1. 計算機網路 多路復用技術一共有幾種請簡要說明
1、頻分多路復用技術FDM(Frequency Division Multiplexing)
2、時分多路復用技術TDM(Time Division Multiplexing)
3、波分多路復用技術WDM(Wavelength Division Multiplexing)
4、碼分多路復用技術CDMA(Code Division Multiple Access)
5、空分多路復用技術SDM(Space Division Multiplexing)
2. 求計算機網路名詞解釋!!
計算機網路,是指將地理位置不同的具有獨立功能的多台計算機及其外部設備,通過通信線路連接起來,在網路操作系統,網路管理軟體及網路通信協議的管理和協調下,實現資源共享和信息傳遞的計算機系統。
通信子網:是指網路中實現網路通信功能的設備及其軟體的集合,通信設備、網路通信協議、通信控制軟體等屬於通信子網,是網路的內層,負責信息的傳輸。主要為用戶提供數據的傳輸,轉接,加工,變換等
網路拓撲(Topology)結構是指用傳輸介質互連各種設備的物理布局。指構成網路的成員間特定的物理的即真實的、或者邏輯的即虛擬的排列方式。如果兩個網路的連接結構相同我們就說它們的網路拓撲相同,盡管它們各自內部的物理接線、節點間距離可能會有不同。
網路協議的定義:為計算機網路中進行數據交換而建立的規則、標准或約定的集合。例如,網路中一個微機用戶和一個大型主機的操作員進行通信,由於這兩個數據終端所用字元集不同,因此操作員所輸入的命令彼此不認識。為了能進行通信,規定每個終端都要將各自字元集中的字元先變換為標准字元集的字元後,才進入網路傳送,到達目的終端之後,再變換為該終端字元集的字元。當然,對於不相容終端,除了需變換字元集字元外。其他特性,如顯示格式、行長、行數、屏幕滾動方式等也需作相應的變換。
網路體系結構是指通信系統的整體設計,它為網路硬體、軟體、協議、存取控制和拓撲提供標准。它廣泛採用的是國際標准化組織(ISO)在1979年提出的開放系統互連(OSI-Open System Interconnection)的參考模型。
3. 我想知道什麼是MSAP,MSTP,PHD,SDH,QOS,PLAN,EPON等等
這些都是通信技術概念
我大致做一下分類
功能:傳輸接入類(MSAP、MSTP、SDH、EPON、WDM、TDM、DDN)
保障技術:QOS
網路:PLAN LAN WAN
MSAP:綜合業務接入系統(源於SDH技術)
MSTP:綜合業務傳送系統(源於SDH技術,加入乙太網處理等功能)
SDH:同步數字體系(PDH技術演進過來。包含TDM業務處理)
EPON:乙太網無源光網路(還有GPON:千兆無源光網路。都是源於PON技術)
WDM:波分多路復用(還有DWDM:高密度波分多路復用技術)
TDM:時分多路復用(數字通信常用技術手段)
DDN:數字數據網,公網上的ddn專線,提供2M
QOS:彈性帶寬控制功能,是一種服務質量保證。通信網路建設都會考慮這個指標,QOS能力比較而言MSTP>SDH>PDH
PLAN:個人計算機局部地區網路
LAN:區域網
WAN:廣域網
從網路應用上看,一般網路使用分層結構,最底層即接入層應用PDH,MSAP,PON,SDH技術;中間層即匯聚層,使用MSTP技術;最上層骨幹層採用MSTP和WDM技術。
幾個容易混淆的概念:
MSTP與MSAP:可以從A和T這兩個概念明白就容易區分了,MSTP重在傳輸,MSAP重
對於SDH與PDH的區別,MSTP與WDM的區別,可以參看「光網路基礎」,都有詳細說明,這些技術都是逐步演進過來的,即PDH---SDH---MSTP/MSAP---WDN,另外PON技術是獨立的,是「最後一公里」的熱門技術,擁有很多分支,包括EPON,GPON等
關於不同組網技術之間的具體差異,說起來就很復雜了,有興趣的話,可以留言探討
4. 計算機網路技術簡單術語解釋
TCP:傳輸控制協議
UDP:用戶數據報協議
ARP:地址解析協議
FDM:頻分多路復用
ATM:非同步傳輸模式
WLAN:無線區域網
ISDN:綜合數字業務網
CSMA/CD:即載波監聽多路訪問/沖突檢測
CRC:循環冗餘檢查
FDDI:光纖分布式數據介面
WDM:波分復用
Ethernet:乙太網
FTP:文件傳輸協議
LLC:邏輯鏈路控制
5. 計算機網路中,數據的傳輸速度常用的單位是什麼
常用的數據傳輸速率單位有:Kbps、Mbps、Gbps與Tb/s,最快的以太區域網理論傳輸速率(也就是所說的「帶寬」)為10Gbit/s。
傳輸速度指的是將數據從源地址傳送至目的地址的速度。根據傳輸設備和媒介的不同,傳輸速度有不同的含義。
針對傳輸網,傳輸速度是指將數字信號從起始地傳輸到終止地的傳輸速率。如SDH的一對光纖的傳輸速度為2.5Gbps或10Gbps。WDM的傳輸速度可以達到1.6T甚至更高。
交換機的傳輸速度是指交換機埠的數據交換速度。目前常見的有10Mbps、100Mbps、1000Mbps等幾類。除此之外,還有10GMbps交換機,但目前很少。
