計算機網路是指將地理位置不同的具有獨立功能的多台計算機及其外部設備,通過通信線路連接起來,在網路操作系統,網路管理軟體及網路通信協議的管理和協調下,實現資源共享和信息傳遞的計算機系統。
主要功能如下:
1、數據通信
數據通信是計算機網路的最主要的功能之一。數據通信是依照一定的通信協議,利用數據傳輸技術在兩個終端之間傳遞數據信息的一種通信方式和通信業務。它可實現計算機和計算機、計算機和終端以及終端與終端之間的數據信息傳遞,是繼電報、電話業務之後的第三種最大的通信業務。
數據通信中傳遞的信息均以二進制數據形式來表現,數據通信的另一個特點是總是與遠程信息處理相聯系,是包括科學計算、過程式控制制、信息檢索等內容的廣義的信息處理。
2、計算機網路資源共享
資源共享是人們建立計算機網路的主要目的之一。計算機資源包括硬體資源、軟體資源和數據資源。硬體資源的共享可以提高設備的利用率,避免設備的重復投資,如利用計算機網路建立網路列印機;軟體資源和數據資源的共享可以充分利用已有的信息資源,減少軟體開發過程中的勞動,避免大型資料庫的重復建設。
3、計算機網路集中管理
計算機網路技術的發展和應用,已使得現代的辦公手段、經營管理等發生了變化。目前,已經有了許多管理信息系統、辦公自動化系統等,通過這些系統可以實現日常工作的集中管理,提高工作效率,增加經濟效益。
4、計算機網路實現分布式處理
網路技術的發展,使得分布式計算成為可能。對於大型的課題,可以分為許許多多小題目,由不同的計算機分別完成,然後再集中起來,解決問題。
5、計算機網路負荷均衡
負荷均衡是指工作被均勻的分配給網路上的各台計算機系統。網路控制中心負責分配和檢測,當某台計算機負荷過重時,系統會自動轉移負荷到較輕的計算機系統去處理。
由此可見,計算機網路可以大大擴展計算機系統的功能,擴大其應用范圍,提高可靠性,為用戶提供方便,同時也減少了費用,提高了性能價格比。
(1)計算機網路數據擴展閱讀:
相關延伸:計算機網路系統的特點:
計算機網路系統是由網路硬體和網路軟體組成的。在網路系統中,硬體的選擇對網路起著決定性的作用,而網路軟體則是挖掘網路潛力的工具。
①計算機網路建立的主要目的是實現計算機資源的共享。計算機資源主要是指計算機硬體、軟體與數據。
②互連的計算機是分布在不同的地理位置的多台獨立的「自治計算機」。連網的計算機既可以為本地用戶提供服務,也可以為遠程用戶提供網路服務。
③連網計算機之間遵循共同的網路協議。
2. 計算機網路的功能有哪些
計算機網路的主要功能包括數據通信、資源共享、集中管理、實現分布式處理和負荷均衡。具體如下:
1、數據通信:
數據通信是計算機網路的最主要的功能之一。數據通信是依照一定的通信協議,利用數據傳輸技術在兩個終端之間傳遞數據信息的一種通信方式和通信業務。它可實現計算機和計算機、計算機和終端以及終端與終端之間的數據信息傳遞,是繼電報、電話業務之後的第三種最大的通信業務。
數據通信中傳遞的信息均以二進制數據形式來表現,數據通信的另一個特點是總是與遠程信息處理相聯系,是包括科學計算、過程式控制制、信息檢索等內容的廣義的信息處理。
2、資源共享:
資源共享是人們建立計算機網路的主要目的之一。計算機資源包括硬體資源、軟體資源和數據資源。硬體資源的共享可以提高設備的利用率,避免設備的重復投資,如利用計算機網路建立網路列印機;軟體資源和數據資源的共享可以充分利用已有的信息資源,減少軟體開發過程中的勞動,避免大型資料庫的重復建設。
3、集中管理:
計算機網路技術的發展和應用,已使得現代的辦公手段、經營管理等發生了變化。目前,已經有了許多管理信息系統、辦派悔公自動化系統等,通過這些系統可以實現日常工作的集中管掘羨緩理,提高工作效率,增加經濟效益。
4、實現分布式處理:
網路技術的發展,使得分布式計算成為可能。對於大型的課題,可以分為許許多多小題目,由不同的計算機分別完成,然後再集中起來,解決問題。
5、負荷均衡:
負荷均衡是指工作被均勻的分配給網判模絡上的各台計算機系統。網路控制中心負責分配和檢測,當某台計算機負荷過重時,系統會自動轉移負荷到較輕的計算機系統去處理。
由此可見,計算機網路可以大大擴展計算機系統的功能,擴大其應用范圍,提高可靠性,為用戶提供方便,同時也減少了費用,提高了性能價格比。
以上內容參考:網路-計算機網路
3. 浠涔堟槸璁$畻鏈虹綉緇瀹冪殑涓昏佸姛鑳芥湁鍝浜
璁$畻鏈虹綉緇滄槸鐜頒唬璁$畻鏈烘妧鏈涓庨氫俊鎶鏈瀵嗗垏緇撳悎鐨勪駭鐗╋紝璁$畻鏈虹綉緇滅殑涓昏佸姛鑳芥湁鏁版嵁浼犻併佽祫婧愬叡浜銆侀泦涓綆$悊絳夈
1銆佹暟鎹浼犻
鏁版嵁浼犻佹槸璁$畻鏈虹綉緇滅殑鍩烘湰鍔熻兘涔嬩竴錛岄氳繃鏁版嵁浼犻侊紝璁$畻鏈哄彲浠ュ揩閫熴佸噯紜鍦板皢鍚勭嶄俊鎮浼犻佸埌緇堢鐢ㄦ埛銆傛暟鎹浼犻佸寘鎷鐗╃悊浼犺緭鍜岄昏緫浼犺緭錛屽墠鑰呭皢淇℃伅杞鍖栦負鐢典俊鍙鳳紝鍚庤呭皢淇℃伅杞鍖栦負瀹為檯鐨勬暟鎹銆
璁$畻鏈虹綉緇滅殑鐗圭偣浠嬬粛
1銆佸彲闈犳
璁$畻鏈虹綉緇滅殑鐗圭偣涔嬩竴灝辨槸鍙闈犳с傚湪緗戠粶涓錛屽綋涓鍙拌$畻鏈哄嚭鐜版晠闅滄椂錛屽彲浠ョ敱緋葷粺涓鐨勫叾浠栬$畻鏈轟唬鏇垮叾瀹屾垚鎵鎵挎媴鐨勪換鍔°傝繖縐嶄唬鏇跨幇璞″彲浠ヤ繚璇佺綉緇滅殑姝e父榪愯岋紝閬垮厤鍗曟満鏁呴殰瀵艱嚧鏁翠釜緋葷粺鐦鐥銆
2銆佽祫婧愬叡浜
璧勬簮鍏變韓鏄璁$畻鏈虹綉緇滅殑鐗圭偣涔嬩竴錛屽畠浣垮緱澶氫釜鐢ㄦ埛鍙浠ュ叡浜鍚屼竴涓紜浠躲佽蔣浠舵垨鏁版嵁璧勬簮錛屼粠鑰屾彁楂樿祫婧愮殑浣跨敤鏁堢巼鍜屽埄鐢ㄧ巼銆傞氳繃璧勬簮鍏變韓錛屽彲浠ュ疄鐜頒富鏈哄叡浜銆佸栭儴璁懼囧叡浜鍜岃蔣浠惰祫婧愬叡浜絳夛紝鍚屾椂涔熷彲浠ュ疄鐜拌蔣浠跺拰鏁版嵁璧勬簮鐨勫叡浜錛屽厖鍒嗗埄鐢ㄥ凡鏈夌殑淇℃伅璧勬簮錛岄伩鍏嶉噸澶嶅緩璁俱
3銆侀珮鏁堟
璁$畻鏈虹綉緇滅殑楂樻晥鎬т綋鐜板湪瀹冭兘澶熸憜鑴變腑蹇冭$畻鏈烘帶鍒剁殑灞闄愭э紝騫朵笖淇℃伅浼犻掕繀閫燂紝緋葷粺瀹炴椂鎬у己銆傞氳繃浼樺寲浼犺緭鍗忚銆佽礬鐢辯畻娉曠瓑鏂瑰紡錛岃$畻鏈虹綉緇滆兘澶熸彁楂樻暟鎹浼犺緭鐨勬晥鐜囷紝浣垮緱鏁版嵁鑳藉熷揩閫熷湴浼犺緭鍜屽勭悊銆
浠ヤ笂鍐呭瑰弬鑰冿細鐧懼害鐧劇-璁$畻鏈虹綉緇
4. 計算機網路中,數據的傳輸速度常用的單位是什麼
常用的數據傳輸速率單位有:Kbps、Mbps、Gbps與Tb/s,最快的以太區域網理論傳輸速率(也就是所說的「帶寬」)為10Gbit/s。
傳輸速度指的是將數據從源地址傳送至目的地址的速度。根據傳輸設備和媒介的不同,傳輸速度有不同的含義。
