導航:首頁 > 網路連接 > 計算機網路中往返時間公式

計算機網路中往返時間公式

發布時間:2024-05-13 13:28:26

計算機網路(5)| 運輸層

從通信和處理信息的角度看,運輸層是向它上面的應用層提供通信服務的,它屬於面向通信部分的最高層,同時也是用戶功能中的最低層。當網路的邊緣部分中的兩台主機使用網路的核心部分的功能進行端到端的通信時,只有主機的協議棧才有運輸層,而網路核心部分中的路由器在轉發分組時都只用到下三層的功能。

運輸層的兩個主要協議 TCP/IP 都是互聯網的正式標准,即:
(1)用戶數據報協議UDP
(2)傳輸控制協議TCP

TCP則是面向連接的服務。在傳送數據之前必須先建立連接,數據傳送結束後要釋放連接。TCP不提供廣播或者多播服務。由於TCP要提供可靠的面向連接的運輸服務,因此需要增加很多的開銷。

TCP/IP的運輸層用一個16位埠號來標志一個埠。埠號只有本地意義。它是為了標志本計算機應用層中的各個進程在和運輸層交互時的層間介面。

運輸層的埠號分為以下兩類:
(1)伺服器端使用的埠號: 它主要分為系統埠號0~1023和登記埠號1024~49151。

(2)客戶端使用的埠號: 49152~65535,這類埠號僅在客戶端進程運行時才動態選擇。當伺服器收到客戶端進程的報文時,就知道客戶端進程的埠號。因而可以把數據發送給客戶進程。

用戶數據報協議相比於IP的數據報服務就是只增加了復用、分用和差錯檢測功能。UDP的主要特點是:
(1)UDP是無連接的, 發送數據之前不需要建立連接,因此減少開銷和發送數據之前的時延。
(2)UDP使用盡最大努力交付, 即不保證可靠交付,因此主機不需要維持復雜的連接狀態表。
(3)UDP是面向報文的。 發送方的UDP對應用交下來的報文,添加首部後就向下交付給IP層。不對報文做任何處理,因此當報文過長時,IP層可能需要進行分片處理。
(4)UDP沒有擁塞控制, 網路出現的擁塞不會使源主機的發送速率減低。
(5)UDP支持一對一、一對多、多對一和多對多的交互通信。
(6)UDP的首部開銷小, 只有8個位元組。

UDP有兩個欄位:數據欄位和首部欄位。先介紹首部欄位,它是由4個欄位組成的,每個欄位只有2個位元組,總共有8個位元組。各個欄位的意義如下:
(1)源埠: 源埠號。在需要對方回信時選用。不需要時可用全0。
(2)目的埠: 目的埠號。在這終點交付報文時必須使用。
(3)長度: UDP用戶數據報的長度,其最小值是8(只有首部)。
(4)檢驗和: 檢測UDP用戶數據報在傳輸中是否有錯,有錯則丟棄。

當在傳送用戶數據報時,如果接收方UDP發現收到的報文中目的埠號不正確(即不存在對應於該埠號的應用進程),就丟棄該報文,並由網際控制報文協議ICMP發送「埠不可達」差錯報文給發送方。

TCP的主要特點如下:
(1)TCP是面向連接的運輸層協議。 應用程序在使用TCP協議之前,必須先建立TCP連接。傳送數據完畢後,必須釋放TCP連接。
(2)每一條TCP連接只能有兩個端點。 每一條TCP連接只能是點對點的。
(3)TCP提供可靠交付的服務。 通過TCP連接傳送的數據,無差錯、不丟失、不重復,並且按序到達。
(4)TCP提供全雙工通信。 TCP允許通信雙方的應用進程在任何時候都能發送數據。
(5)面向位元組流。 TCP中的流指的是流入到進程或進程流出的位元組序列。雖然應用程序和TCP的交互是一次一個數據塊,但TCP把應用程序交下來的數據看成一連串的無結構的位元組流。TCP不保證發送方發送的數據塊和接收方接收的數據塊一致,但保證程序接收到的位元組流和程序發送的位元組流一致。

TCP連接的端點叫做套接字或者插口。套接字是指將埠號拼接到IP地址之後,即:

每一條TCP連接唯一的被通信兩端的兩個端點所確定。即:

如圖所示,A發送分組M1,發送完畢就暫停發送,等待B的確認,B收到了M1就向A發死你確認。A在收到了對M1的確認之後,就再發送下一個分組M2,以此類推。

如圖所示,當B接收M1時檢測出了差錯,就丟棄M1,其他什麼也不做。而A只要超過了一段時間沒有收到確認,就會認為剛才發送的分組丟失了,因而重傳前面發送過的分組,這就叫做超時重傳,而實現超時重傳則需要A為每一個已發送的分組都設置一個超時計時器。
需要注意以下三點:
(1)A在發送完一個分組後,必須暫時保留已發送的分組的副本。
(2)分組和確認分組必須編號,這樣才能明確哪一個發出的分組收到了確認。
(3)超時計時器設置的重傳時間應當比數據在分組傳輸的平均往返時間更長。

如圖所示,B所發送的對M1確認丟失了,A在設定的超時重傳時間內沒有收到確認,所以無法知道自己發送的分組是怎樣出錯的,所以會重傳M1,而當B又收到了重傳的分組M1,這時應該採取兩個行動:
(1)丟棄這個重復分組M1。
(2)向A發送確認。

還有一種情況就是在傳輸過程中沒有出現差錯,但B對分組M1的確認遲到了,而A會收到重復的確認,A收下後就會丟棄,B仍然會收到重復的M1,並且同樣要丟棄重復的M1,並且重傳確認分組。

停止等待協議的優點是簡單,缺點則是信道的利用率太低。我們用TD表示A發送分組需要的時間,TA表示B發送確認分組需要的時間,RTT為往返時間,則:

為了提高傳輸的效率,發送方可以不使用低效率的停止等待協議,而是採用流水線傳輸的方式。即不必每發完一個分組就停下來等待對方的確認,這樣就可以使信道上一直有數據在不間斷的傳送。

如圖表示的是發送方維持的發送窗口,它指的是位於發送窗口內的5個分組都可以連續發送出去而不需要等待對方的確認。同時連續ARP協議規定,發送方每收到一個確認,就把發送窗口向前滑動一個分組的位置。

對於接收方採用的則是累計確認的方式,即接收方不必對收到的分組逐個發送確認。而是在收到幾個分組後,對按序到達的最後一個分組發送確認,這就表示:到這個分組為止的所有分組都已正確收到了。這種方式的優點是:容易實現,即使確認丟失也不必重傳(意思是發送方不必重傳)。但缺點是不能向發送方反映出接收方已經正確收到的所有分組信息。

TCP雖然是面向位元組流的,但傳送TCP的數據單元卻是報文段。一個TCP報文段可以分為首部和數據兩部分。

為了後面講述的方便,我們假設數據傳輸只在一個方向進行,即A發送數據,B給出確認。

TCP的滑動窗口是以位元組為單位的。如圖所示,現在假定A收到了B發來的確認報文段,其中的窗口是20位元組,而確認號是31,根據這2個數據,A就構造出自己的發送窗口。

發送窗口表示:在沒有收到B的確認的情況下,A可以連續把窗口內的數據都發送出去。凡是已經發送過的數據,在未收到確認之前都必須暫時保留,以便在超時重傳時使用。發送窗口後面的部分表示已發送且已經收到了確認。而發送窗口前沿的部分表示不允許發送的。

現在假定A發送了序號為31~41的數據。這時發送窗口位置並未改變但是發送窗口內靠後面有11個位元組表示已發送但是未收到確認。而發送窗口內靠前面的9個位元組時允許發送但未發送的。如圖所示:

而對於B,它的接收窗口大小是20,在接收窗口外面到30號位置的數據是接收並確認的,因此可以丟棄。在下圖中,B收到了32和33的數據,但它們不是按序到達的,因為並沒有收到31號數據。B只能對按序達收到的數據中的最高序號給出確認,因此B發送的確認報文欄位的確認號依然是31號。

現在假定B收到了序號為31的數據,並把31~33的數據交付主機,然後B刪除這些數據。接著把窗口向前移動3個序號,同時給a發送確認,其中的窗口值仍為20,但確認號變為34。表明B已經收到序號33為止的數據。

因為TCP的發送方在規定的時間內沒有收到確認就要重傳已經發送的報文段,但是重傳時間的選擇卻TCP最復雜的問題之一。為此TCP採用了一種自適應演算法,它記錄了一個報文段發出的時間以及收到相應的確認的時間。這兩個時間之差就是報文段的往返時間RTT,同時TCP保留了RTT的加權平均往返時間RTTs。而RTTD是RTT的偏差加權平均值,它與RTTs和新的RTT樣本之差有關。

超時重傳時間的演算法如下:
第一次測量時,加權平均往返時間取往返時間RTT,以後每次測量到一個新的RTT,按以下公式計算:

第一次測量時,RTT偏差的加權平均等於RTT的一半,以後的測里中,按以下公式計算:

綜上超時重傳時間RTO計算如下:

若收到的報文無差錯,只是未按序號,使用選擇確認SACK可是讓發送方發送那些未收到的數據,而不重復發送已經收到的那些數據。如果要使用選擇確認SACK,那麼在建立TCP連接時,就要在TCP首部的選項中加上「允許SACK」的選項,並且雙方必須都事先商量好。

流量控制就是指讓發送方的發送速率不要太快,要讓接收方來得及接收。而利用滑動窗口機制就可以很方便的在TCP連接上實現對發送方的流量控制。

如上圖所示,接收方B進行了三次流量控制。第一次把窗口減小到rwnd=300,第二次又減到rwnd=100,最後是rwnd=0,即不允許發送方再發送數據了。

但是我們應該考慮一種情況,就是當接收方B的存儲已滿時,會向發送方發送零窗口的報文段,接著B的存儲又有了一些空間,B再向A發送一個不為零的窗口值,但這個報文丟失了,結果就是雙方一直等待下去。所以為了解決這個問題,TCP為每一個連接設有一個持續計時器。只要TCP連接的一方收到對方的零窗口通知,就啟動持續計時器,當計時器到期後,就發送一個探測段文段,而對方就在確認這個探測段時給出了現在的窗口值。如果窗口仍然是0,那麼收到這個報文段的一方就重新設置持續計時器,反之則死鎖的僵局就可以打破了。

應用程序把數據傳送到TCP的發送緩存後,TCP在何時發送這些數據?,在TCP的實現中廣泛使用了Nagle演算法。具體演算法如下:
(1)若發送應用進程要把數據逐個位元組地送到TCP的發送緩存,則發送方就把第一個數據位元組先發出去,把後面到達的數據位元組都緩存起來。
(2)方發送方收到對第一個數據位元組的確認後,再把發送緩存中的所有數據組裝成一個報文發送出去,同時繼續對後續到來的數據進行緩存。
(3)只有收到對前一個報文段的確認後才繼續發送下一個報文段。

當數據到達快而網路速度慢時,這種方法可以明顯減少網路帶寬。Nagle還規定:當到達的數據達到窗口的一半或最大報文長度時就立即發送一個報文。

但還還需要考慮一個叫做糊塗綜合征的問題,具體內容是若接收方的緩存已滿,應用進程每次只從緩存中取1個位元組,然後向發送方確認,並把窗口設為1個位元組(緩存只空了1個位元組的空間),接著發送方發來1個位元組,接收方發回確認,仍然將窗口設為1,這樣進行下去,網路的利用率很低。

