① 計算機考試,要求畫出網路拓撲圖。要怎麼畫呢
網路拓撲圖如下:
網路拓撲結構是指用傳輸媒體互連各種設備的物理布局,就是用什麼方式把網路中的計算機等設備連接起來。拓撲圖給出網路伺服器、工作站的網路配置和相互間的連接,它的結構主要有星型結構、環型結構、匯流排結構、分布式結構、樹型結構、網狀結構、蜂窩狀結構等。
(1)教你看懂計算機網路圖擴展閱讀
每個端用戶都與兩個相臨的端用戶相連,因而存在著點到點鏈路,但總是以單向方式操作,於是便有上游端用戶和下游端用戶之稱;信息流在網中是沿著固定方向流動的,兩個節點僅有一條道路,故簡化了路徑選擇的控制;環路上各節點都是自舉控制。
分布式拓撲結構缺點為連接線路用電纜長,造價高;網路管理軟體復雜;報文分組交換、路徑選擇、流向控制復雜;在一般區域網中不採用這種結構。
端用戶設備因為故障而停機時也不會影響其它端用戶間的通信。同時它的網路延遲時間較小,傳輸誤差較低。但這種結構非常不利的一點是,中心系統必須具有極高的可靠性,因為中心系統一旦損壞,整個系統便趨於癱瘓。對此中心系統通常採用雙機熱備份,以提高系統的可靠性。
② 常見的八種網路拓撲圖,你知道幾個
網路拓撲結構是指用傳輸媒體互連各種設備的物理布局,就是用什麼方式把網路中的計算機等設備連接起來。常見的網路拓撲圖有8種。
星型
星型結構是最古老的一種連接方式,大家每天都使用的電話屬於這種結構。目前一般網路環境都被設計成星型拓樸結構。星型網是目前廣泛而又首選使用的網路拓樸設計之一。
星型結構是指各工作站以星型方式連接成網。網路有中央節點,其他節點(工作站、伺服器)都與中央節點直接相連,這種結構以中央節點為中心,因此又稱為集中式網路。
星型拓撲結構便於集中控制,因為端用戶之間的通信必須經過中心站。由於這一特點,也帶來了易於維護和安全等優點。端用戶設備因為故障而停機時也不會影響其它端用戶間的通信。同時星型拓撲結構的網路延遲時間較小,傳輸誤差較低。但這種結構非常不利的一點是,中心系統必須具有極高的可靠性,因為中心系統一旦損壞,整個系統便趨於癱瘓。對此中心系統通常採用雙機熱備份,以提高系統的可靠性。
在星型拓撲結構中,網路中的各節點通過點到點的方式連接到一個中央節點(又稱中央轉接站,一般是集線器或交換機)上,由該中央節點向目的節點傳送信息。中央節點執行集中式通信控制策略,因此中央節點相當復雜,負擔比各節點重得多。在星型網中任何兩個節點要進行通信都必須經過中央節點控制。
現有的數據處理和聲音通信的信息網大多採用星型網,目前流行的專用小交換機PBX(Private Branch Exchange),即電話交換機就是星型網拓撲結構的典型實例。它在一個單位內為綜合語音和數據工作站交換信息提供信道,還可以提供語音信箱和電話會議等業務,是區域網的一個重要分支。
在星型網中任何兩個節點要進行通信都必須經過中央節點控制。因此,中央節點的主要功能有三項:當要求通信的站點發出通信請求後,控制器要檢查中央轉接站是否有空閑的通路,被叫設備是否空閑,從而決定是否能建立雙方的物理連接;在兩台設備通信過程中要維持這一通路;當通信完成或者不成功要求拆線時,中央轉接站應能拆除上述通道。
由於中央節點要與多機連接,線路較多,為便於集中連線,目前多採用交換設備(交換機)的硬體作為中央節點。
集中式
這種結構便於集中控制,因為端用戶之間的通信必須經過中心站。由於這一特點,也帶來了易於維護和安全等優點。端用戶設備因為故障而停機時也不會影響其它端用戶間的通信。同時它的網路延遲時間較小,傳輸誤差較低。但這種結構非常不利的一點是,中心系統必須具有極高的可靠性,因為中心系統一旦損壞,整個系統便趨於癱瘓。對此中心系統通常採用雙機熱備份,以提高系統的可靠性。
環型
環型結構在LAN中使用較多。這種結構中的傳輸媒體從一個端用戶到另一個端用戶,直到將所有的端用戶連成環型。數據在環路中沿著一個方向在各個節點間傳輸,信息從一個節點傳到另一個節點。這種結構顯而易見消除了端用戶通信時對中心系統的依賴性。
環行結構的特點是:每個端用戶都與兩個相臨的端用戶相連,因而存在著點到點鏈路,但總是以單向方式操作,於是便有上游端用戶和下游端用戶之稱;信息流在網中是沿著固定方向流動的,兩個節點僅有一條道路,故簡化了路徑選擇的控制;環路上各節點都是自舉控制,故控制軟體簡單;由於信息源在環路中是串列地穿過各個節點,當環中節點過多時,勢必影響信息傳輸速率,使網路的響應時間延長;環路是封閉的,不便於擴充;可靠性低,一個節點故障,將會造成全網癱瘓;維護難,對分支節點故障定位較難。
匯流排型
匯流排上傳輸信息通常多以基帶形式串列傳遞,每個結點上的網路介面板硬體均具有收、發功能,接收器負責接收匯流排上的串列信息並轉換成並行信息送到PC工作站;發送器是將並行信息轉換成串列信息後廣播發送到匯流排上,匯流排上發送信息的目的地址與某結點的介面地址相符合時,該結點的接收器便接收信息。由於各個結點之間通過電纜直接連接,所以匯流排型拓撲結構中所需要的電纜長度是最小的,但匯流排只有一定的負載能力,因此匯流排長度又有一定限制,一條匯流排只能連接一定數量的結點。
因為所有的結點共享一條公用的傳輸鏈路,所以一次只能由一個設備傳輸。需要某種形式的訪問控制策略、來決定下一次哪一個站可以發送.通常採取分布式控制策略。發送時,發送站將報文分成分組.然後一次一個地依次發送這些分組。有時要與其它站來的分組交替地在介質上傳輸。當分組經過各站時,目的站將識別分組的地址。然後拷貝下這些分組的內容。這種拓撲結構減輕了網路通信處理的負擔,它僅僅是一個無源的傳輸介質,而通信處理分布在各站點進行。