針對傳輸網,傳輸速度是指將數字信號從起始地傳輸到終止地的傳輸速率。如SDH的一對光纖的傳輸速度為2.5Gbps或10Gbps。WDM的傳輸速度可以達到1.6T甚至更高。
交換機的傳輸速度是指交換機埠的數據交換速度。目前常見的有10Mbps、100Mbps、1000Mbps等幾類。除此之外,還有10GMbps交換機,但目前很少。
(4)計算機網路數據擴展閱讀
1Kbps=1000bps
1Mbps=1000*1000bps
1Gbps=1000*1000*1000bps
1Tbps=1000*1000*1000*1000bps。
數據傳輸速率是單位時間內傳送數據碼元的個數。它是衡量系統傳輸能力的主要指標,通常使用下列幾種不同的定義:
數據傳輸速率為每秒鍾傳輸二進制碼元的個數,又稱為比特率。單位為比特/秒(bit/s)。
調制速率為每秒鍾傳輸信號碼元的個數,又稱波特率,單位為波特(Bd)。
數據傳送速率為單位時間內在數據傳輸系統中的相應設備之間傳送的比特、字元或碼組平均數。在該定義中,相應設備常指數據機、中間設備或數據源與數據宿。單位為比特/秒(bit/s)、字元/秒或碼組/秒。
5. 計算機網路(三)數據鏈路層
結點:主機、路由器
鏈路:網路中兩個結點之間的物理通道,鏈路的傳輸介質主要有雙絞線、光纖和微波。分為有線鏈路、無線鏈路。
數據鏈路:網路中兩個結點之間的邏輯通道,把實現控制數據傳輸協議的硬體和軟體加到鏈路上就構成數據鏈路。
幀:鏈路層的協議數據單元,封裝網路層數據報。
數據鏈路層負責通過一條鏈路從一個結點向另一個物理鏈路直接相連的相鄰結點傳送數據報。
數據鏈路層在物理層提供服務的基礎上向網路層提供服務,其最基本的服務是將源自網路層來的數據可靠地傳輸到相鄰節點的目標機網路層。其主要作用是加強物理層傳輸原始比特流的功能,將物理層提供的可能出錯的物理連接改造成為 邏輯上無差錯的數據鏈路 ,使之對網路層表現為一條無差錯的鏈路。
封裝成幀就是在一段數據的前後部分添加首部和尾部,這樣就構成了一個幀。接收端在收到物理層上交的比特流後,就能根據首部和尾部的標記,從收到的比特流中識別幀的開始和結束。首部和尾部包含許多的控制信息,他們的一個重要作用:幀定界(確定幀的界限)。
幀同步:接收方應當能從接收到的二進制比特流中區分出幀的起始和終止。
組幀的四種方法:
透明傳輸是指不管所傳數據是什麼樣的比特組合,都應當能夠在鏈路上傳送。因此,鏈路層就「看不見」有什麼妨礙數據傳輸的東西。
當所傳數據中的比特組合恰巧與某一個控制信息完全一樣時,就必須採取適當的措施,使收方不會將這樣的數據誤認為是某種控制信息。這樣才能保證數據鏈路層的傳輸是透明的。
概括來說,傳輸中的差錯都是由於雜訊引起的。
數據鏈路層編碼和物理層的數據編碼與調制不同。物理層編碼針對的是單個比特,解決傳輸過程中比特的同步等問題,如曼徹斯特編碼。而數據鏈路層的編碼針對的是一組比特,它通過冗餘碼的技術實現一組二進制比特串在傳輸過程是否出現了差錯。
較高的發送速度和較低的接收能力的不匹配,會造成傳輸出錯,因此流量控制也是數據鏈路層的一項重要工作。數據鏈路層的流量控制是點對點的,而傳輸層的流量控制是端到端的。