為了解決這個問題,可以讓接收方等待一段時間,使得或者緩存已有足夠的空間或者等到接收緩存已有一半的空閑空間。此時,接收方就發出確認報文,並向發送方通知當前窗口的大小。

擁塞 是指在某一段時間內,若對網路中某一資源的需求超過了該資源所能提供的可用部分,網路的性能就會變壞的情況。而所謂的 擁塞控制 就是防止過多的數據注入到網路當中,這樣可以使網路中的路由器或者鏈路不致過載,它是一個全局性的過程,涉及到所有的主機和路由器,而流量控制往往是指點對點通信量的控制。擁塞控制所要做的都有一個前提,就是網路能夠承受現有的網路負荷。

TCP進行擁塞控制的演算法有4種:慢開始、擁塞避免、快重傳和快恢復。下面在討論這些演算法時我們假定:
(1)數據是單方向傳送的,對方只傳送確認報文。
(2)接收方總是有足夠大的緩存空間。

發送方維持一個擁塞窗口的狀態變數,其大小取決於擁塞程度,並且動態變化。發送方讓自己的發送窗口小於擁塞窗口(如果考慮接收方的接收能力的話,發送窗口可能小於擁塞窗口)。發送方控制擁塞窗口的原則是:只要網路沒有擁塞,擁塞窗口就再增大一點,以便把更多的分組發送出去,只要出現擁塞,就減小擁塞窗口,以減少注入到網路的分組數。

下面會從「慢開始演算法」講起來討論擁塞窗口的大小如何變化的。

慢開始的演算法思路是:當主機開始發送數據時,由於並不清楚網路的負荷情況,所以如果立即把大量數據位元組注入到網路中,就有可能引起網路擁塞。因此會採用由小逐漸增大發送窗口。即在通常開始發送報文時,先將擁塞窗口cwnd的值設為一個最大報文段MSS的數值,而在每收到一個新的報文段確認後,把擁塞窗口增加至多一個MSS的數值。

如上圖所示,開始時cwnd=1,發送方發送一個M1,接收方收到M1發送確認,發送方收到一個確認後將cwnd加1,此時cwnd=2,因此發送方發送M2和M3兩個報文段,接收方收到後返回兩個確認,因此cwnd增加兩次,此時cwnd=4,接著發送方發送M4~M7四個報文段。依次類推。因此使用慢開始演算法後,每經過一個傳輸輪次,擁塞窗口就加倍。

但是為了防止擁塞窗口cwnd增加過大導致網路擁塞,需要設置一個慢開始門限ssthresh,慢開始門限用法如下:
當cwnd<ssthresh時,使用上述的慢開始演算法。
當cwnd>ssthresh時,停止使用慢開始演算法,使用擁塞避免演算法。
當cwnd=ssthresh時,既可以使用慢開始演算法,也可以使用擁塞避免演算法。
這里的擁塞避免演算法是指讓擁塞窗口緩慢的增大,即每經過一個往返時間RTT就把發送方的擁塞窗口cwnd加1,而不是像慢開始階段那樣加倍增長。

需要注意的是無論在慢開始階段還是擁塞避免階段,只要發送方判斷網路出現擁塞(根據是沒有按時收到確認),立即把慢開始門限ssthresh設為出現擁塞時的發送窗口的一半。然後發送窗口cwnd重新設為1,執行慢開始演算法。目的是迅速減少主機發送到網路分組的分組數。

快重傳演算法要求接收方每收到一個失序的報文段後就立即發送重復確認,如下圖接收了M1和M2後,又接收到一個M4,M4屬於失序報文,則發送對M2的重復確認。發送方只要連續收到三次確認重復就立即重傳對方未收到的報文段M3。

與快重傳演算法配合的還有快恢復演算法,過程如下:
(1)當發送方連續收到三個重復確認時,就把慢開始門限ssthresh減半,這是為了防止網路擁塞,接著並不執行慢開始演算法。
(2)由於上圖這種情況很可能不是因為網路擁塞引起的,因此這里不執行慢開始演算法(即不把擁塞窗口cwnd設為1,這樣速度太慢),而是把cwnd值設置為慢開始門限ssthresh減半後的數值,然後開始執行擁塞避免演算法。

TCP的運輸連接有是三個階段:連接建立、數據傳送和連接釋放。在TCP的連接過程中要解決以下三個問題:
(1)要使每一方能夠確知對方的存在。
(2)要允許雙方協商一些參數(如最大窗口值、是否使用窗口擴大選項和時間戳選項以及服務質量)。
(3)能夠對運輸實體資源進行分配。

TCP建立連接的過程叫做握手,握手需要在客戶和伺服器之間交換3個TCP報文段。如圖是三報文握手建立的連接過程:

A最後還要發送一次確認的原因是為了防止已經失效的連接請求報文段突然又傳送到了B,因而產生錯誤。試想一種情況:如果只有第一次和第二次握手,第二次B向A發送的確認丟失了,此時B進入了連接建立狀態,A沒有收到確認,過一段時間後會再次向B發送連接請求,B收到後又會再次建立連接,白白浪費B的資源。

A在TIME-WAIT狀態等待2MSL(MSL,最長報文段壽命),主要是因為以下兩點考慮:首先是為了保證A發送的最後一個ACK報文段能夠到達B,因為這個ACK報文段可能丟失,此時B會重傳連接釋放報文,如果A已經關閉,則無法收到這個報文。其次,當A在發送完最後一個ACK報文段後,再經過時間2MSL,就可以使本連接持續時間內產生的所有報文段都從網路中消失。這樣,下一個新連接中不會出現這種舊的連接請求報文段。