在匯流排兩端連接有端結器(或終端匹配器),主要與匯流排進行阻抗匹配,最大限度吸收傳送端部的能量,避免信號反射回匯流排產生不必要的干擾。
匯流排結構是使用同一媒體或電纜連接所有端用戶的一種方式,也就是說,連接端用戶的物理媒體由所有設備共享,各工作站地位平等,無中央結點控制,公用匯流排上的信息多以基帶形式串列傳遞,其傳遞方向總是從發送信息的結點開始向兩端擴散,如同廣播電台發射的信息一樣,因此又稱廣播式計算機網路。各結點在接受信息時都進行地址檢查,看是否與自己的工作站地址相符,相符則接收網上的信息。
使用這種結構必須解決的一個問題是確保端用戶使用媒體發送數據時不能出現沖突。在點到點鏈路配置時,這是相當簡單的。如果這條鏈路是半雙工操作,只需使用很簡單的機制便可保證兩個端用戶輪流工作。在一點到多點方式中,對線路的訪問依靠控制端的探詢來確定。然而,在LAN環境下,由於所有數據站都是平等的,不能採取上述機制。對此,研究了一種在匯流排共享型網路使用的媒體訪問方法:帶有碰撞檢測的載波偵聽多路訪問,英文縮寫成CSMA/CD。
這種結構具有費用低、數據端用戶入網靈活、站點或某個端用戶失效不影響其它站點或端用戶通信的優點。缺點是一次僅能一個端用戶發送數據,其它端用戶必須等待到獲得發送權;媒體訪問獲取機制較復雜;維護難,分支結點故障查找難。盡管有上述一些缺點,但由於布線要求簡單,擴充容易,端用戶失效、增刪不影響全網工作,所以是LAN技術中使用最普遍的一種。
分布式
分布式結構的網路是將分布在不同地點的計算機通過線路互連起來的一種網路形式。
分布式結構的網路具有如下特點:由於採用分散控制,即使整個網路中的某個局部出現故障,也不會影響全網的操作,因而具有很高的可靠性;網中的路徑選擇最短路徑演算法,故網上延遲時間少,傳輸速率高,但控制復雜;各個結點間均可以直接建立數據鏈路,信息流程最短;便於全網范圍內的資源共享。缺點為連接線路用電纜長,造價高;網路管理軟體復雜;報文分組交換、路徑選擇、流向控制復雜;在一般區域網中不採用這種結構。
樹型
樹型結構是分級的集中控制式網路,與星型相比,它的通信線路總長度短,成本較低,節點易於擴充,尋找路徑比較方便,但除了葉節點及其相連的線路外,任一節點或其相連的線路故障都會使系統受到影響。
網狀
網狀拓撲結構主要指各節點通過傳輸線互聯連接起來,並且每一個節點至少與其他兩個節點相連.網狀拓撲結構具有較高的可靠性,但其結構復雜,實現起來費用較高,不易管理和維護,不常用於區域網!
將多個子網或多個網路連接起來構成網狀拓撲結構。在一個子網中,集線器、中繼器將多個設備連接起來,而橋接器、路由器及網關則將子網連接起來。根據組網硬體不同,主要有三種網狀拓撲:
網狀網:在一個大的區域內,用無線電通信鏈路連接一個大型網路時,網狀網是最好的拓撲結構。通過路由器與路由器相連,可讓網路選擇一條最快的路徑傳送數據,如圖5-4所示。
主幹網:通過橋接器與路由器把不同的子網或LAN連接起來形成單個匯流排或環型拓撲結構,這種網通常採用光纖做主幹線。
星狀相連網:利用一些叫做超級集線器的設備將網路連接起來,由於星型結構的特點,網路中任一處的故障都可容易查找並修復
蜂窩
蜂窩拓撲結構是無線區域網中常用的結構。它以無線傳輸介質(微波、衛星、紅外等)點到點和多點傳輸為特徵,是一種無線網,適用於城市網、校園網、企業網。
混合型
將兩種或幾種網路拓撲結構混合起來構成的一種網路拓撲結構稱為混合型拓撲結構(也有的稱之為雜合型結構)。
這種網路拓撲結構是由星型結構和匯流排型結構的網路結合在一起的網路結構,這樣的拓撲結構更能滿足較大網路的拓展,解決星型網路在傳輸距離上的局限,而同時又解決了匯流排型網路在連接用戶數量的限制。這種網路拓撲結構同時兼顧了星型網與匯流排型網路的優點,在缺點方面得到了一定的彌補。
這種網路拓撲結構主要用於較大型的區域網中,如果一個單位有幾棟在地理位置上分布較遠(當然是同一小區中),如果單純用星型網來組整個公司的區域網,因受到星型網傳輸介質--雙絞線的單段傳輸距離(100m)的限制很難成功;如果單純採用匯流排型結構來布線則很難承受公司的計算機網路規模的需求。結合這兩種拓撲結構,在同一棟樓層我們採用雙絞線的星型結構,而不同樓層我們採用同軸電纜的匯流排型結構,而在樓與樓之間我們也必須採用匯流排型,傳輸介質當然要視樓與樓之間的距離,如果距離較近(500m以內)我們可以採用粗同軸電纜來作傳輸介質,如果在180m之內還可以採用細同軸電纜來作傳輸介質。但是如果超過500m我們只有採用光纜或者粗纜加中繼器來滿足了。這種布線方式就是我們常見的綜合布線方式。
無線電通信
傳輸線系統除同軸電纜、雙絞線、和光纖外,還有一種手段是根本不使用導線,這就是無線電通信,無線電通信利用電磁波或光波來傳輸信息,利用它不用敷設纜線就可以把網路連接起來。無線電通信包括兩個獨特的網路:移動網路和無線LAN網路。利用LAN網,機器可以通過發射機和接收機連接起來;利用移動網,機器可以通過蜂窩式通信系統連接起來,該通信系統由無線電通信部門提供。
網路可採用乙太網的結構,物理上由伺服器,路由器,工作站,操作終端通過集線器形成星型結構共同構成區域網。
③ 計算機網路的組成包括哪幾個部分網路由哪三部分組成
上帝視角
如上圖就是一張簡單的計算機網路,那麼什麼是計算機網路呢?