(5)計算機網路wdm是擴展閱讀
1Kbps=1000bps
1Mbps=1000*1000bps
1Gbps=1000*1000*1000bps
1Tbps=1000*1000*1000*1000bps。
數據傳輸速率是單位時間內傳送數據碼元的個數。它是衡量系統傳輸能力的主要指標,通常使用下列幾種不同的定義:
數據傳輸速率為每秒鍾傳輸二進制碼元的個數,又稱為比特率。單位為比特/秒(bit/s)。
調制速率為每秒鍾傳輸信號碼元的個數,又稱波特率,單位為波特(Bd)。
數據傳送速率為單位時間內在數據傳輸系統中的相應設備之間傳送的比特、字元或碼組平均數。在該定義中,相應設備常指數據機、中間設備或數據源與數據宿。單位為比特/秒(bit/s)、字元/秒或碼組/秒。
6. 計算機網路-物理層-波分復用技術
波分復用WDM(Wavelength Division Multiplexing)就是光的頻分復用,適用於光波傳輸。 光纖技術的應用使得數據的傳輸速率空前提高。現在人們借用傳統的載波電話的頻分復用的概念,就能做到使用一根光纖來同時傳輸多個頻率很接近的光載波信號。這樣就使光纖的傳輸能力可成倍地提高。由於光載波的頻率很高,因此習慣上用波長而不用頻率來表示所使用的光載波。這樣就得出了波分復用這一名詞。最初,人們只能在一根光纖上復用兩路光載波信號。這種復用方式稱為波分復用WDM。隨著技術的發展,在一根光纖上復用的光載波信號的路數越來越多。現在己能做到在一根光纖上復用幾十路或更多路數的光載波信號。於是就使用了 密集波分復用DWDM (Dense Wavelength Division Multiplexing)這一名詞。例如,每一路的數據率是40 Gbit/s.,使用DWDM後,如果在一根光纖上復用64路,就能夠獲得2.56 Tbit/s的數據率。
圖2-17 表示8路傳輸速率均為2.5Gbit/s的光載波(其波長均為1310nm)。經光的調制後,分別將波長變換到1550-1557m,每個光載波相隔1nm。(這里只是為了說明問題的方便。實際上,對於密集波分復用,光載波的間隔一般是0.8或1.6nm.)這8個波長很接近的光載波經過 光復用器(波分復用的復用器又稱為合波器) 後,就在一根光纖中傳輸。因此,在一根光纖上數據傳輸的總速率就達到了8×2.5Gbi/s=20Gbit/s。但光信號傳輸了一段距離後就會衰減,因此對衰減了的光信號必須進行放大才能繼續傳輸。現在已經有了很好的 摻鉺光纖放大器EDFA (Erbium Doped Fiber Amplifier))。它是一種光放大器,直接對光信號進行放大,並且在1550nm波長附近有35nm(即4.2THz)頻帶范圍提供較均勻的、最高可達4050dB的增益。兩個光纖放大器之間的光纜線路長度可達120km,而光復用器和光分用器( 波分復用的分用器又稱為分波器 )之間的無光電轉換的距離可達600km(只需放入4個EDFA光纖放大器)。
在地下鋪設光纜是耗資很大的工程。因此人們總是在一根光纜中放入盡可能多的光纖(例如,放入100根以上的光纖),然後對每一根光纖使用密集波分復用技術。因此,對於具有100根速率為2.5 Gbit/s光纖的光纜,採用16倍的密集波分復用,得到一根光纜的總數據率為100×40 Gbit/s,或4 Tbit/s。這里的T為1012,中文名詞是「太」,即「兆兆」。
7. 計算機網路中一些概念區別
中文名稱:
信道
英文名稱:
channel
定義:
在兩點之間用於收發信號的單向或雙向通路。-----傳送信息的通道
傳送信息的物理性通道。信息是抽象的,但傳送信息必須通過具體的媒質。例如二人對話,靠聲波通過二人間的空氣來傳送,因而二人間的空氣部分就是信道。郵政通信的信道是指運載工具及其經過的設施。-----傳送信息的通道
傳輸媒體是通信網路中發送方和接收方之間的物理通路,計算機網路中採用的傳輸媒體可分為有線和元線兩大類。雙絞線、同軸電纜和光纖是常用的三種有線傳輸媒體;無線電通信、微波通信、紅外通信以及激光通信的信息載體都屬於無線傳輸媒體。
傳輸媒體的特性對網路數據通信質量有很大影響,這些特性是:
(1)物理特性。說明傳輸媒體的特徵。
(2)傳輸特性。包括信號形式、調制技術、傳輸速率及頻帶寬度等內容。
(3)連通性。採用點到點連接還是多點連接。
(4)地理范圍。網上各點間的最大距離。
(5)抗干擾性。防止噪音、電磁干擾對數據傳輸影響的能力。
(6)相對價格。以元件、安裝和維護的價格為基礎。
下面分別介紹幾種常用的傳輸媒體的特性。
1.雙絞線
由螺旋狀扭在一起的兩根絕緣導線組成,線對扭在一起可以減少相互間的輻射電磁干擾。雙絞線是最常用的傳輸媒體,早就用於電話通信中的模擬信號傳輸,也可用於數字信號的傳輸。
(1)物理特性。雙絞線芯一般是銅質的,能提供良好的傳導率。
(2)傳輸特性。雙絞線既可以用於傳輸模擬信號,也可以用於傳輸數字信號。
