構中不存在中心節點(或中心伺服器)。
2、數據請求方式不同:
伺服器-客戶機方式中,客戶機通過區域網與伺服器相連,接受用戶的請求,並通過網路向伺服器提出請求,對資料庫進行操作。伺服器接受客戶機的請求,將數據提交給客戶機,客戶機將數據進行計算並將結果呈現給用戶。
對等方式網路中的每一台計算機既能充當網路服務的請求者,又對其它計算機的請求做出響應,提供資源、服務和內容。
3、去中心化能力不同:
網路中的資源和服務分散在所有節點上,信息的傳輸和服務的實現都直接在節點之間進行,可以無需中間環節和伺服器的介入,避免了可能的瓶頸。P2P的非中心化基本特點,帶來了其在可擴展性、健壯性等方面的優勢。
『玖』 計算機網路中,OSI參考模型從低到高第三層是
計算機網路中,OSI參考模型從低到高第3層是:網路層。本層通過定址來建立兩個節點之間的連接,為源端的運輸層送來的分組,選擇合適的路由和交換節點,正確無誤地按照地址傳送給目的端的運輸層。
它包括通過互連網路來路由和中繼數據 ;除了選擇路由之外,網路層還負責建立和維護連接,控制網路上的擁塞以及在必要的時候生成計費信息。數據發送時,從第七層傳到第一層,接收數據則相反。分層有利於個不同製造廠家的設備互連,也有利於大家學習、理解數據通訊網路。
(9)在計算機網路中對等層的意思擴展閱讀
提供各種網路服務功能的計算機網路系統是非常復雜的。根據分而治之的原則,ISO將整個通信功能劃分為七個層次,劃分原則是:
1、網路中各節點都有相同的層次;
2、不同節點的同等層具有相同的功能;
3、同一節點內相鄰層之間通過介面通信;
4、每一層使用下層提供的服務,並向其上層提供服務;
5、不同節點的同等層按照協議實現對等層之間的通信;
6、根據功能需要進行分層,每層應當實現定義明確的功能;;
7、向應用程序提供服務。
『拾』 對等層的概念
對等層(Peer Layers)是指在計算機網路協議層次中,將數據(即數據單元加上控制信息)直接(邏輯上)傳遞給對方的任何兩個同樣的層次。
Internet網路結構以TCP/IP協議層次模型為核心,
共分四層結構:應用層、傳輸層、網際層和網路介面層。TCP/IP的體系結構與ISO的OSI七層參考模型的對應關系如圖1-6所示。TCP/IP是Internet的核心,利用TCP/IP協議可以方便地實現各種網路的平滑、無縫連接。在TCP/IP四層模型中,作為最高層的應用層相當於OSI的5~7層,該層中包括了所有的高層協議,如常見的文件傳輸協議FTP(文件傳輸協議)、電子郵件SMTP,(簡單郵件傳送協議)、域名系統DNS(域名服務)、網路管理協議SNMP、訪問WWW的超文本傳輸協議HTTP、遠程終端訪問協議TELNET等。
TCP/IP的次高層為傳輸層,相當於OSI的傳輸層,該層負責在源主機和目的主機之間提供端到端的數據傳輸服務。這一層上主要定義了兩個協議:面向連接的傳輸控制協議TCP和無連接的用戶數據報協議UDP(UserDatagramProtocol)。
TCP/IP的第二層相當於OSI的網路層,該層負責將報文(數據包)獨立地從信源傳送到信宿,主要解決路由選擇、阻塞控制級網際互聯問題。這一層上定義了網際協議(InternetProtocol,IP協議)、地址轉換協議ARP(AddressResolutionProtocol)、反向地址轉換協議RARP(ReverseARP)和網際控制報文協議ICMP()等協議。
TCP/IP的最低層為網路介面層,該層負責將IP分組封裝成適合在物理網路上傳輸的幀格式並發送出去,或將從物理網路接收到的幀卸裝並遞交給高層。這一層與物理網路的具體實現有關,自身並無專用的協議。事實上,任何能傳輸IP報文的協議都可以運行。雖然該層一般不需要專門的TCP/IP協議,各物理網路可使用自己的數據鏈路層協議和物理層協議。