網路的定義:
網路是由若干節點和連接這些節點的鏈路構成,表示諸多對象及其相互聯系。
在我看來計算機網路通俗地講就是通過傳輸介質將分布在各個地方的計算機和網路設備連接起來,實現數據通信、資源共享的一張網路。
計算機網路主要包括三部分:
1、計算機 (可以包括客戶端、伺服器)
2、網路設備 (路由器、交換機、防火牆等)
3、傳輸介質(可以分為有線和無線的)
按照地域范圍可以對網路進行如下分類:
區域網 :小范圍內的私有網路,一個家庭內的網路、一個公司內的網路、一個校園內的網路都屬於區域網。
廣域網:把不同地域的區域網互相連接起來的網路。運營商搭建連接遠距離區域的廣域網。
互聯網:由世界各地的區域網和廣域網連接起來的網路。互聯網是一個開放、互聯的網路,不屬於任何個人和任何機構。
計算機網路是按照什麼標准實現數據的傳輸通信的呢?這個就不得不提今天的主題OSI參考模型和TCP/IP分層模型。
OSI參考模型分為七層從下往上分別是:物理層、數據鏈路層、網路層、傳輸層、會話層、表示層和應用層
TCP/IP分層模型分為四層從下往上分別是:網路介面層、網路層、傳輸層、應用層
物理層:
是參考模型中的最底層,主要定義了系統的電氣、機械、過程和功能標准。如:電壓、物理數據速率、最大傳輸距離、物理聯接器和其他的類似特性。
物理層傳輸的基本單位是比特流,即0和1,也就是最基本的電信號或光信號,是最基本的物理傳輸特徵。
計算機的世界裡只有0和1, 正如你現在所看這篇文章的文字, 存儲在計算機中也是一大串0和1的組合. 但是這些數字不能在真實的物理介質中傳輸的, 而需要把它轉換為光信號或者電信號, 所以這一層負責將這些比特流(0101)與光電信號進行轉換.
物理層示例圖
數據鏈路層:
傳輸的基本單位為「幀」,將比特組合成位元組,再將位元組組合成幀,使用鏈路層地址(乙太網使用MAC地址)來訪問介質,並為網路層提供差錯控制和流量控制服務。
數據鏈路層由MAC(介質訪問控制子層)和LLC(邏輯鏈路控制子層)組成。
介質訪問控制子層的主要任務是規定如何在物理線路上傳輸幀。(和物理層相連)
數據鏈路控制子層主要負責邏輯上識別不同協議類型,並對其進行封裝。也就是說數據鏈路控制子層會接受網路協議數據、分組的數據報並且添加更多的控制信息,從而把這個分組傳送到它的目標設備。(和網路層對接)
數據鏈路層示例圖
網路層:
傳輸的基本單位為「數據包」,提供IP地址,負責把數據包從源網路傳輸到目標網路的路由選擇工作。
IP協議是網路層中的核心協議。IP協議非常簡單,僅僅提供不可靠、無連接的傳送服務。
網路層示例圖
傳輸層:
傳輸的基本單位為「段」,提供面向連接或非面向連接的數據傳遞以及進行重傳前的差錯檢測。
傳輸層示例圖
會話層:
負責建立、管理和終止表示層實體之間的通信會話。該層的通信由不同設備中的應用程序之間的服務請求和響應組成。
會話層示例圖
表示層:
提供各種用於應用層數據的編碼和轉換功能,確保一個系統的應用層發送的數據能被另一個系統的應用層識別。
表示層示例圖
應用層:
OSI參考模型中最靠近用戶的一層,為應用程序提供網路服務。
應用層示例圖
最介質後用一張圖概括
PC1和PC2需要進行數據通信?那麼PC1發送給PC2的數據包需要根據OSI參考模型至上而下進行數據封裝,PC2收到數據包至下而上進行解封裝
這里的封裝和解封裝的概念可以使用寄快遞和取快遞類比,中間的傳輸介質就是物流公司。
寄快遞的時候是不是需要將物品層層包裝起來,其實就是數據包封裝的過程;取快遞的時候需要拆解包裹,這個其實就是數據包解封裝的過程。
網路傳輸介質是指在網路中傳輸信息的載體,常用的傳輸介質分為有線傳輸介質和無線傳輸介質兩大類。
不同的傳輸介質具有不同的特性,這些特性直接影響到通信的諸多方面,如線路編碼方式、傳輸速度和傳輸距離;
常用的傳輸介質分為有線傳輸介質和無線傳輸介質
有線傳輸介質是指在兩個通信設備之間實現的物理連接部分,它能將信號從一方傳輸到另一方,有線傳輸介質主要有雙絞線、同軸電纜和光纖。雙絞線和同軸電纜傳輸電信號,光纖傳輸光信號。
同軸電纜:
同軸電纜是一種早期使用的傳輸介質,同軸電纜的標准分為兩種,10BASE2和10BASE5。這兩種標准都支持10Mbps的傳輸速率,最長傳輸距離分別為185米和500米。一般情況下,10Base2同軸電纜使用BNC接頭,10Base5同軸電纜使用N型接頭。
現在,10Mbps的傳輸速率早已不能滿足目前企業網路需求,因此同軸電纜在目前企業網路中很少應用。這兩種乙太網已基本被淘汰,企業網中也幾乎不再使用它們。
雙絞線由兩條互相絕緣的銅線組成,其典型直徑為1mm。這兩條銅線擰在一起,就可以減少鄰近線對電氣的干擾。雙絞線即能用於傳輸模擬信號,也能用於傳輸數字信號,其帶寬決定於銅線的直徑和傳輸距離。
與同軸電纜相比雙絞線(Twisted Pair)具有更低的製造和部署成本,因此在企業網路中被廣泛應用。
雙絞線可分為屏蔽雙絞線(Shielded Twisted Pair,STP)和非屏蔽雙絞線(Unshielded Twisted Pair,UTP)。屏蔽雙絞線在雙絞線與外層絕緣封套之間有一個金屬屏蔽層,可以屏蔽電磁干擾。
雙絞線有很多種類型,不同類型的雙絞線所支持的傳輸速率一般也不相同。
例如,3類雙絞線支持10Mbps傳輸速率;5類雙絞線支持100Mbps傳輸速率,滿足快速乙太網標准;超5類雙絞線及更高級別的雙絞線支持千兆乙太網傳輸。
雙絞線使用RJ-45接頭連接網路設備。為保證終端能夠正確收發數據,RJ-45接頭中的針腳必須按照一定的線序排列。
光纖是由純石英玻璃製成的。纖芯外麵包圍著一層折射率比芯纖低的包層,包層外是一塑料護套。光纖通常被紮成束,外面有外殼保護。光纖的傳輸速率可達100Gbit/s.