在圖中每一個方框即TCP可能具有的狀態。每個方框中的大寫英文字元串時TCP標准所使用的的TCP連接狀態名。狀態之間的箭頭表示可能發生的狀態變遷。箭頭旁邊的字表明引起這種變遷的原因,或表明發生狀態變遷後又出現什麼動作,在圖中粗實線箭頭表示對客戶進程的正常變遷,粗虛線箭頭表示對伺服器進程的正常變遷,細線箭頭表示異常變遷。

⑵ 計算機網路的計算題求解

網路傳播延遲 = 距離/傳播速度 = 1km/(2C/3) = 3km/(2×3×10^5km/s) = 5μs
沖突窗口(往返的物理時間) = 2×網路傳播延遲 = 10μs
最小幀長 = 數據傳輸速率×沖突窗口 = 10Mbps × 10μs = 100bit
好好學習天天向上

⑶ 《計算機網路》習題求分析,計算最大吞吐量和信道利用率

考慮TCP、IP首部和幀的構成,數據包總長度 L=65536×8(包體長度)+40×8(包頭長度)=524600

C代表信道帶寬也就是1*10^9 b/s = 1G/s

L/C是信號傳播的空中延時 = 數據包長度 / 傳播速度

Td是端到端的時延,那麼往返時延 = 2 * Td

所以 總時延 = 空中時延 + 往返時延 = L/C + Td*2

吞吐量 = 數據包長度/總時延

⑷ 計算機網路的性能

計算機網路的性能主要包括:

⑸ 計算機網路知識點

一、計算機網路概述

1.1 計算機網路的分類

按照網路的作用范圍:廣域網(WAN)、城域網(MAN)、區域網(LAN);

按照網路使用者:公用網路、專用網路。

1.2 計算機網路的層次結構

TCP/IP四層模型與OSI體系結構對比:

1.3 層次結構設計的基本原則

各層之間是相互獨立的;

每一層需要有足夠的靈活性;

各層之間完全解耦。

1.4 計算機網路的性能指標

速率:bps=bit/s 時延:發送時延、傳播時延、排隊時延、處理時延 往返時間RTT:數據報文在端到端通信中的來回一次的時間。

二、物理層

物理層的作用:連接不同的物理設備,傳輸比特流。該層為上層協議提供了一個傳輸數據的可靠的物理媒體。簡單的說,物理層確保原始的數據可在各種物理媒體上傳輸。

物理層設備:

中繼器【Repeater,也叫放大器】:同一區域網的再生信號;兩埠的網段必須同一協議;5-4-3規程:10BASE-5乙太網中,最多串聯4個中繼器,5段中只能有3個連接主機;

集線器:同一區域網的再生、放大信號(多埠的中繼器);半雙工,不能隔離沖突域也不能隔離廣播域。

信道的基本概念:信道是往一個方向傳輸信息的媒體,一條通信電路包含一個發送信道和一個接受信道。

單工通信信道:只能一個方向通信,沒有反方向反饋的信道;

半雙工通信信道:雙方都可以發送和接受信息,但不能同時發送也不能同時接收;

全雙工通信信道:雙方都可以同時發送和接收。

三、數據鏈路層

3.1 數據鏈路層概述

數據鏈路層在物理層提供的服務的基礎上向網路層提供服務,其最基本的服務是將源自網路層來的數據可靠地傳輸到相鄰節點的目標機網路層。數據鏈路層在不可靠的物理介質上提供可靠的傳輸。

該層的作用包括: 物理地址定址、數據的成幀、流量控制、數據的檢錯、重發 等。

有關數據鏈路層的重要知識點:

數據鏈路層為網路層提供可靠的數據傳輸;

基本數據單位為幀;

主要的協議:乙太網協議;

兩個重要設備名稱:網橋和交換機。

封裝成幀:「幀」是 數據鏈路層 數據的基本單位:

透明傳輸:「透明」是指即使控制字元在幀數據中,但是要當做不存在去處理。即在控制字元前加上轉義字元ESC。

3.2 數據鏈路層的差錯監測

差錯檢測:奇偶校驗碼、循環冗餘校驗碼CRC

奇偶校驗碼–局限性:當出錯兩位時,檢測不到錯誤。

循環冗餘檢驗碼:根據傳輸或保存的數據而產生固定位數校驗碼。

3.3 最大傳輸單元MTU

最大傳輸單元MTU(Maximum Transmission Unit),數據鏈路層的數據幀不是無限大的,數據幀長度受MTU限制.

路徑MTU:由鏈路中MTU的最小值決定。

3.4 乙太網協議詳解

MAC地址:每一個設備都擁有唯一的MAC地址,共48位,使用十六進製表示。

乙太網協議:是一種使用廣泛的區域網技術,是一種應用於數據鏈路層的協議,使用乙太網可以完成相鄰設備的數據幀傳輸:

區域網分類:

Ethernet乙太網IEEE802.3:

乙太網第一個廣泛部署的高速區域網

乙太網數據速率快

乙太網硬體價格便宜,網路造價成本低

乙太網幀結構:

類型:標識上層協議(2位元組)

目的地址和源地址:MAC地址(每個6位元組)

數據:封裝的上層協議的分組(46~1500位元組)

CRC:循環冗餘碼(4位元組)

乙太網最短幀:乙太網幀最短64位元組;乙太網幀除了數據部分18位元組;數據最短46位元組;

MAC地址(物理地址、區域網地址)

MAC地址長度為6位元組,48位;

MAC地址具有唯一性,每個網路適配器對應一個MAC地址;

通常採用十六進製表示法,每個位元組表示一個十六進制數,用 - 或 : 連接起來;

MAC廣播地址:FF-FF-FF-FF-FF-FF。

四、網路層

網路層的目的是實現兩個端系統之間的數據透明傳送,具體功能包括定址和路由選擇、連接的建立、保持和終止等。數據交換技術是報文交換(基本上被分組所替代):採用儲存轉發方式,數據交換單位是報文。