滑動窗口有以下重要特性:
若採用n個比特對幀編號,那麼發送窗口的尺寸W T 應滿足: 。因為發送窗口尺寸過大,就會使得接收方無法區別新幀和舊幀。
每發送完一個幀就停止發送,等待對方的確認,在收到確認後再發送下一個幀。
除了比特出差錯,底層信道還會出現丟包 [1] 問題
「停止-等待」就是每發送完一個分組就停止發送,等待對方確認,在收到確認後再發送下一個分組。其操作簡單,但信道利用率較低
信道利用率是指發送方在一個發送周期內,有效地發送數據所需要的時間占整個發送周期的比率。即
GBN發送方:
GBN接收方:
因連續發送數據幀而提高了信道利用率,重傳時必須把原來已經正確傳送的數據幀重傳,是傳送效率降低。
設置單個確認,同時加大接收窗口,設置接收緩存,緩存亂序到達的幀。
SR發送方:
SR接收方:
發送窗口最好等於接收窗口。(大了會溢出,小了沒意義),即
傳輸數據使用的兩種鏈路
信道劃分介質訪問控制將使用介質的每個設備與來自同一通信信道上的其他設備的通信隔離開來,把時域和頻域資源合理地分配給網路上的設備。
當傳輸介質的帶寬超過傳輸單個信號所需的帶寬時,人們就通過在一條介質上同時攜帶多個傳輸信號的方法來提高傳輸系統的利用率,這就是所謂的多路復用,也是實現信道劃分介質訪問控制的途徑。多路復用技術把多個信號組合在一條物理信道上進行傳輸,使多個計算機或終端設備共享信道資源,提高了信道的利用率。信道劃分的實質就是通過分時、分頻、分碼等方法把原來的一條廣播信道,邏輯上分為幾條用於兩個結點之間通信的互不幹擾的子信道,實際上就是把廣播信道轉變為點對點信道。
頻分多路復用是一種將多路基帶信號調制到不同頻率載波上,再疊加形成一個復合信號的多路復用技術。在物理信道的可用帶寬超過單個原始信號所需帶寬的情況下,可將該物理信道的總帶寬分割成若千與傳輸單個信號帶寬相同(或略寬)的子信道,每個子信道傳輸一種信號,這就是頻分多路復用。
每個子信道分配的帶寬可不相同,但它們的總和必須不超過信道的總帶寬。在實際應用中,為了防止子信道之間的千擾,相鄰信道之間需要加入「保護頻帶」。頻分多路復用的優點在於充分利用了傳輸介質的帶寬,系統效率較高;由於技術比較成熟,實現也較容易。
時分多路復用是將一條物理信道按時間分成若干時間片,輪流地分配給多個信號使用。每個時間片由復用的一個信號佔用,而不像FDM那樣,同一時間同時發送多路信號。這樣,利用每個信號在時間上的交叉,就可以在一條物理信道上傳輸多個信號。
就某個時刻來看,時分多路復用信道上傳送的僅是某一對設備之間的信號:就某段時間而言,傳送的是按時間分割的多路復用信號。但由於計算機數據的突發性,一個用戶對已經分配到的子信道的利用率一般不高。統計時分多路復用(STDM,又稱非同步時分多路復用)是TDM 的一種改進,它採用STDM幀,STDM幀並不固定分配時隙,面按需動態地分配時隙,當終端有數據要傳送時,才會分配到時間片,因此可以提高線路的利用率。例如,線路傳輸速率為8000b/s,4個用戶的平均速率都為2000b/s,當採用TDM方式時,每個用戶的最高速率為2000b/s.而在STDM方式下,每個用戶的最高速率可達8000b/s.