對於模擬信號來說,大約每5~6公里需要一個放大器;對於數字信號來說,每2~3公里使用一個中繼器。雙絞線最常用於聲音的模擬傳輸。雖然聲音的頻譜在20Hz~20l吐fz之間,但是進行可理解的語音傳輸所需要的帶寬卻窄得多。一條全雙工語音通道的標准帶寬是300Hz~4KE氈,即只要約4l吐fz的帶寬。雙絞線帶寬可達268KHz,因而可以使用頻分多路復用技術實現多個語音通道的復用。即使在通道之間留有適當的隔離,這種雙絞線仍具有復用24路語音通道的容量。使用數據機後,作為模擬音頻通道的雙絞線也可傳輸數字數據。根據目前的數據機設計技術,若使用移相鍵控法PSK,可使每路線有效傳輸速率達到9600bps以上,這樣,在一條24通道的雙絞線上,總的數據傳輸速率便可達230kbps。
雙絞線上也可直接傳送數字信號,使用T1線路的總數據傳輸速率可達1.544Mbpso達到更高數據傳輸率也是可能的,但與距離有關。
雙絞線也可用於區域網,如10BASE一T和100BASE-T匯流排,可分別提供10Mbps和100Mbps的數據傳輸速率。通常將多對雙絞線封裝於一個絕緣套里組成雙絞線電纜,區域網中常用的3類雙絞線和5類雙絞線電纜均由4對雙絞線組成,其中3類雙絞線通常用於10BASE-T匯流排區域網,5類雙絞線通常用於100BASE-T匯流排區域網。
(3)連通性。雙絞線普遍用於點到點的連接,也可以用於多點的連接。作為多點媒體使用時,雙絞線比同軸電纜的價格低,但性能較差,而且只能支持很少幾個站。
(4)地理范圍。雙絞線可以很容易地在15公里或更大范圍內提供數據傳輸。區域網的雙絞線主要用於一個建築物內或幾個建築物間的通信,在10016ps速率下傳輸距離可達1公里。但10Mbps和100Mbps傳輸速率的1OBASE-T和100BASE-T匯流排傳輸距離均不超過100米。
(5)抗干擾性。在低頻傳輸時,雙絞線的抗干擾性相當於或高於同軸電纜,但在超過10~100ldfZ時,同軸電纜就比雙絞線明顯優越。
(6)價格。雙絞線比同軸電纜或光導纖維都要便宜得多。
2.同軸電纜
同軸電纜也像雙絞線一樣由一對導體組成,但它們是按"同軸"形式構成線對,其結構如圖2.17所示。最里層是內芯,向外依次為絕緣層、屏蔽層,最外則是起保護作用的塑料外套,內芯和屏蔽層構成一對導體。同軸電纜分為基帶同軸電纜(阻抗500)和寬頻同軸電纜(阻抗750)。基帶同軸電纜又可分為粗纜和細纜兩種,都用於直接傳輸數字信號;寬頻同軸電纜用於頻分多路復用的模擬信號傳輸,也可用於不使用頻分多路復用的高速數字信號和模擬信號傳輸。閉路電視所使用的CATV電纜就是寬頻同軸電纜。
(1)物理特性。單根同軸電纜的直徑約為1.02~2.54cm,可在較寬的頻率范圍內工作。
(2)傳輸特性。基帶同軸電纜僅用於數字傳輸,並使用曼徹斯特編碼,數據傳輸速率最高可達1OMbps。寬頻同軸電纜既可用於模擬信號傳輸又可用於數字信號傳輸,對於模擬信號,帶寬可達300~450陽也。一般,在CATV電纜上,每個電視通道分配6陽也帶寬,每個廣播通道需要的帶寬要窄得多,因此在同軸電纜上使用頻分多路復用技術可以支持大量的視、音頻通道。
(3)連通性。同軸電纜適用於點到點和多點連接。基帶500電纜每段可支持幾百台設備,在大系統中還可以用轉接器將各段連接起來;寬頻750電纜可以支持數千台設備,但在高數據傳輸率下(50Mbp@)使用寬頻電纜時,設備數目限制在20~30台。
(4)地理范圍。傳輸距離取決於傳輸的信號形式和傳輸的速率,典型基帶電纜的最大距離限制在幾公里,在同樣數據速率條件下,粗纜的傳輸距離較細纜的長。寬頻電纜的傳輸距離可達幾十公里。
(5)抗干擾性。同軸電纜的抗干擾性能比雙絞線強。
(6)價格。安裝同軸電纜的費用比雙絞線貴,但比光導纖維便宜。
3.光纖
光纖是光導纖維的簡稱,它由能傳導光波的石英玻璃纖維外加保護層構成。相對於金屬導線來說具有重量輕、線徑細的特點。用光纖傳輸電信號時,在發送端先要將其轉換成光信號,而在接收端又要由光檢測器還原成電信號。光纖的電信號傳送過程如圖2.18所示。
光源可以採用發光二極體LED (Light Emitting Diode)和注入型激光二極體ILD(II1·jeCHon Laser Diode)。發光二極體LED是一種價格較便宜的固態器件,電流通過時就產生可見光,但定向性較差,是通過在光纖石英玻璃媒體內不斷反射而向前傳播的,這種光纖稱為多模光纖(Multimode Fiber);注入型激光二極體ILD也是一種固態器件,它根據激光器原理進行工作,即以激勵量子電子效應來產生一個窄帶的超輻射光束,產生的是激光。由於激光的定向性好,它可沿著光導纖維直接傳播,減少了折射和損耗,效率更高,也能傳播更大的距離,而且可以保持很高的數據傳輸率,這種光纖稱為單模光纖(Single-Mode Fiber)。在接收端用來把光波轉換為電能的檢波器是一個光電二極體,目前常用的兩種固態器件是PIN檢波器和APD檢波器。PIN光電二極體是在二極體的P層和N層之間增加一小段純(I)硅;雪崩光電二極體(APD)的外部特性和PIN類似,但是使用了較強的電磁場。PIN的價格便宜,但是不如APD靈敏。對光載波的調制屬於移幅鍵控法ASK,也稱亮度調制(Intensity Molation)。典型的做法是在給定的頻率下,以光的出現和消失來表示兩個二進制數字。發光二極體LED和注入型激光二極體ILD的信號都可用這種方法調制,PIN和APD檢波器直接響應亮度調制。