網路層中涉及眾多的協議,其中包括最重要的協議,也是TCP/IP的核心協議——IP協議。IP協議非常簡單,僅僅提供不可靠、無連接的傳送服務。IP協議的主要功能有:無連接數據報傳輸、數據報路由選擇和差錯控制。

與IP協議配套使用實現其功能的還有地址解析協議ARP、逆地址解析協議RARP、網際網路報文協議ICMP、網際網路組管理協議IGMP。具體的協議我們會在接下來的部分進行總結,有關網路層的重點為:

1、網路層負責對子網間的數據包進行路由選擇。此外,網路層還可以實現擁塞控制、網際互連等功能;

2、基本數據單位為IP數據報;

3、包含的主要協議:

IP協議(Internet Protocol,網際網路互聯協議);

ICMP協議(Internet Control Message Protocol,網際網路控制報文協議);

ARP協議(Address Resolution Protocol,地址解析協議);

RARP協議(Reverse Address Resolution Protocol,逆地址解析協議)。

4、重要的設備:路由器。

路由器相關協議

4.1 IP協議詳解

IP網際協議是 Internet 網路層最核心的協議。虛擬互聯網路的產生:實際的計算機網路錯綜復雜;物理設備通過使用IP協議,屏蔽了物理網路之間的差異;當網路中主機使用IP協議連接時,無需關注網路細節,於是形成了虛擬網路。

IP協議使得復雜的實際網路變為一個虛擬互聯的網路;並且解決了在虛擬網路中數據報傳輸路徑的問題。

其中,版本指IP協議的版本,佔4位,如IPv4和IPv6;首部位長度表示IP首部長度,佔4位,最大數值位15;總長度表示IP數據報總長度,佔16位,最大數值位65535;TTL表示IP數據報文在網路中的壽命,佔8位;協議表明IP數據所攜帶的具體數據是什麼協議的,如TCP、UDP。

4.2 IP協議的轉發流程

4.3 IP地址的子網劃分

A類(8網路號+24主機號)、B類(16網路號+16主機號)、C類(24網路號+8主機號)可以用於標識網路中的主機或路由器,D類地址作為組廣播地址,E類是地址保留。

4.4 網路地址轉換NAT技術

用於多個主機通過一個公有IP訪問訪問互聯網的私有網路中,減緩了IP地址的消耗,但是增加了網路通信的復雜度。

NAT 工作原理:

從內網出去的IP數據報,將其IP地址替換為NAT伺服器擁有的合法的公共IP地址,並將替換關系記錄到NAT轉換表中;

從公共互聯網返回的IP數據報,依據其目的的IP地址檢索NAT轉換表,並利用檢索到的內部私有IP地址替換目的IP地址,然後將IP數據報轉發到內部網路。

4.5 ARP協議與RARP協議

地址解析協議 ARP(Address Resolution Protocol):為網卡(網路適配器)的IP地址到對應的硬體地址提供動態映射。可以把網路層32位地址轉化為數據鏈路層MAC48位地址。

ARP 是即插即用的,一個ARP表是自動建立的,不需要系統管理員來配置。

RARP(Reverse Address Resolution Protocol)協議指逆地址解析協議,可以把數據鏈路層MAC48位地址轉化為網路層32位地址。

4.6 ICMP協議詳解

網際控制報文協議(Internet Control Message Protocol),可以報告錯誤信息或者異常情況,ICMP報文封裝在IP數據報當中。

ICMP協議的應用:

Ping應用:網路故障的排查;

Traceroute應用:可以探測IP數據報在網路中走過的路徑。

4.7網路層的路由概述

關於路由演算法的要求:正確的完整的、在計算上應該盡可能是簡單的、可以適應網路中的變化、穩定的公平的。

自治系統AS: 指處於一個管理機構下的網路設備群,AS內部網路自治管理,對外提供一個或多個出入口,其中自治系統內部的路由協議為內部網關協議,如RIP、OSPF等;自治系統外部的路由協議為外部網關協議,如BGP。

靜態路由: 人工配置,難度和復雜度高;

動態路由:

鏈路狀態路由選擇演算法LS:向所有隔壁路由發送信息收斂快;全局式路由選擇演算法,每個路由器計算路由時,需構建整個網路拓撲圖;利用Dijkstra演算法求源端到目的端網路的最短路徑;Dijkstra(迪傑斯特拉)演算法

距離-向量路由選擇演算法DV:向所有隔壁路由發送信息收斂慢、會存在迴路;基礎是Bellman-Ford方程(簡稱B-F方程);

4.8 內部網關路由協議之RIP協議

路由信息協議 RIP(Routing Information Protocol)【應用層】,基於距離-向量的路由選擇演算法,較小的AS(自治系統),適合小型網路;RIP報文,封裝進UDP數據報。

RIP協議特性:

RIP在度量路徑時採用的是跳數(每個路由器維護自身到其他每個路由器的距離記錄);

RIP的費用定義在源路由器和目的子網之間;

RIP被限制的網路直徑不超過15跳;

和隔壁交換所有的信息,30主動一次(廣播)。

4.9 內部網關路由協議之OSPF協議

開放最短路徑優先協議 OSPF(Open Shortest Path First)【網路層】,基於鏈路狀態的路由選擇演算法(即Dijkstra演算法),較大規模的AS ,適合大型網路,直接封裝在IP數據報傳輸。

OSPF協議優點:

安全;

支持多條相同費用路徑;

支持區別化費用度量;

支持單播路由和多播路由;

分層路由。

RIP與OSPF的對比(路由演算法決定其性質):

4.10外部網關路由協議之BGP協議

BGP(Border Gateway Protocol)邊際網關協議【應用層】:是運行在AS之間的一種協議,尋找一條好路由:首次交換全部信息,以後只交換變化的部分,BGP封裝進TCP報文段.