雙絞線和同軸電纜傳輸數據時使用的是電信號,而光纖傳輸數據時使用的是光信號。
光纖支持的傳輸速率包括10Mbps,100Mbps,1Gbps,10Gbps,甚至更高。
根據光纖傳輸光信號模式的不同,光纖又可分為單模光纖和多模光纖。
單模光纖只能傳輸一種模式的光,不存在模間色散,因此適用於長距離高速傳輸。
如下圖所示:黃色為單模光纖。
多模光纖允許不同模式的光在一根光纖上傳輸,由於模間色散較大而導致信號脈沖展寬嚴重,因此多模光纖主要用於區域網中的短距離傳輸。
如下圖所示:橙色為多模光纖。
無線傳輸介質指我們周圍的自由空間。我們利用無線電波在自由空間的傳播可以實現多種無線通信。在自由空間傳輸的電磁波根據頻譜可將其分為無線電波、微波、紅外線、激光等,信息被載入在電磁波上進行傳輸。無線傳輸的介質有:無線電波、紅外線、微波、衛星和激光。
無線傳輸的優點在於安裝、移動以及變更都較容易,不會受到環境的限制。但信號在傳輸過程中容易受到干擾和被竊取,且初期的安裝費用較高。
什麼是MAC地址
如同每一個人都有一個名字一樣,每一台網路設備都用物理地址來標識自己,這個地址就是MAC地址。MAC地址也叫物理地址,大多數網卡廠商把MAC地址燒入了網卡的ROM中。
網路設備的MAC地址是全球唯一的。
MAC地址長度為48比特,通常用十六進製表示。
MAC地址包含兩部分:
1、前24比特是組織唯一標識符(OUI,Organizationally Unique Identifier),由IEEE統一分配給設備製造商。例如,華為的網路產品的MAC地址前24比特是0x00e0fc。
2、後24位序列號是廠商分配給每個產品的唯一數值,由各個廠商自行分配(這里所說的產品可以是網卡或者其他需要MAC地址的設備)。
數據鏈路層基於MAC地址進行幀的傳輸。發送端使用接收端的MAC地址作為目的地址發送數據幀。
大家都知道計算機都會有一個IP地址,只有配置了IP地址的主機才可以上網,IP地址的獲取可以手動靜態配置,也可以通過DHCP動態獲取IP地址。
如下圖所示,本機是自動獲取IP地址的,如果使用靜態的方式配置IP地址,需要配置IP地址、子網掩碼、默認網關。
如何查看本機動態獲取的地址呢?
通過cmd打開命令提示符,輸入「ipconfig」,如下圖所示可以看到本機獲取的IP地址為192.168.1.25, 子網掩碼為255.255.255.0,網關為192.168.1.1。
上面查詢到的地址是私網地址,那麼如何查看自己的公網地址呢?如下圖,本機使用的公網地址是114.252.113.101,使用的是北京聯通的地址。
1
什麼是IP地址
IP地址(Internet Protocol Address)是指互聯網協議地址,又叫網際協議地址。
IP地址是IP協議(IP協議是為計算機網路相互連接進行通信而設計的協議)提供的一種統一的地址格式,它為互聯網上的每一個網路和每一台主機分配一個邏輯地址,以此來屏蔽物理MAC地址的差異。
IP地址就像是我們的家庭住址一樣,如果你要寫信給一個人,你就要知道他(她)的地址,這樣郵遞員才能把信送到。計算機發送信息就好比是郵遞員,它必須知道唯一的「家庭地址」才能不至於把信送錯人家。只不過我們的地址是用文字來表示的,計算機的地址用二進制數字表示。
2
IP地址作用
IP地址用來標識網路中的設備,具有IP地址的設備可以在同一網段內或跨網段通信。(後續會介紹網路中的主機如何通過IP地址進行通信的)
IP地址包括兩部分,第一部分是網路號,表示IP地址所屬的網段,第二部分是主機號,用來唯一標識本網段上的某台網路設備。
3
IP地址表示
IPv4地址為32比特的二進制數,通常用點分十進製表示
IP地址是一個32位的二進制數,通常被分割為4個「8位二進制數」(也就是4個位元組)。
IP地址通常用「點分十進制」表示成(a.b.c.d)的形式,其中,a,b,c,d都是0~255之間的十進制整數。
例:點分十進IP地址(100.4.5.6),實際上是32位二進制數(
01100100.00000100.00000101.00000110)。
二進制和十進制轉換:
例如:100=64+32+4=2^6+2^5+2^2 ,那麼100的二進制就是 0110 0100 。
4
IP地址分類
IPv4地址被劃分為A、B、C、D、E五類,每類地址的網路號包含不同的位元組數。
A類,B類,和C類地址為可分配IP地址,每類地址支持的網路數和主機數不同。
比如,A類地址可支持126個網路,每個網路支持2^24 (16,777,216 )個主機地址,另外每個網段中的網路地址和廣播地址不能分配給主機。
C類地址支持200多萬個網路,每個網路支持256個主機地址,其中254個地址可以分配給主機使用。
D類地址為組播地址。主機收到以D類地址為目的地址的報文後,且該主機是該組播組成員,就會接收並處理該報文。
各類IP地址可以通過第一個位元組中的比特位進行區分。