(1)物理特性。在計算機網路中均採用兩根光纖(一來一去)組成傳輸系統。按波長范圍(近紅外范圍內)可分為三種:0.85IAIn波長區(0.8~0.91im)、1.3lim波長區(1.25~1.351Am)和1.551im波長區(1.53~1.5811m)。不同的波長范圍光纖損耗特性也不同,其中0.85IAIn波長區為多模光纖通信方式,1.5§IAm波長區為單模光纖通信方式,1.31im波長區有多模和單模兩種方式。
(2)傳輸特性。光纖通過內部的全反射來傳輸一束經過編碼的光信號,內部的全反射可以在任何折射指數高於包層媒體折射指數的透明媒體中進行。實際上光纖作為頻率范圍從1014~1015險的波導管,這一范圍覆蓋了可見光譜和部分紅外光譜。光纖的數據傳輸率可達Gbps級,傳輸距離達數十公里。目前,一條光纖線路上只能傳輸一個載波,隨著技術進一步發展,會出現實用的多路復用光纖。
(3)連通性。光纖普遍用於點到點的鏈路。匯流排拓撲結構的實驗性多點系統已經建成,但是價格還太貴。原則上講,由於光纖功率損失小、衰減少的特性以及有較大的帶寬潛力,因此一段光纖能夠支持的分接頭數比雙絞線或同軸電纜多得多。
(4)地理范圍。從目前的技術來看,可以在6~8公里的距離內不用中繼器傳輸,因此光纖適合於在幾個建築物之間通過點到點的鏈路連接區域網絡。
(5)抗干擾性。光纖具有不受電磁干擾或雜訊影響的獨有特徵,適宜在長距離內保持高數據傳輸率,而且能夠提供很好的安全性。
(6)價格。就每米的價格和所需部件(發送器、接收器、連接器)來說,光纖比雙絞線和同軸電纜都要貴,但是雙絞線和同軸電纜的價格不大可能再下降,而光纖的價格將隨著工程技術的進步會大大下降,使它能與同軸電纜的價格相競爭。
由於光纖通信具有損耗低、頻帶寬、數據傳輸率高、抗電磁干擾強等特點,對高速率、距離較遠的區域網也是很適用的。目前採用一種波分技術,可以在一條光纖上復用多路傳輸,每路使用不同的波長,這種波分復用技術WDM (Wavelength Division Multiplexing)是一種新的數據傳輸系統。
4.無線傳輸媒體
無線傳輸媒體通過空間傳輸,不需要架設或鋪埋電纜或光纖,目前常用的技術有:無線電波、微波、紅外線和激光。攜帶型計算機的出現,以及在軍事、野外等特殊場合下移動式通信聯網的需要,促進了數字化元線移動通信的發展,現在已開始出現無線區域網產品。
微波通信的載波頻率為2GHz~40GHz范圍。因為頻率很高,可同時傳送大量信息,如一個帶寬為2陽fz的頻段可容納500條話音線路,用來傳輸數字數據,速率可達數Mbps。微波通信的工作頻率很高,與通常的無線電波不一樣,是沿直線傳播的。由於地球表面是曲面,微波在地面的傳播距離有限。直接傳播的距離與天線的高度有關,天線越高傳播距離越遠,超過一定距離後就要用中繼站來接力。紅外通信和激光通信也像微波通信一樣,有很強的方向性,都是沿直線傳播的。這三種技術都需要在發送方和接收方之間有一條視線(Lineof Sight)通路,故它們統稱為視線媒體。所不同的是,紅外通信和激光通信把要傳輸的信號分別轉換為紅外光信號和激光信號直接在空間傳播。這三種視線媒體由於都不需要鋪設電纜,對於連接不同建築物內的區域網特別有用。這三種技術對環境氣候較為敏感,例如雨、霧和雷電。相對來說,微波對一般雨和霧的敏感度較低。
衛星通信是微波通信中的特殊形式,衛星通信利用地球同步衛星做中繼來轉發微波信號。衛星通信可以克服地面微波通信距離的限制,一個同步衛星可以覆蓋地球的1/3以上表面,三個這樣的衛星就可以覆蓋地球上全部通信區域,這樣,地球上的各個地面站之間都可互相通信。由於衛星信道頻帶寬,也可採用頻分多路復用技術分為若乾子信道,有些用於由地面站向衛星發送(稱為上行信道),有些用於由衛星向地面轉發(稱為下行信道)。衛星通信的優點是容量大,傳輸距離遠;缺點是傳播延遲時間長,對於數萬公里高度的衛星來說,以200m/μs或5μs/Km的信號傳播速度來計算,從發送站通過衛星轉發到接收站的傳播延遲時間約要花數百毫秒(ms),這相對於地面電纜的傳播延遲時間來說,兩者要相差幾個數量級。
5.傳輸媒體的選擇
傳輸媒體的選擇取決於以下諸因素:網路拓撲的結構、實際需要的通信容量、可靠性要求、能承受的價格範圍。
雙絞線的顯著特點是價格便宜,但與同軸電纜相比,其帶寬受到限制。對於單個建築物內的低通信容量區域網來說,雙絞線的性能價格比可能是最好的。
同軸電纜的價格要比雙絞線貴一些,對於大多數的區域網來說,需要連接較多設備而且通信容量相當大時可以選擇同軸電纜。
光纖作為傳輸媒體,與同軸電纜和雙絞線相比具有一系列優點:頻帶寬、速率高、體積小、重量輕、衰減小、能電磁隔離、誤碼率低等,因此,在國際和國內長話傳輸中的地位日益提高,並已廣泛用於高速數據通信網。隨著光纖通信技術的發展和成本的降低,光纖作為區域網的傳輸媒體也得到了普遍採用,光纖分布數據介面FDDI就是一例。