波分多路復用即光的頻分多路復用,它在一根光纖中傳輸多種不同波長(頻率)的光信號,由於波長(頻率)不同,各路光信號互不幹擾,最後再用波長分解復用器將各路波長分解出來。由於光波處於頻譜的高頻段,有很高的帶寬,因而可以實現多路的波分復用
碼分多路復用是採用不同的編碼來區分各路原始信號的一種復用方式。與FDM和 TDM不同,它既共享信道的頻率,又共享時間。下面舉一個直觀的例子來理解碼分復用。
實際上,更常用的名詞是碼分多址(Code Division Multiple Access.CDMA),1個比特分為多個碼片/晶元( chip),每一個站點被指定一個唯一的m位的晶元序列,發送1時發送晶元序列(通常把o寫成-1) 。發送1時站點發送晶元序列,發送o時發送晶元序列反碼。
純ALOHA協議思想:不監聽信道,不按時間槽發送,隨機重發。想發就發
如果發生沖突,接收方在就會檢測出差錯,然後不予確認,發送方在一定時間內收不到就判斷發生沖突。超時後等一隨機時間再重傳。
時隙ALOHA協議的思想:把時間分成若干個相同的時間片,所有用戶在時間片開始時刻同步接入網路信道,若發生沖突,則必須等到下一個時間片開始時刻再發送。
載波監聽多路訪問協議CSMA(carrier sense multiple access)協議思想:發送幀之前,監聽信道。
堅持指的是對於監聽信道忙之後的堅持。
1-堅持CSMA思想:如果一個主機要發送消息,那麼它先監聽信道。
優點:只要媒體空閑,站點就馬上發送,避免了媒體利用率的損失。
缺點:假如有兩個或兩個以上的站點有數據要發送,沖突就不可避免。
非堅持指的是對於監聽信道忙之後就不繼續監聽。
非堅持CSMA思想:如果一個主機要發送消息,那麼它先監聽信道。
優點:採用隨機的重發延遲時間可以減少沖突發生的可能性。
缺點:可能存在大家都在延遲等待過程中,使得媒體仍可能處於空閑狀態,媒體使用率降低。
p-堅持指的是對於監聽信道空閑的處理。
p-堅持CSMA思想:如果一個主機要發送消息,那麼它先監聽信道。
優點:既能像非堅持演算法那樣減少沖突,又能像1-堅持演算法那樣減少媒體空閑時間的這種方案。
缺點:發生沖突後還是要堅持把數據幀發送完,造成了浪費。
載波監聽多點接入/碰撞檢測CSMA/CD(carrier sense multiple access with collision detection)
CSMA/CD的工作流程:
由圖可知,至多在發送幀後經過時間 就能知道所發送的幀有沒有發生碰撞。因此把乙太網端到端往返時間為 稱為爭周期(也稱沖突窗口或碰撞窗口)。
截斷二進制指數規避演算法:
最小幀長問題:幀的傳輸時延至少要兩倍於信號在匯流排中的傳播時延。
載波監聽多點接入/碰撞避免CSMA/CA(carrier sense multiple access with collision avoidance)其工作原理如下
CSMA/CD與CSMA/CA的異同點:
相同點:CSMA/CD與CSMA/CA機制都從屬於CSMA的思路,其核心是先聽再說。換言之,兩個在接入信道之前都須要進行監聽。當發現信道空閑後,才能進行接入。
不同點:
輪詢協議:主結點輪流「邀請」從屬結點發送數據。