五、傳輸層

第一個端到端,即主機到主機的層次。傳輸層負責將上層數據分段並提供端到端的、可靠的或不可靠的傳輸。此外,傳輸層還要處理端到端的差錯控制和流量控制問題。

傳輸層的任務是根據通信子網的特性,最佳的利用網路資源,為兩個端系統的會話層之間,提供建立、維護和取消傳輸連接的功能,負責端到端的可靠數據傳輸。在這一層,信息傳送的協議數據單元稱為段或報文。

網路層只是根據網路地址將源結點發出的數據包傳送到目的結點,而傳輸層則負責將數據可靠地傳送到相應的埠。

有關網路層的重點:

傳輸層負責將上層數據分段並提供端到端的、可靠的或不可靠的傳輸以及端到端的差錯控制和流量控制問題;

包含的主要協議:TCP協議(Transmission Control Protocol,傳輸控制協議)、UDP協議(User Datagram Protocol,用戶數據報協議);

重要設備:網關。

5.1 UDP協議詳解

UDP(User Datagram Protocol: 用戶數據報協議),是一個非常簡單的協議。

UDP協議的特點:

UDP是無連接協議;

UDP不能保證可靠的交付數據;

UDP是面向報文傳輸的;

UDP沒有擁塞控制;

UDP首部開銷很小。

UDP數據報結構:

首部:8B,四欄位/2B【源埠 | 目的埠 | UDP長度 | 校驗和】 數據欄位:應用數據

5.2 TCP協議詳解

TCP(Transmission Control Protocol: 傳輸控制協議),是計算機網路中非常復雜的一個協議。

TCP協議的功能:

對應用層報文進行分段和重組;

面向應用層實現復用與分解;

實現端到端的流量控制;

擁塞控制;

傳輸層定址;

對收到的報文進行差錯檢測(首部和數據部分都檢錯);

實現進程間的端到端可靠數據傳輸控制。

TCP協議的特點:

TCP是面向連接的協議;

TCP是面向位元組流的協議;

TCP的一個連接有兩端,即點對點通信;

TCP提供可靠的傳輸服務;

TCP協議提供全雙工通信(每條TCP連接只能一對一);

5.2.1 TCP報文段結構:

最大報文段長度:報文段中封裝的應用層數據的最大長度。

TCP首部:

序號欄位:TCP的序號是對每個應用層數據的每個位元組進行編號

確認序號欄位:期望從對方接收數據的位元組序號,即該序號對應的位元組尚未收到。用ack_seq標識;

TCP段的首部長度最短是20B ,最長為60位元組。但是長度必須為4B的整數倍

TCP標記的作用:

5.3 可靠傳輸的基本原理

基本原理:

不可靠傳輸信道在數據傳輸中可能發生的情況:比特差錯、亂序、重傳、丟失

基於不可靠信道實現可靠數據傳輸採取的措施:

差錯檢測:利用編碼實現數據包傳輸過程中的比特差錯檢測 確認:接收方向發送方反饋接收狀態 重傳:發送方重新發送接收方沒有正確接收的數據 序號:確保數據按序提交 計時器:解決數據丟失問題;

停止等待協議:是最簡單的可靠傳輸協議,但是該協議對信道的利用率不高。

連續ARQ(Automatic Repeat reQuest:自動重傳請求)協議:滑動窗口+累計確認,大幅提高了信道的利用率。

5.3.1TCP協議的可靠傳輸

基於連續ARQ協議,在某些情況下,重傳的效率並不高,會重復傳輸部分已經成功接收的位元組。

5.3.2 TCP協議的流量控制

流量控制:讓發送方發送速率不要太快,TCP協議使用滑動窗口實現流量控制。

5.4 TCP協議的擁塞控制

擁塞控制與流量控制的區別:流量控制考慮點對點的通信量的控制,而擁塞控制考慮整個網路,是全局性的考慮。擁塞控制的方法:慢啟動演算法+擁塞避免演算法。

慢開始和擁塞避免:

【慢開始】擁塞窗口從1指數增長;

到達閾值時進入【擁塞避免】,變成+1增長;

【超時】,閾值變為當前cwnd的一半(不能<2);

再從【慢開始】,擁塞窗口從1指數增長。

快重傳和快恢復:

發送方連續收到3個冗餘ACK,執行【快重傳】,不必等計時器超時;

執行【快恢復】,閾值變為當前cwnd的一半(不能<2),並從此新的ssthresh點進入【擁塞避免】。

5.5 TCP連接的三次握手(重要)

TCP三次握手使用指令:

面試常客:為什麼需要三次握手?

第一次握手:客戶發送請求,此時伺服器知道客戶能發;

第二次握手:伺服器發送確認,此時客戶知道伺服器能發能收;

第三次握手:客戶發送確認,此時伺服器知道客戶能收。

建立連接(三次握手):

第一次: 客戶向伺服器發送連接請求段,建立連接請求控制段(SYN=1),表示傳輸的報文段的第一個數據位元組的序列號是x,此序列號代表整個報文段的序號(seq=x);客戶端進入 SYN_SEND (同步發送狀態);

第二次: 伺服器發回確認報文段,同意建立新連接的確認段(SYN=1),確認序號欄位有效(ACK=1),伺服器告訴客戶端報文段序號是y(seq=y),表示伺服器已經收到客戶端序號為x的報文段,准備接受客戶端序列號為x+1的報文段(ack_seq=x+1);伺服器由LISTEN進入SYN_RCVD (同步收到狀態);

第三次: 客戶對伺服器的同一連接進行確認.確認序號欄位有效(ACK=1),客戶此次的報文段的序列號是x+1(seq=x+1),客戶期望接受伺服器序列號為y+1的報文段(ack_seq=y+1);當客戶發送ack時,客戶端進入ESTABLISHED 狀態;當服務收到客戶發送的ack後,也進入ESTABLISHED狀態;第三次握手可攜帶數據;