目前,攜帶型計算機已經有了很大的發展和普及,由於可隨身攜帶,對可移動的無線網的需求將日益增加0元線數字網類似於蜂窩電話網,人們隨時隨地可將計算機接入網路,發送和接收數據。移動無線數字網的發展前景將是十分美好的。
8. 【山外筆記-計算機網路·第7版】第02章:物理層
[學習筆記]第02章_物理層-列印版.pdf
本章最重要的內容是:
(1)物理層的任務。
(2)幾種常用的信道復用技術。
(3)幾種常用的寬頻接入技術,主要是ADSL和FTTx。
1、物理層簡介
(1)物理層在連接各種計算機的傳輸媒體上傳輸數據比特流,而不是指具體的傳輸媒體。
(2)物理層的作用是盡可能地屏蔽掉傳輸媒體和通信手段的差異。
(3)用於物理層的協議常稱為物理層規程(procere),其實物理層規程就是物理層協議。
2、物理層的主要任務 :確定與傳輸媒體的介面有關的一些特性。
(1)機械特性:指明介面所用接線器的形狀和尺寸、引腳數目和排列、固定和鎖定裝置等。
(2)電氣特性:指明在介面電纜的各條線上出現的電壓的范圍。
(3)功能特性:指明某條線上出現的某一電平的電壓的意義。
(4)過程特性:指明對於不同功能的各種可能事件的出現順序。
3、物理層要完成傳輸方式的轉換。
(1)數據在計算機內部多採用並行傳輸方式。
(2)數據在通信線路(傳輸媒體)上的傳輸方式一般都是串列傳輸,即逐個比特按照時間順序傳輸。
(3)物理連接的方式:點對點、多點連接或廣播連接。
(4)傳輸媒體的種類:架空明線、雙絞線、對稱電纜、同軸電纜、光纜,以及各種波段的無線信道等。
1、數據通信系統的組成
一個數據通信系統可劃分為源系統(或發送端、發送方)、傳輸系統(或傳輸網路)和目的系統(或接收端、接收方)三大部分。
(1)源系統:一般包括以下兩個部分:
(2)目的系統:一般也包括以下兩個部分:
(3)傳輸系統:可以是簡單的傳輸線,也可以是連接在源系統和目的系統之間的復雜網路系統。
2、通信常用術語
(1)通信的目的是傳送消息(message),數據(data)是運送消息的實體。
(2)數據是使用特定方式表示的信息,通常是有意義的符號序列。
(3)信息的表示可用計算機或其他機器(或人)處理或產生。
(4)信號(signal)則是數據的電氣或電磁的表現。
3、信號的分類 :根據信號中代表消息的參數的取值方式不同
(1)模擬信號/連續信號:代表消息的參數的取值是連續的。
(2)數字信號/離散信號:代表消息的參數的取值是離散的。
1、信道
(1)信道一般都是用來表示向某一個方向傳送信息的媒體。
(2)一條通信電路往往包含一條發送信道和一條接收信道。
(3)單向通信只需要一條信道,而雙向交替通信或雙向同時通信則都需要兩條信道(每個方向各一條)。
2、通信的基本方式 :
(1)單向通信又稱為單工通信,只能有一個方向的通信而沒有反方向的交互。如無線電廣播、有線電廣播、電視廣播。
(2)雙向交替通信又稱為半雙工通信,即通信的雙方都可以發送信息,但不能雙方同時發送/接收。
(3)雙向同時通信又稱為全雙工通信,即通信的雙方可以同時發送和接收信息。
3、調制 (molation)
(1)基帶信號:來自信源的信號,即基本頻帶信號。許多信道不能傳輸基帶信號,必須對其進行調制。
(2)調制的分類
4、基帶調制常用的編碼方式 (如圖2-2)
(1)不歸零制:正電平代表1,負電平代表0。
(2)歸零制:正脈沖代表1,負脈沖代表0。
(3)曼徹斯特:編碼位周期中心的向上跳變代表0,位周期中心的向下跳變代表1。也可反過來定義。
(4)差分曼徹斯特:編碼在每一位的中心處始終都有跳變。位開始邊界有跳變代表0,而位開始邊界沒有跳變代表1。
5、帶通調制的基本方法
(1)調幅(AM)即載波的振幅隨基帶數字信號而變化。例如,0或1分別對應於無載波或有載波輸出。
(2)調頻(FM)即載波的頻率隨基帶數字信號而變化。例如,0或1分別對應於頻率f1或f2。
(3)調相(PM)即載波的初始相位隨基帶數字信號而變化。例如,0或1分別對應於相位0度或180度。
(4)多元制的振幅相位混合調制方法:正交振幅調制QAM(Quadrature Amplitude Molation)。
1、信號失真
(1)信號在信道上傳輸時會不可避免地產生失真,但在接收端只要從失真的波形中能夠識別並恢復出原來的碼元信號,那麼這種失真對通信質量就沒有影響。
(2)碼元傳輸的速率越高,或信號傳輸的距離越遠,或雜訊干擾越大,或傳輸媒體質量越差,在接收端的波形的失真就越嚴重。
2、限制碼元在信道上的傳輸速率的因素
(1)信道能夠通過的頻率范圍
(2)信噪比
3、香農公式 (Shannon)
(1)香農公式(Shannon):C = W*log2(1+S/N) (bit/s)
(2)香農公式表明:信道的帶寬或信道中的信噪比越大,信息的極限傳輸速率就越高。
(3)香農公式指出了信息傳輸速率的上限。
(4)香農公式的意義:只要信息傳輸速率低於信道的極限信息傳輸速率,就一定存在某種辦法來實現無差錯的傳輸。