如A類地址第一位元組的最高位固定為0,B類地址第一位元組的高兩位固定為10,C類地址第一位元組的高三位固定為110,D類地址第一位元組的高四位固定為1110,E類地址第一位元組的高四位固定為1111。
5
私有地址、特殊地址:
IPv4中的部分IP地址被保留用作特殊用途。
為節省IPv4地址,A, B, C類地址段中都預留了特定范圍的地址作為私網地址。
現在,世界上所有終端系統和網路設備需要的IP地址總數已經超過了32位IPv4地址所能支持的最大地址數4,294,967,296。為主機分配私網地址節省了公網地址,可以用來緩解IP地址短缺的問題。企業網路中普遍使用私網地址,不同企業網路中的私網地址可以重疊。默認情況下,網路中的主機無法使用私網地址與公網通信;當需要與公網通信時,私網地址必須轉換成公網地址。
私有地址范圍:
10.0.0.0~10.255.255.255
172.16.0.0~172.31.255.255
192.168.0.0~192.168.255.255
還有其他一些特殊IP地址,如127.0.0.0網段中的地址為環回地址,用於診斷網路是否正常。IPv4中的第一個地址0.0.0.0表示任何網路255.255.255.255是0.0.0.0網路中的廣播地址。
特殊地址
127.0.0.0 ~ 127.255.255.255
0.0.0.0
255.255.255.255
6
子網掩碼:
上面介紹到IP地址由網路部分和主機部分組成,那麼如何區分呢?子網掩碼用於區分網路部分和主機部分。
子網掩碼與IP地址的表示方法相同。
每個IP地址和子網掩碼一起可以用來唯一的標識一個網段中的某台網路設備。子網掩碼中的1表示網路位,0表示主機位。
例如:子網掩碼 255.128.0.0表示網路位為9位,主機位為23位。
默認子網掩碼:
每類IP地址有一個預設子網掩碼。
A類地址的預設子網掩碼為8位,即第一個位元組表示網路位,其他三個位元組表示主機位。
B類地址的預設子網掩碼為16位,因此B類地址支持更多的網路,但是主機數也相應減少。
C類地址的預設子網掩碼為24位,支持的網路最多,同時也限制了單個網路中主機的數量。
一台主機要發送數據給另一台主機時,必須要知道目的主機的網路層地址(即IP地址)。IP地址由網路層來提供,但是僅有IP地址是不夠的。
IP數據報文必須封裝成幀才能通過數據鏈路進行發送。數據幀必須要包含目的MAC地址,因此發送端還必須獲取到目的MAC地址。那麼如何獲取對方的mac地址呢?
通過ARP(Address Resolution Protocol)協議可以根據IP地址獲取對方的MAC地址。如上圖所示:
主機A(ip為10.0.0.1)要和主機C(ip為10.0.0.3)通信,數據包經過主機A的封裝後發給主機C,我們知道主機A封裝數據時除了要知道對方的IP地址,還需要知道對方的MAC地址,這時候就需要藉助ARP協議了。
下面我們看下ARP是如何獲取主機C的MAC地址的?
1、ARP請求:
主機A首先會去檢查ARP緩存表(ARP緩存用來存放IP地址和MAC地址的關聯信息)中是否存在主機C的MAC地址。
本例中由於是第一次通信,主機A的ARP緩存表中沒有主機C的MAC地址。
這時主機A會發送ARP request報文(廣播報文)來獲取主機C的MAC地址。
之前已經講過廣播的概念的,廣播報文只會在廣播域中傳播,路由器可以隔離廣播域。你知道乙太網數據幀在網路中如何發送和接收的嗎?一文帶你搞懂它
ARP request報文封裝在以太幀里。
幀頭中的源MAC地址為發送端主機A的MAC地址。此時,由於主機A不知道主機C的MAC地址,所以目的MAC地址為廣播地址FF-FF-FF-FF-FF-FF。
ARP request報文中包含源IP地址、目的IP地址、源MAC地址、目的MAC地址,其中目的MAC地址的值為0。
ARP Request報文會在整個網路上傳播,該網路中所有主機包括網關都會接收到此ARP request報文。網關將會阻止該報文發送到其他網路上。
本例中主機B和主機C都會收到主機A發送的ARP廣播請求報文。
2、ARP應答:
主機B收到主機A發送的ARP廣播請求報文,查看目的IP不是自己會丟棄,但是會在自己的ARP緩存表中記錄主機A的IP和MAC的映射關系,在主機B上通過命令arp -a 可以查詢到;
主機C發現目的IP是自己,會在自己的ARP緩存表中記錄主機A的IP和MAC的映射關系,並會向主機A單播回應ARP Reply報文。
主機A收到主機C的回應報文後後會在自己的ARP緩存表中記錄主機C的IP和MAC的映射關系,下次發送數據是就可以查詢到主機C的MAC。
ARP Reply報文中的源協議地址是主機C自己的IP地址,目標協議地址是主機A的IP地址,目的MAC地址是主機A的MAC地址,源MAC地址是自己的MAC地址,同時Operation Code被設置為reply。
ARP Reply報文通過單播傳送。
我們知道TCP是傳輸層協議,用於為應用層提供服務,通過埠號可以唯一標識一個應用。
1
什麼是TCP?