令牌:一個特殊格式的MAC控制幀,不含任何信息。控制信道的使用,確保同一時刻只有一個結點獨占信道。每個結點都可以在一定的時間內(令牌持有時間)獲得發送數據的權利,並不是無限制地持有令牌。應用於令牌環網(物理星型拓撲,邏輯環形拓撲)。採用令牌傳送方式的網路常用於負載較重、通信量較大的網路中。
輪詢訪問MAC協議/輪流協議/輪轉訪問MAC協議:基於多路復用技術劃分資源。
隨機訪問MAC協議: 用戶根據意願隨機發送信息,發送信息時可獨占信道帶寬。 會發生沖突
信道劃分介質訪問控制(MAC Multiple Access Control )協議:既要不產生沖突,又要發送時佔全部帶寬。
區域網(Local Area Network):簡稱LAN,是指在某一區域內由多台計算機互聯成的計算機組,使用廣播信道。其特點有
決定區域網的主要要素為:網路拓撲,傳輸介質與介質訪問控制方法。
區域網的分類
IEEE 802標准所描述的區域網參考模型只對應OSI參考模型的數據鏈路層與物理層,它將數據鏈路層劃分為邏輯鏈路層LLC子層和介質訪問控制MAC子層。
乙太網(Ethernet)指的是由Xerox公司創建並由Xerox、Intel和DEC公司聯合開發的基帶匯流排區域網規范,是當今現有區域網採用的最通用的通信協議標准。乙太網絡使用CSMA/CD(載波監聽多路訪問及沖突檢測)技術。 乙太網只實現無差錯接收,不實現可靠傳輸。
乙太網兩個標准:
乙太網提供無連接、不可靠的服務
10BASE-T是傳送基帶信號的雙絞線乙太網,T表示採用雙絞線,現10BASE-T 採用的是無屏蔽雙絞線(UTP),傳輸速率是10Mb/s。
計算機與外界有區域網的連接是通過通信適配器的。
在區域網中,硬體地址又稱為物理地址,或MAC地址。MAC地址:每個適配器有一個全球唯一的48位二進制地址,前24位代表廠家(由IEEE規定),後24位廠家自己指定。常用6個十六進制數表示,如02-60-8c-e4-b1-21。
最常用的MAC幀是乙太網V2的格式。
IEEE 802.11是無線區域網通用的標准,它是由IEEE所定義的無線網路通信的標准。
廣域網(WAN,Wide Area Network),通常跨接很大的物理范圍,所覆蓋的范圍從幾十公里到幾千公里,它能連接多個城市或國家,或橫跨幾個洲並能提供遠距離通信,形成國際性的遠程網路。
廣域網的通信子網主要使用分組交換技術。廣域網的通信子網可以利用公用分組交換網、衛星通信網和無線分組交換網,它將分布在不同地區的區域網或計算機系統互連起來,達到資源共享的目的。如網際網路(Internet)是世界范圍內最大的廣域網。
點對點協議PPP(Point-to-Point Protocol)是目前使用最廣泛的數據鏈路層協議,用戶使用撥號電話接入網際網路時一般都使用PPP協議。 只支持全雙工鏈路。
PPP協議應滿足的要求
PPP協議的三個組成部分
乙太網交換機
沖突域:在同一個沖突域中的每一個節點都能收到所有被發送的幀。簡單的說就是同一時間內只能有一台設備發送信息的范圍。
廣播域:網路中能接收任一設備發出的廣播幀的所有設備的集合。簡單的說如果站點發出一個廣播信號,所有能接收收到這個信號的設備范圍稱為一個廣播域。