(5)在實際信道上能夠達到的信息傳輸速率要比香農的極限傳輸速率低不少,是因為香農公式的推導過程中並未考慮如各種脈沖干擾和在傳輸中產生的失真等信號損傷。
1、傳輸媒體
傳輸媒體也稱為傳輸介質或傳輸媒介,是數據傳輸系統中在發送器和接收器之間的物理通路。
2、傳輸媒體的分類
(1)導引型傳輸媒體:電磁波被導引沿著固體媒體(雙絞線、同軸電纜或光纖)傳播。
(2)非導引型傳輸媒體:是指自由空間,電磁波的傳輸常稱為無線傳輸。
1、雙絞線
(1)雙絞線也稱為雙扭線, 即把兩根互相絕緣的銅導線並排放在一起,然後用規則的方法絞合(twist)起來。絞合可減少對相鄰導線的電磁干擾。
(2)電纜:通常由一定數量的雙絞線捆成,在其外麵包上護套。
(3)屏蔽雙絞線STP(Shielded Twisted Pair):在雙絞線的外面再加上一層用金屬絲編織成的屏蔽層,提高了雙絞線抗電磁干擾的能力。價格比無屏蔽雙絞線UTP(Unshielded Twisted Pair)要貴一些。
(4)模擬傳輸和數字傳輸都可以使用雙絞線,其通信距離一般為幾到十幾公里。
(5)雙絞線布線標准
(6)雙絞線的使用
2、同軸電纜
(1)同軸電纜由內導體銅質芯線(單股實心線或多股絞合線)、絕緣層、網狀編織的外導體屏蔽層(也可以是單股的)以及保護塑料外層所組成。
(2)由於外導體屏蔽層的作用,同軸電纜具有很好的抗干擾特性,被廣泛用於傳輸較高速率的數據。
(3)同軸電纜主要用在有線電視網的居民小區中。
(4)同軸電纜的帶寬取決於電纜的質量。目前高質量的同軸電纜的帶寬已接近1GHz。
3、光纜
(1)光纖通信就是利用光導纖維(簡稱光纖)傳遞光脈沖來進行通信。有光脈沖為1,沒有光脈沖為0。
(2)光纖是光纖通信的傳輸媒體。
(3)多模光纖:可以存在多條不同角度入射的光線在一條光纖中傳輸。光脈沖在多模光纖中傳輸時會逐漸展寬,造成失真,多模光纖只適合於近距離傳輸。
(4)單模光纖:若光纖的直徑減小到只有一個光的波長,則光纖就像一根波導那樣,可使光線一直向前傳播,而不會產生多次反射。單模光纖的纖芯很細,其直徑只有幾個微米,製造起來成本較高。
(5)光纖通信中常用的三個波段中心:850nm,1300nm和1550nm。
(6)光纜:一根光纜少則只有一根光纖,多則可包括數十至數百根光纖,再加上加強芯和填充物,必要時還可放入遠供電源線,最後加上包帶層和外護套。
(7)光纖的優點
1、無線傳輸
(1)無線傳輸是利用無線信道進行信息的傳輸,可使用的頻段很廣。
(2)LF,MF和HF分別是低頻(30kHz-300kHz)、中頻(300kHz-3MH z)和高頻(3MHz-30MHz)。
(3)V,U,S和E分別是甚高頻(30MHz-300MHz)、特高頻(300MHz-3GHz)、超高頻(3GHz-30GHz)和極高頻(30GHz-300GHz),最高的一個頻段中的T是Tremendously。
2、短波通信: 即高頻通信,主要是靠電離層的反射傳播到地面上很遠的地方,通信質量較差。
3、無線電微波通信
(1)微波的頻率范圍為300M Hz-300GHz(波長1m-1mm),但主要使用2~40GHz的頻率范圍。
(2)微波在空間中直線傳播,會穿透電離層而進入宇宙空間,傳播距離受到限制,一般只有50km左右。
(3)傳統的微波通信主要有兩種方式,即地面微波接力通信和衛星通信。
(4)微波接力通信:在一條微波通信信道的兩個終端之間建立若干個中繼站,中繼站把前一站送來的信號經過放大後再發送到下一站,故稱為「接力」,可傳輸電話、電報、圖像、數據等信息。
(5)衛星通信:利用高空的人造同步地球衛星作為中繼器的一種微波接力通信。
(6)無線區域網使用ISM無線電頻段中的2.4GHz和5.8GHz頻段。
(7)紅外通信、激光通信也使用非導引型媒體,可用於近距離的筆記本電腦相互傳送數據。
1、復用(multiplexing)技術原理
(1)在發送端使用一個復用器,就可以使用一個共享信道進行通信。
(2)在接收端再使用分用器,把合起來傳輸的信息分別送到相應的終點。
(3)復用器和分用器總是成對使用,在復用器和分用器之間是用戶共享的高速信道。
(4)分用器(demultiplexer)的作用:把高速信道傳送過來的數據進行分用,分別送交到相應的用戶。
2、最基本的復用
(1)頻分復用FDM(Frequency Division Multiplexing)
(2)時分復用TDM(Time Division Multiplexing):
3、統計時分復用STDM (Statistic TDM)
(1)統計時分復用STDM是一種改進的時分復用,能明顯地提高信道的利用率。
(2)集中器(concentrator):將多個用戶的數據集中起來通過高速線路發送到一個遠地計算機。
(3)統計時分復用使用STDM幀來傳送數據,每一個STDM幀中的時隙數小於連接在集中器上的用戶數。
(4)STDM幀不是固定分配時隙,而是按需動態地分配時隙,提高了線路的利用率。
(5)統計復用又稱為非同步時分復用,而普通的時分復用稱為同步時分復用。