TCP 是面向連接的,提供端到端可靠性服務的傳輸層協議。
面向連接:
面向連接中通信中,會在在兩個端點之間建立了一條可靠的數據通信信道。
電話就是一種面向連接的服務,雙方建立連接後才能夠通話,可以確保對方聽到你說話;而發簡訊就不是一種面向連接的服務,你隨時可以發送簡訊,但是不能確保對方及時收到。
保證從發送端發送的報文都可以被目的端收到,哪怕被丟棄,也可以讓發送端重傳;
2
為什麼需要TCP,TCP可以解決什麼問題?
IP 層是「不可靠」的,它只負責數據包的發送,但它不保證數據包能夠被接收、不保證網路包的按序交付、也不保證網路包中的數據的完整性。
如果需要保障網路數據包的可靠性,那麼就需要由上層(傳輸層)的 TCP 協議來負責。
因為 TCP 是一個工作在傳輸層的可靠數據傳輸的服務,它能確保接收端接收的網路包是無損壞、無間隔、非冗餘和按序的。後續會講TCP協議是如何確保數據包的可靠傳輸的?
3
TCP報文格式
我們知道待發送的數據是根據TCP/IP四層模型層層封裝的,那麼TCP協議是如何封裝的?下面我們看下TCP的報文格式。
如圖所示為TCP報文頭格式。
TCP數據段由TCP Header(頭部)和TCP Data(數據)組成。TCP最多可以有60個位元組的頭部,如果沒有Options欄位,正常的長度是20位元組。
下面我們一起看下TCP頭部的各個欄位:
1、16位源埠號:源主機的應用程序使用的埠號。
2、16位目的埠號:目的主機的應用程序使用的埠號。每個TCP頭部都包含源和目的端的埠號,這兩個值加上IP頭部中的源IP地址和目的IP地址可以唯一確定一個TCP連接。
TCP允許一個主機同時運行多個應用進程。每台主機可以擁有多個應用埠,每對埠號、源和目標IP地址的組合唯一地標識了一個會話。
埠分為知名埠和動態埠。
有些網路服務會使用固定的埠,這類埠稱為知名埠,埠號范圍為0-1023。如FTP、HTTP、Telnet、SNMP服務均使用知名埠。
動態埠號范圍從1024到65535,這些埠號一般不固定分配給某個服務,也就是說許多服務都可以使用這些埠。只要運行的程序向系統提出訪問網路的申請,那麼系統就可以從這些埠號中分配一個供該程序使用。
3、32位序列號:用於標識從發送端發出的不同的TCP數據段的序號。可以解決網路包亂序問題。
數據段在網路中傳輸時,它們的順序可能會發生變化;接收端依據此序列號,便可按照正確的順序重組數據。
假定主機A和B進行tcp通信,A傳送給B一個tcp報文段中,序號值被系統初始化為某一個隨機值ISN,那麼在該傳輸方向上(從A到B),後續的所有tcp報文段中的序號值都會被設定為ISN加上該報文段所攜帶數據的第一個位元組在整個位元組流中的偏移。例如某個TCP報文段傳送的數據是位元組流中的第1025~2048位元組,那麼該報文段的序號值就是ISN+1025。
4、32位確認序列號:用於標識接收端確認收到的數據段。確認序列號為成功收到的數據序列號加1。用來解決不丟包的問題。
假定主機A和B進行tcp通信,那麼A發出的tcp報文段不但帶有自己的序號,也包含了對B發送來的tcp報文段的確認號。反之也一樣。若確認號=N,則表明:到序號N-1為止的所有數據都已正確收到。
5、4位頭部長度:表示頭部佔32bit字的數目,它能表達的TCP頭部最大長度為60位元組。
6、6位標志位:
URG:緊急指針是否有效。它告訴系統此報文段中有緊急數據,應盡快傳送(相當於高優先順序的數據),而不要按原來的排隊順序來傳送。
例如,已經發送了很長的一個程序在遠端的主機上運行。但後來發現了一些問題,需要取消該程序的運行。因此用戶從鍵盤發出中斷命令(Control+c)。如果不使用緊急數據,那麼這兩個字元將存儲在接收TCP的緩存末尾。只有在所有的數據被處理完畢後這兩個字元才被交付接收方的應用進程。這樣做就浪費了許多時間。
當URG置為1時,發送應用進程就告訴發送方的TCP有緊急數據要傳送。於是發送方TCP就把緊急數據插入到本報文段數據的最前面,而在緊急數據後面的數據仍時普通數據。這時要與首部中緊急指針欄位配合使用。
ACK:表示確認號是否有效,攜帶ack標志的報文段也稱確認報文段,僅當ACK=1時確認號欄位才有效。當ACK=0時,確認號無效。TCP規定,在連接建立後所有的傳送的報文段都必須把ACK置1。
PSH:提示接收端應用程序應該立即從tcp接受緩沖區中讀走數據,為後續接收的數據讓出空間。
當兩個應用進程進行互動式的通信時,有時在一端的應用進程希望在鍵入一個命令後立即就能收到對方的響應。在這種情況下,TCP就可以使用推送操作。這時,發送方TCP把PSH置1,並立即創建一個報文段發送出去。接收方TCP收到PSH=1的報文段,就盡快地交付接收應用進程,而不再等到整個緩存都填滿了後向上交付。雖然應用程序可以選擇推送操作,但推送還很少使用。
RST:表示要求對方重建連接。帶RST標志的tcp報文段也叫復位報文段。
當RST=1時,表明TCP連接中出現嚴重差錯(如由於主機崩潰或其他原因),必須釋放連接,然後再重新建立運輸連接。RST置1還用來拒絕一個非法的報文段或拒絕打開一個連接。
SYN:表示建立一個連接,攜帶SYN的tcp報文段為同步報文段。在連接建立時用來同步序號。
當SYN=1而ACK=0時,表明這是一個連接請求報文段。對方若同意建立連接,則應在相應的報文段中使用SYN=1和ACK=1。因此,SYN置為1就表示這是一個連接請求。
FIN標志:表示告知對方本端要關閉連接了。用來釋放一個連接。
當FIN=1時,表明此報文段的發送方的數據已發送完畢,並要求釋放運輸連接。
7、16位窗口大小:表示接收端期望通過單次確認而收到的數據的大小。由於該欄位為16位,所以窗口大小的最大值為65535位元組,該機制通常用來進行流量控制。
窗口值是【0,2^16-1]之間的整數。窗口指的是發送本報文段的一方的接收窗口(而不是自己的發送窗口)。
窗口值告訴對方:從本報文段首部中的確認號算起,接收方目前允許對方發送的數據量。之所以要有這個限制,是因為接收方的數據緩存空間是有限的。
總之,窗口值作為接收方讓發送方設置其發送窗口的依據。並且窗口值是經常在動態變化著。
8、16位校驗和:校驗整個TCP報文段,包括TCP頭部和TCP數據。該值由發送端計算和記錄並由接收端進行驗證。
9、16位緊急指針:是一個正的偏移量。它和序號欄位的值相加表示最後一個緊急數據的下一位元組的序號。因此這個欄位是緊急指針相對當前序號的偏移量。發送緊急數據時會用到這個。
緊急指針僅在URG=1時才有意義,它指出本報文段中的緊急數據的位元組數(緊急數據結束後就是普通數據)。
因此,緊急指針指出了緊急數據的末尾在報文段中的位置。當所有緊急數據都處理完時,TCP就告訴應用程序恢復到正常操作。值得注意的是,即使窗口為零時也可發送緊急數據。
10、選項:長度可變,最長可達40位元組。當沒有使用「選項」時,TCP的首部長度是20位元組。
1
什麼是UDP?