乙太網交換機的兩種交換方式:
直通式交換機:查完目的地址(6B)就立刻轉發。延遲小,可靠性低,無法支持具有不同速率的埠的交換。
存儲轉發式交換機:將幀放入高速緩存,並檢查否正確,正確則轉發,錯誤則丟棄。延遲大,可靠性高,可以支持具有不同速率的埠的交換。
6. 計算機網路7層協議數據的傳輸速度單位分別是什麼
在傳輸層的數據叫段, 網路層叫包,數據鏈路層叫幀,物理層叫比特流,這樣的叫法叫PDU(協議數據單元)。
網路七層協議:OSI是一個開放性的通行系統互連參考模型,他是一個定義的非常好的協議規范。OSI模型有7層結構,每層都可以有幾個子層。 OSI的7層從上到下分別是:
7 應用層 6 表示層 5 會話層 4 傳輸層 3 網路層 2 數據鏈路層 1 物理層 其中高層,
即7、6、5、4層定義了應用程序的功能,
下面3層,即橡拍3、2、1層主要面向通過網路的端到端的數據流。
協議分層的作用:
(1)人們可以很容易的討論和學習協議的規范細節。
(2)層間的標准介面方便了工程模塊化。
(3)創建了一個更好的互連環境。
(4)降低了復雜度,使程序更容易修改,產品開發的速度更快。
(5)每層利用緊鄰的下層服務,更容易記住各層的功能。
大多數的計算機慎如擾網路都採用層次式結構,即將一個計算機網路分為若干層次,處在高層次的系統僅是利用較低層次的系統提供的介面和功能,不需了解低層實現該功能所採用的演算法和協議;較低層次也僅是使用從高層系統傳送來的參數,這就是層次間的無關性。因為有了這種無關性,層次間的每個模塊可以用一個新的模塊取代,只要新的模塊與舊的模塊具有相同的功能和介面,即使它們使用的演算法和協議都不一樣。
網路中的計算機與終端間要想寬旦正確的傳送信息和數據,必須在數據傳輸的順序、數據的格式及內容等方面有一個約定或規則,這種約定或規則稱做協議。
7. 浠涔堟槸璁$畻鏈虹綉緇滐紝瀹冨寘鎷鍝鍑犻儴鍒嗙粍鎴愶紵
璁$畻鏈虹綉緇滅敱浠ヤ笅涓変釜涓昏侀儴鍒嗙粍鎴愶細
紜浠訛細璁$畻鏈虹綉緇滀腑鐨勭‖浠跺寘鎷璁$畻鏈恆佹湇鍔″櫒銆佽礬鐢卞櫒銆佷氦鎹㈡満銆佺綉鍗°侀泦綰垮櫒絳夎懼囷紝鐢ㄤ簬瀹炵幇鏁版嵁鍦ㄧ綉緇滀腑鐨勪紶杈撳拰浜ゆ崲銆
杞浠訛細璁$畻鏈虹綉緇滀腑鐨勮蔣浠跺寘鎷鍚勭嶅崗璁銆佸簲鐢ㄧ▼搴忋佹搷浣滅郴緇熺瓑錛岀敤浜庢帶鍒舵暟鎹鍦ㄧ綉緇滀腑鐨勪紶杈撱佸勭悊鍜屽瓨鍌ㄣ
鍗忚錛氳$畻鏈虹綉緇滀腑鐨勫崗璁鏄瀹炵幇鏁版嵁鍦ㄧ綉緇滀腑浼犺緭鍜屼氦鎹㈢殑涓緋誨垪瑙勫垯鍜屾爣鍑嗭紝鍖呮嫭鐗╃悊灞傘佹暟鎹閾捐礬灞傘佺綉緇滃眰銆佷紶杈撳眰銆佸簲鐢ㄥ眰絳変笉鍚岀殑鍗忚錛岀敤浜庢帶鍒舵暟鎹鍦ㄧ綉緇滀腑鐨勪紶杈撴牸寮忋佷紶杈撴柟寮忋佷紶杈撴帶鍒跺拰鏁版嵁澶勭悊絳夋柟闈銆
榪欎笁涓閮ㄥ垎鍏卞悓鏋勬垚浜嗚$畻鏈虹綉緇滅殑鍩烘湰妗嗘灦錛屼嬌寰楄$畻鏈哄拰鍏朵粬璁懼囧彲浠ヤ簰鐩歌繛鎺ュ拰閫氫俊錛屽苟瀹炵幇鏁版嵁鍦ㄧ綉緇滀腑鐨勪紶杈撳拰浜ゆ崲銆傚叾涓錛岀‖浠舵彁渚涗簡鏁版嵁浼犺緭鍜屼氦鎹㈢殑鐗╃悊鍩虹錛岃蔣浠跺垯鎺у埗浜嗘暟鎹鍦ㄧ綉緇滀腑鐨勪紶杈撳拰澶勭悊錛屽崗璁鍒欒勫畾浜嗘暟鎹鍦ㄧ綉緇滀腑浼犺緭鐨勬柟寮忋佹牸寮忓拰鎺у埗鏂瑰紡銆
-------FunNet瓚呮湁瓚e︾綉緇