(6)STDM幀中每個時隙必須有用戶的地址信息,這是統計時分復用必須要有的和不可避免的一些開銷。
(7)TDM幀和STDM幀都是在物理層傳送的比特流中所劃分的幀。和數據鏈路層的幀是完全不同的概念。
(8)使用統計時分復用的集中器也叫做智能復用器,能提供對整個報文的存儲轉發能力,通過排隊方式使各用戶更合理地共享信道。此外,許多集中器還可能具有路由選擇、數據壓縮、前向糾錯等功能。
1、波分復用WDM (Wavelength Division Multiplexing)
波分復用WDM是光的頻分復用,在一根光纖上用波長來復用兩路光載波信號。
2、密集波分復用DWDM (Dense Wavelength Division Multiplexing)
密集波分復用DWDM是在一根光纖上復用幾十路或更多路數的光載波信號。
1、碼分復用CDM (Code Division Multiplexing)
(1)每一個用戶可以在同樣的時間使用同樣的頻帶進行通信。
(2)各用戶使用經過特殊挑選的不同碼型,因此各用戶之間不會造成干擾。
(3)碼分復用最初用於軍事通信,現已廣泛用於民用的移動通信中,特別是在無線區域網中。
2、碼分多址CDMA (Code Division Multiple Access)。
(1)在CDMA中,每一個比特時間再劃分為m個短的間隔,稱為碼片(chip)。通常m的值是64或128。
(2)使用CDMA的每一個站被指派一個唯一的m bit碼片序列(chip sequence)。
(3)一個站如果發送比特1,則發送m bit碼片序列。如果發送比特0,則發送該碼片序列的二進制反碼。
(4)發送信息的每一個比特要轉換成m個比特的碼片,這種通信方式是擴頻通信中的直接序列擴頻DSSS。
(5)CDMA系統給每一個站分配的碼片序列必須各不相同,並且還互相正交(orthogonal)。
(6)CDMA的工作原理:現假定有一個X站要接收S站發送的數據。
(7)擴頻通信(spread spectrum)分為直接序列擴頻DSSS(Direct Sequence Spread Spectrum)和跳頻擴頻FHSS(Frequency Hopping Spread Spectrum)兩大類。
早起電話機用戶使用雙絞線電纜。長途干線採用的是頻分復用FDM的模擬傳輸方式,現在大都採用時分復用PCM的數字傳輸方式。現代電信網,在數字化的同時,光纖開始成為長途干線最主要的傳輸媒體。
1、早期的數字傳輸系統最主要的缺點:
(1)速率標准不統一。互不兼容的國際標准使國際范圍的基於光纖的高速數據傳輸就很難實現。
(2)不是同步傳輸。為了節約經費,各國的數字網主要採用准同步方式。
2、數字傳輸標准
(1)同步光纖網SONET(Synchronous Optical Network)
(2)同步數字系列SDH(Synchronous Digital Hierarchy)
(3)SDH/SONET定義了標准光信號,規定了波長為1310nm和1550nm的激光源。在物理層定義了幀結構。
(4)SDH/SONET標準的制定,使北美、日本和歐洲三種不同的數字傳輸體制在STM-1等級上獲得了統一,第一次真正實現了數字傳輸體制上的世界性標准。
互聯網的發展初期,用戶利用電話的用戶線通過數據機連接到ISP,速率最高只能達到56kbit/s。
從寬頻接入的媒體來看,寬頻接入技術可以分為有線寬頻接入和無線寬頻接入兩大類。
1、非對稱數字用戶線ADSL (Asymmetric Digital Subscriber Line)
(1)ADSL技術是用數字技術對現有的模擬電話用戶線進行改造,使它能夠承載寬頻數字業務。
(2)ADSL技術把0-4kHz低端頻譜留給傳統電話使用,把原來沒有被利用的高端頻譜留給用戶上網使用。
(3)ADSL的ITU的標準是G.992.1(或稱G.dmt,表示它使用DMT技術)。
(4)「非對稱」是指ADSL的下行(從ISP到用戶)帶寬都遠遠大於上行(從用戶到ISP)帶寬。
(5)ADSL的傳輸距離取決於數據率和用戶線的線徑(用戶線越細,信號傳輸時的衰減就越大)。
(6)ADSL所能得到的最高數據傳輸速率還與實際的用戶線上的信噪比密切相關。
2、ADSL數據機的實現方案 :離散多音調DMT(Discrete Multi-Tone)調制技術
(1)ADSL在用戶線(銅線)的兩端各安裝一個ADSL數據機。
(2)「多音調」就是「多載波」或「多子信道」的意思。
(3)DMT調制技術採用頻分復用的方法,把40kHz-1.1MHz的高端頻譜劃分為許多子信道。
(4)當ADSL啟動時,用戶線兩端的ADSL數據機就測試可用的頻率、各子信道受到的干擾情況,以及在每一個頻率上測試信號的傳輸質量。
(5)ADSL能夠選擇合適的調制方案以獲得盡可能高的數據率,但不能保證固定的數據率。
3、數字用戶線接入復用器DSLAM (DSL Access Multiplexer)
(1)數字用戶線接入復用器包括許多ADSL數據機。
(2)ADSL數據機又稱為接入端接單元ATU(Access Termination Unit)。