UDP 是User Datagram Protocol的簡稱, 中文名是用戶數據報協議,是OSI(Open System Interconnection,開放式系統互聯) 參考模型中一種無連接的傳輸層協議,傳輸可靠性沒有保證。
2
UDP報文頭
UDP報文分為UDP報文頭和UDP數據區域兩部分。報頭由源埠、目的埠、報文長度以及校驗和組成。
UDP頭部的標識如下:
16位源埠號:源主機的應用程序使用的埠號。
16位目的埠號:目的主機的應用程序使用的埠號。
16位UDP長度:是指UDP頭部和UDP數據的位元組長度。因為UDP頭部長度為8位元組,所以該欄位的最小值為8。
16位UDP校驗和:該欄位提供了與TCP校驗欄位同樣的功能;該欄位是可選的。
3
為什麼需要UDP?
UDP(User Datagram Protocol)傳輸與IP傳輸非常類似,它的傳輸方式也是」Best Effort「的,所以UDP協議也是不可靠的。
我們知道TCP就是為了解決IP層不可靠的傳輸層協議,既然UDP是不可靠的,為什麼不直接使用IP協議而要額外增加一個UDP協議呢?
1、一個重要的原因是IP協議中並沒有埠(port)的概念。IP協議進行的是IP地址到IP地址的傳輸,這意味者兩台計算機之間的對話。但每台計算機中需要有多個通信通道,並將多個通信通道分配給不同的進程使用。一個埠就代表了這樣的一個通信通道。UDP協議實現了埠,從而讓數據包可以在送到IP地址的基礎上,進一步可以送到某個埠。
2、對於一些簡單的通信,我們只需要「Best Effort」式的IP傳輸就可以了,而不需要TCP協議復雜的建立連接的方式(特別是在早期網路環境中,如果過多的建立TCP連接,會造成很大的網路負擔,而UDP協議可以相對快速的處理這些簡單通信)
3、在使用TCP協議傳輸數據時,如果一個數據段丟失或者接收端對某個數據段沒有確認,發送端會重新發送該數據段。TCP重新發送數據會帶來傳輸延遲和重復數據,降低了用戶的體驗。對於遲延敏感的應用,少量的數據丟失一般可以被忽略,這時使用UDP傳輸將能夠提升用戶的體驗。
④ 校園網路的拓撲結構圖
結構圖如下:
由網路節點設備和通信介質構成的網路結構圖。網路拓撲定義了各種計算機、列印機、網路設備和其他設備的連接方式。換句話說,網路拓撲描述了線纜和網路設備的布局以及數據傳輸時所採用的路徑。網路拓撲會在很大程度上影響網路如何工作。
星型網路拓撲結構的一種擴充便是星行樹,如左圖所示。每個Hub與端用戶的連接仍為星型,Hub的級連而形成樹。然而,應當指出,Hub級連的個數是有限制的,並隨廠商的不同而有變化。
樹型結構是分級的集中控制式網路,與星型相比,它的通信線路總長度短,成本較低,節點易於擴充,尋找路徑比較方便,但除了葉節點及其相連的線路外,任一節點或其相連的線路故障都會使系統受到影響。
適用場合:只適用於低速、不用阻抗控制的信號,比如在沒有電源層的情況下,電源的布線就可以採用這種拓撲。
⑤ 非常形象的計算機網路及設備網路系統架構圖,CAD格式
大家好,薛哥在此分享一個關於計算機網路及設備網路系統的詳細架構圖,專為需要CAD格式的朋友們精心准備。許多VIP會員在群中詢問過這個主題,我們之前雖然提供過,但這次分享的圖紙更加精良,圖形直觀且易於理解,非常適合作為設計或學習的參考模板。這份圖紙深入展示了辦公網路與設備網路的結構,無論是初學者還是專業人士,都能從中獲益匪淺。讓我們一起通過這份圖形來更好地理解網路系統的運作吧。
圖紙中的每一個細節都經過精心設計,從核心設備的布局,到數據傳輸路徑的展示,再到各個部分的連接方式,都一目瞭然。無論是網路的層級結構,還是各個設備的功能劃分,都清晰可見,便於大家在實際工作中進行參考和應用。希望這份圖紙能幫助大家提升對網路系統架構的理解,加快項目實施的進度。
請下載並保存,它將是你理解和設計網路系統不可或缺的參考資料。如果你在使用過程中遇到任何問題,或者有任何反饋,歡迎隨時在群里提問,我們會盡力提供幫助。再次感謝大家的支持,讓我們一起探索網路世界的奧秘吧!