5.6 TCP連接的四次揮手(重要)

釋放連接(四次揮手)

第一次: 客戶向伺服器發送釋放連接報文段,發送端數據發送完畢,請求釋放連接(FIN=1),傳輸的第一個數據位元組的序號是x(seq=x);客戶端狀態由ESTABLISHED進入FIN_WAIT_1(終止等待1狀態);

第二次: 伺服器向客戶發送確認段,確認字型大小段有效(ACK=1),伺服器傳輸的數據序號是y(seq=y),伺服器期望接收客戶數據序號為x+1(ack_seq=x+1);伺服器狀態由ESTABLISHED進入CLOSE_WAIT(關閉等待);客戶端收到ACK段後,由FIN_WAIT_1進入FIN_WAIT_2;

第三次: 伺服器向客戶發送釋放連接報文段,請求釋放連接(FIN=1),確認字型大小段有效(ACK=1),表示伺服器期望接收客戶數據序號為x+1(ack_seq=x+1);表示自己傳輸的第一個位元組序號是y+1(seq=y+1);伺服器狀態由CLOSE_WAIT 進入 LAST_ACK (最後確認狀態);

第四次: 客戶向伺服器發送確認段,確認字型大小段有效(ACK=1),表示客戶傳輸的數據序號是x+1(seq=x+1),表示客戶期望接收伺服器數據序號為y+1+1(ack_seq=y+1+1);客戶端狀態由FIN_WAIT_2進入TIME_WAIT,等待2MSL時間,進入CLOSED狀態;伺服器在收到最後一次ACK後,由LAST_ACK進入CLOSED;

為什麼需要等待2MSL?

最後一個報文沒有確認;

確保發送方的ACK可以到達接收方;

2MSL時間內沒有收到,則接收方會重發;

確保當前連接的所有報文都已經過期。

六、應用層

為操作系統或網路應用程序提供訪問網路服務的介面。應用層重點:

數據傳輸基本單位為報文;

包含的主要協議:FTP(文件傳送協議)、Telnet(遠程登錄協議)、DNS(域名解析協議)、SMTP(郵件傳送協議),POP3協議(郵局協議),HTTP協議(Hyper Text Transfer Protocol)。

6.1 DNS詳解

DNS(Domain Name System:域名系統)【C/S,UDP,埠53】:解決IP地址復雜難以記憶的問題,存儲並完成自己所管轄范圍內主機的 域名 到 IP 地址的映射。

域名解析的順序:

【1】瀏覽器緩存,

【2】找本機的hosts文件,

【3】路由緩存,

【4】找DNS伺服器(本地域名、頂級域名、根域名)->迭代解析、遞歸查詢。

IP—>DNS服務—>便於記憶的域名

域名由點、字母和數字組成,分為頂級域(com,cn,net,gov,org)、二級域(,taobao,qq,alibaba)、三級域(www)(12-2-0852)

6.2 DHCP協議詳解

DHCP(Dynamic Configuration Protocol:動態主機設置協議):是一個區域網協議,是應用UDP協議的應用層協議。作用:為臨時接入區域網的用戶自動分配IP地址。

6.3 HTTP協議詳解

文件傳輸協議(FTP):控制連接(埠21):傳輸控制信息(連接、傳輸請求),以7位ASCII碼的格式。整個會話期間一直打開。

HTTP(HyperText Transfer Protocol:超文本傳輸協議)【TCP,埠80】:是可靠的數據傳輸協議,瀏覽器向伺服器發收報文前,先建立TCP連接,HTTP使用TCP連接方式(HTTP自身無連接)。

HTTP請求報文方式:

GET:請求指定的頁面信息,並返回實體主體;

POST:向指定資源提交數據進行處理請求;

DELETE:請求伺服器刪除指定的頁面;

HEAD:請求讀取URL標識的信息的首部,只返回報文頭;

OPETION:請求一些選項的信息;

PUT:在指明的URL下存儲一個文檔。

6.3.1 HTTP工作的結構

6.3.2 HTTPS協議詳解

HTTPS(Secure)是安全的HTTP協議,埠號443。基於HTTP協議,通過SSL或TLS提供加密處理數據、驗證對方身份以及數據完整性保護

原文地址:https://blog.csdn.net/Royalic/article/details/119985591

⑹ 計算機網路有哪些常用的性能指標

計算機網路常用性能指標有:
1、速率:連接在計算機網路上的主機在數字信道上傳送數據的速率。
2、帶寬:網路通信線路傳送數據的能力。
3、吞吐量:單位時間內通過網路的數據量。
4、時延:數據從網路一端傳到另一端所需的時間。
5、時延帶寬積:傳播時延帶寬。
6、往返時間RTT:數據開始到結束所用時間。
7、利用率信道:數據通過信道時間。


(6)計算機網路中往返時間公式擴展閱讀:
計算機網路中的時延是由一下幾個不同的部分組成的:
(1)發送時延
發送時延是主機或路由器發送數據幀所需要的時間,也就是從發送數據幀的第一個比特算起,到該幀的最後一個比特發送完畢所需的時間。因此發送時延也叫做傳輸時延。發送時延的計算公式是:
發送時延=數據幀長度(bit)/發送速率(bit/s)
(2)傳播時延
傳播時延是電磁波在信道中傳播一定的距離需要花費的時間。傳播時延的計算公式是:
傳播時延=信道長度(m)/電磁波在信道上大的傳播速率(m/s)
電磁波在自由空間的傳播速率是光速。即3.0*10^5km/s。
發送時延發生在機器內部的發送器中,與傳輸信道的長度沒有任何關系。傳播時延發生在機器外部的傳輸信道媒體上,而與信道的發送速率無關。信號傳送的距離越遠,傳播時延就越大
(3)處理時延
主機或路由器在收到分組時需要花費一定時間進行處理,例如分析分組的首部,從分組中提取數據部分、進行差錯檢驗或查找合適的路由等,這就產生了處理時延。
(4)排隊時延
分組在進行網路傳輸時,要經過許多路由器。但分組在進入路由器後要先在輸入隊列中排隊等待,在路由器確定了轉發介面後,還要在輸出隊列中排隊等待轉發。這就產生了排隊時延。排隊時延的長短取決於網路當時的通信量。當網路的通信量很大時會發生隊列溢出,使分組丟失,這相當於排隊時延無窮大。
這樣數據在網路中經歷的總時延就是以上四種時延之和:總時延=發送時延+傳播時延+處理時延+排隊時延。
一般來說,小時延的網路要優於大時延的網路。