(3)ADSL數據機必須成對使用,因此把在電話端局記為ATU-C,用戶家中記為ATU-R。
(4)ADSL最大的好處就是可以利用現有電話網中的用戶線(銅線),而不需要重新布線。
(5)ADSL數據機有兩個插口:
(6)一個DSLAM可支持多達500-1000個用戶。
4、第二代ADSL
(1)ITU-T已頒布了G系列標准,被稱為第二代ADSL,ADSL2。
(1)第二代ADSL通過提高調制效率得到了更高的數據率。
(2)第二代ADSL採用了無縫速率自適應技術SRA(Seamless Rate Adaptation),可在運營中不中斷通信和不產生誤碼的情況下,根據線路的實時狀況,自適應地調整數據率。
(3)第二代ADSL改善了線路質量評測和故障定位功能。
5、ADSL技術的變型 :xDSL
ADSL並不適合於企業,為了滿足企業的需要,產生了ADSL技術的變型:xDSL。
(1)對稱DSL(Symmetric DSL,SDSL):把帶寬平均分配到下行和上行兩個方向,每個方向的速度分別為384kbit/s或1.5Mbit/s,距離分別為5.5km或3km。
(2)HDSL(High speed DSL):使用一對線或兩對線的對稱DSL,是用來取代T1線路的高速數字用戶線,數據速率可達768KBit/s或1.5Mbit/s,距離為2.7-3.6km。
(3)VDSL(Very high speed DSL):比ADSL更快的、用於短距離傳送(300-1800m),即甚高速數字用戶線,是ADSL的快速版本。
1、光纖同軸混合網HFC (Hybrid Fiber Coax)
(1)光纖同軸混合網HFC是在有線電視網的基礎上改造開發的一種居民寬頻接入網。
(2)光纖同軸混合網HFC可傳送電視節目,能提供電話、數據和其他寬頻交互型業務。
(3)有線電視網最早是樹形拓撲結構的同軸電纜網路,採用模擬技術的頻分復用進行單向廣播傳輸。
2、光纖同軸混合網HFC的主要特點:
(1)HFC網把原有線電視網中的同軸電纜主幹部分改換為光纖,光纖從頭端連接到光纖結點(fiber node)。
(2)在光纖結點光信號被轉換為電信號,然後通過同軸電纜傳送到每個用戶家庭。
(3)HFC網具有雙向傳輸功能,而且擴展了傳輸頻帶。
(4)連接到一個光纖結點的典型用戶數是500左右,但不超過2000。
3、電纜數據機 (cable modem)
(1)模擬電視機接收數字電視信號需要把機頂盒(set-top box)的設備連接在同軸電纜和電視機之間。
(2)電纜數據機:用於用戶接入互聯網,以及在上行信道中傳送交互數字電視所需的一些信息。
(3)電纜數據機可以做成一個單獨的設備,也可以做成內置式的,安裝在電視機的機頂盒裡面。
(4)電纜數據機不需要成對使用,而只需安裝在用戶端。
(5)電纜數據機必須解決共享信道中可能出現的沖突問題,比ADSL數據機復雜得多。
信號在陸地上長距離的傳輸,已經基本實現了光纖化。遠距離的傳輸媒體使用光纜。只是到了臨近用戶家庭的地方,才轉為銅纜(電話的用戶線和同軸電纜)。
1、多種寬頻光纖接入方式FTTx
(1)多種寬頻光纖接入方式FTTx,x可代表不同的光纖接入地點,即光電轉換的地方。
(2)光纖到戶FTTH(Fiber To The Home):把光纖一直鋪設到用戶家庭,在光纖進入用戶後,把光信號轉換為電信號,可以使用戶獲得最高的上網速率。
(3)光纖到路邊FTTC(C表示Curb)
(4)光纖到小區FTTZ(Z表示Zone)
(5)光纖到大樓FTTB(B表示Building)
(6)光纖到樓層FTTF(F表示Floor)
(7)光纖到辦公室FTTO(O表示Office)
(8)光纖到桌面FTTD(D表示Desk)
2、無源光網路PON (Passive Optical Network)
(1)光配線網ODN(Optical Distribution Network):在光纖干線和廣大用戶之間,鋪設的轉換裝置,使得數十個家庭用戶能夠共享一根光纖干線。
(2)無源光網路PON(Passive Optical Network),即無源的光配線網。
(3) 無源:表明在光配線網中無須配備電源,因此基本上不用維護,其長期運營成本和管理成本都很低。
(4)光配線網採用波分復用,上行和下行分別使用不同的波長。
(5)光線路終端OLT( Optical Line Terminal)是連接到光纖干線的終端設備。
(6)無源光網路PON下行數據傳輸
(7)無源光網路PON上行數據傳輸
當ONU發送上行數據時,先把電信號轉換為光信號,光分路器把各ONU發來的上行數據匯總後,以TDMA方式發往OLT,而發送時間和長度都由OLT集中控制,以便有序地共享光纖主幹。
(8)從ONU到用戶的個人電腦一般使用乙太網連接,使用5類線作為傳輸媒體。
(9)從總的趨勢來看,光網路單元ONU越來越靠近用戶的家庭,即「光進銅退」。
3、無源光網路PON的種類
(1)乙太網無源光網路EPON(Ethernet PON)
(2)吉比特無源光網路GPON(Gigabit PON)