⑥ 計算機網路拓撲結構有哪些啊
計算機網路拓撲結構有:
1、網狀拓撲結構:網狀拓撲結構,這種拓撲結構主要指各節點通過傳輸線互聯連接起來,並且每一個節點至少與其他兩個節點相連·網狀拓撲結構具有較高的可靠性,但其結構復雜,實現起來費用較高,不易管理和維護,不常用於區域網。
2、混合型拓撲結構:混合型拓撲結構是將兩種單一拓撲結構混合起來,取兩者的優點構成的拓撲。一種是星型拓撲和環型拓撲混合而成的"星-環"拓撲,另一種是星型拓撲和匯流排型拓撲混合而成的"星-總"拓撲。
3、星型拓撲:在星型拓撲結構中,網路中的各節點通過點到點的方式連接到一個中央節點(又稱中央轉接站,一般是集線器或交換機)上,由該中央節點向目的節點傳送信息。中央節點執行集中式通信控制策略,因此中央節點相當復雜,負擔比各節點重得多。在星型網中任何兩個節點要進行通信都必須經過中央節點控制。
4、樹型拓撲:樹型拓撲(tree topology):一種類似於匯流排拓撲的區域網拓撲。樹型網路可以包含分支,每個分支又可包含多個結點。
5、環形拓撲:環形拓撲結構是一個像環一樣的閉合鏈路,它是由許多中繼器和通過中繼器連接到鏈路上的節點連接而成。在環形網中,所有的通信共享一條物理通道,即連接了網中所有節點的點到點鏈路。概述圖所示為環形拓撲結構。
⑦ 計算機網路的拓撲結構有幾種 畫出拓撲結構圖
計算機網路拓撲結構有:匯流排結構、環形結構、星形結構、樹形結構。
圖片為示意圖!謝謝~
⑧ 電腦無線網路標圖無線網路連接的圖標不見了怎麼辦
❶ 筆記本電腦上什麼符號是無線網路開關
筆記本電腦上無線網路開關如下圖所示:
此開關直接與筆記本電腦的無線網卡相聯,控制電腦的無線網路的通斷。無線網卡需要在無線區域網的無線覆蓋下通過無線連接網路進行上網使用的。
有了無線網卡,還需要一個可以連接的無線網路,因此就需要配合無線路由器或者無線 AP 使用,就可以通過無線網卡以無線的方式連接無線網路可上網。
(1)電腦無線網路標圖
無線網卡的分類——
1、台式機專用的 PCI 介面無線網卡。
2、筆記本電腦專用的 PCMCIA 介面網卡。
3、USB 無線網卡
這種網卡不管是台式機用戶還是筆記本用戶,只要安裝了驅動程序,都可以使用。在選擇時要注意的只有採用 USB2.0 介面的無線網卡才能滿足 802.11g 或802.11g+ 的需求。
4、 MINI-PCI 無線網卡
MINI-PCI 為內置型無線網卡,迅馳機型和非迅馳的無線網卡標配機型均使用這種無線網卡。
❷ 無線網路連接的圖標不見了怎麼辦
1、電腦桌面上找到「網路」圖標,滑鼠右擊點開「屬性」;
2、在打開的「網路和共享中心」界面里找到「更改適配器」並點擊打開;
3、在打開的「網路連接」窗口中,查看「無線網路」顯示「已禁用」還是顯示「網路」;
4、如果顯示「已禁用」,解決方法:滑鼠右擊「無線網路」,在右鍵菜單選項里點擊「啟用」;
5、如果「網路連接」里找不到「無線網路」,初步認定是無線網卡驅動被停用了,解決辦法:用滑鼠右擊電腦桌面的「我的電腦」,在右鍵菜單里點擊「管理」,在彈出的「計算機管理」界面點開「設備管理器」-「網路適配器」,找到無線網卡驅動右擊並點擊「啟用」;
6、如果在「網路適配器」里找不到無線網卡驅動,就找一條能上網的網線線連接筆記本,上網下載並安裝「驅動精靈」,用「驅動精靈」下載安裝最新的無線網卡驅動;
❸ 筆記本電腦無線網路標志不見了
具體解決方法如下:
1.對著電腦右下角的電腦圖標點擊,在下拉欄中選擇「打開網路和共享中心」,點擊打開(如下圖):
❹ 怎樣把無線網路連接的圖標顯示出來
1、第一步我們滑鼠右鍵點擊桌面下的任務欄,選擇「任務管理器」
❺ 電腦無線網路圖標是啥
就是類似於天線或信號標志。
❻ 電腦網路連接和wi-fi連接標圖的區別
有線連接是一個顯示器圖標,無線連接是梯形的平行橫線圖標,象徵信號
❼ 聯想筆記本電腦無線連接圖標不見了
任務欄無網路圖標
關於您咨詢的「任務欄無網路圖標」問題,建議您:
_ 嘗試我們為您推薦的:
→任務欄沒有無線網路圖標
→任務欄沒有有線網路圖標
_ 如果以上設置無效,您可以卸載並重新安裝有線網卡/無線網卡驅動程序
Think 驅動下載網址:http://think.lenovo.com.cn
Lenovo 驅動下載網址:http://support.lenovo.com.cn
如您在操作後依舊存在問題,建議您可以→自助預約報修,或工作時間聯系人工在線客服。
❽ 台式電腦怎麼沒有無線網路圖標
選擇「打開網路和共享中心」,選擇「更改適配器設置」,找到無線網路圖標,雙擊即可。
台式機,是一種獨立相分離的計算機,完完全全跟其它部件無聯系,相對於筆記本和上網本體積較大,主機、顯示器等設備一般都是相對獨立的,一般需要放置在電腦桌或者專門的工作台上。
因此命名為台式機。人類第一台電子計算機的誕生,ENIAC1946年2月14日,世界上第一台通用電子數字計算機「埃尼阿克」宣告研製成功。「埃尼阿克」的成功,是計算機發展史上的一座紀念碑,是人類在發展計算技術歷程中,到達的一個新的起點。