⑺ 什麼是RTT計算機網路里的東西

RTT(Round-Trip Time):往返時延。是指數據從網路一端傳到另一端所需的時間。通常,時延由發送時延、傳播時延、排隊時延、處理時延四個部分組成。

(1)發送時延

發送時延是結點將數據分組發送到傳輸媒介所需要的時間,也就是從分組的第一個比特開始發送算起,到最後一個比特發送完畢所需要的時間。顯然,發送時延與網路介面/信道的傳輸速率成反比,與數據分組的長度成正比。

(2)傳播時延

傳播時延是電磁波在信道中傳播一定距離所需要花費的時間,傳播時延和信道的傳輸速率無關,
而是取決於傳輸媒介的長度,以及某種物理形式的信號在傳輸媒介中的傳播速度。

如電磁波在自由空間的傳播速度是光速,即3×105km/s。電磁波在網路傳輸媒體中的傳播速度比在自由空間中的傳播速度要略低一些,在銅線中的傳播速度約為2.3×105km/s
,在光纖中的傳播速度約為2.0×105km/s 。

(3)排隊時延

排隊時延是分組在所經過的網路結點的緩存隊列中排隊所經歷的時延,排隊時延的長短主要取決於網路中當時的通信量,當網路的通信流量大時,排隊時雀畢間就長,極端情況下,當網路發生擁塞導致分組丟失時,該結點的排隊時延視為無窮大。

此外,在有優先順序演算法的網路中,排隊時延還取決於數據的優先順序和結點的隊列調度演算法。

(4)處理時延

處理時延是分組在中間結點的存儲轉發過程中而進行的一些必要的處理所花費的時間,這些處理包括提取分組的首部,進行差錯校驗,為分組定址和選路等。

(7)計算機網路中往返時間公式擴展閱讀

網路源銷端到端的時延是幾種時延的總合,其計算公式是:

總時延=傳播時延+發送時延+排隊時延+處理時延

根據網路的不同情況,有時有些時延可以忽略不計,如在區域網中,傳播時延很小可以忽略不計;當網路沒有擁塞時,分組在各個結點的排隊時延可以忽略不計。

往返時延(Round-Trip Time,RTT)也是一個重要的性能指標,它表示從發送方發送數據開始,到發送方收到來自接收方的確認,總共經歷的時延。對於復雹歲游雜的網路,往返時延要包括各中間結點的處理時延和轉發數據時的發送時延。

怎麼計算網址的rtt

計算網址的rtt的方法是:

1、首先,先採樣RTT,記下最近好幾次的RTT值。

2、然後做平滑計算SRTT( Smoothed RTT),公式為:(其中的 α 取值在0.8 到 0.9之間,這個演算法英文叫Exponential weighted moving average,中文叫:加權移動平均)SRTT = ( α * SRTT ) + ((1- α) * RTT)。

3、開始計算rtt。公式如下:rtt= min [ UBOUND,max [ LBOUND, (β * SRTT) ]]。

其中:UBOUND是最大的timeout時間,上限值、LBOUND是最小的timeout時間,下限值、β 值一般在1.3到2.0之間。

RTT往返時間是:

RTT(Round-Trip Time)往返時間在計算機網路中它是一個重要的性能指標。表示從發送端發送數據開始,到發送端收到來自接收端的確認(接收端收到數據後便立即發送確認,不包含數據傳輸時間)總共經歷的時間。

RTT由三個部分決定:鏈路的傳播時間、末端系統的處理時間、路由器的緩存中的排隊和處理時間。其中前兩個部分的值作為一個TCP連接相對固定。

路由器的緩存中的排隊和處理時間會隨著整個網路擁塞程度的變化而變化。所以RTT的變化在一定程度上反映了網路擁塞程度的變化。簡單來說就是發送方從發送數據開始,到收到來自接受方的確認信息所經歷的時間。

閱讀全文

與計算機網路中往返時間公式相關的資料

熱點內容
網路處方葯哪裡買 瀏覽:817
網路的經濟特點有哪些 瀏覽:857
網路售假金額超過多少會坐牢 瀏覽:605
路由器聯系網路供應商 瀏覽:761
電腦網路斷網重啟後正常 瀏覽:554
路由器沒開就有網路 瀏覽:961
路由器與網路連接 瀏覽:839
光貓怎麼更換無線網路 瀏覽:558
網路麻將怎麼打 瀏覽:682
網路用語dgjj什麼意思 瀏覽:914
怎樣找到電腦網路賬號 瀏覽:18
蘋果手機打開軟體網路特別卡 瀏覽:721
網路安全保障人員培訓 瀏覽:42
網路寬頻上行下行調多少 瀏覽:1003
降檔什麼意思網路語 瀏覽:931
設置了dns網路快了好多 瀏覽:912
老路由器網路卡頓怎麼辦 瀏覽:68
億聯網路股票是哪個板塊 瀏覽:291
計算機網路支撐技術包括 瀏覽:135
vpm蘋果網路加速 瀏覽:902

友情鏈接