計算機網路中常用的拓撲結構有星型、匯流排型、環型、樹型、網狀和混合拓撲結構等.
1、星型拓撲結構。星型是結構是一個中心,多個分節點。它結構簡單,連接方便,管理和維護都相對容易,而且擴展性強。網路延遲時間較小,傳輸誤差低。中心無故障,一般網路沒問題。中心故障,網路就出問題,同時共享能力差,通信線路利用率不高。
6、混合拓撲結構。是將上面兩種或多種共同使用。如用的多有星匯流排型、星環型等。
❷ 計算機網路的拓撲結構主要有哪幾種
計算機網路的拓撲結構主要有:匯流排型、環型、星形、樹形、網狀。
1、匯流排型
計算機網路拓撲結構中,匯流排型就是一根主幹線連接多個節點而形成的網路結構。在匯流排型網路結構中,網路信息都是通過主幹線傳輸到各個節點的。
❸ 計算機網路一共有五種基本的拓撲結構
計算機網路一共有五種基本的拓撲結構:
1、匯流排型
這種網路拓撲結構中所有設備都直接與匯流排相連,它所採用的介質一般也是同軸電纜(包括粗纜和細纜),不過現在也有採用光纜作為匯流排型傳輸介質的,如ATM網、Cable Modem所採用的網路等都屬於匯流排型網路結構。
匯流排結構是指各工作站和伺服器均掛在一條匯流排上,各工作站地位平等,無中心節點控制,公用匯流排上的信息多以基帶形式串列傳遞,其傳遞方向總是從發送信息的節點開始向兩端擴散,如同廣播電台發射的信息一樣,因此又稱廣播式計算機網路。鏈燃各節點在接受信息時都進行地址檢查,看是否與自己的工作站地址相符,相符則接收網上的信息。
5、分布式結構/網狀結構
網狀形網路如下圖所示,其為分組交換網示意圖。圖種虛線以內部分為通信子網,每個結點上的計算機稱為結點交換機。圖中虛線以外的計算機(Host)和終端設備統稱為數據處理子網或資源子網。
❹ 網路拓撲結構有哪幾種
網路拓撲結構分類
網路的拓撲(Topology)結構是指網路中通信線路和站點(計算機或設備)的相互連接的幾何形式。按照拓撲結構的不同,可以將網路分為星型網路、環型網路、匯流排型網路三種基本類型。在這三種類型的網路結構基礎上,可以組合出樹型網、簇星型網、網狀網等其他類型拓撲結構的網路。
1、星型網路結構
在星型網路結構中各個計算機使用各自的線纜連接到網路中,因此如果一個站點出了問題,不會影響整個網路的運行。星型網路結構是現在最常用的網路拓撲結構,如圖1所示。
2、環型網路結構
環型網路結構的各站點通過通信介質連成一個封閉的環形。環形網路容易安裝和監控,但容量有限,網路建成後,難以增加新的站點。因此,現在組建區域網已經基本上不使用環型網路結構了。
3、匯流排型網路結構
在匯流排型網路結構中所有的站點共享一條數據通道。匯流排型網路安裝簡單方便,需要鋪設的電纜最短,成本低,某個站點的故障一般不會影響整個網路,但介質的故障會導致網路癱瘓。匯流排網安全性低,監控比較困難,增加新站點也不如星型網容易。所以,匯流排型網路結構現在基本上已經被淘汰了.
計算機網路的拓撲結構主要有:
匯流排型結構
匯流排型結構由一條高速公用主幹電纜即匯流排連接若干個結點構成網路。網路中所有的結點通過匯流排進行信息的傳輸。這種結構的特點是結構簡單靈活,建網容易,使用方便,性能好。其缺點是主幹匯流排對網路起決定性作用,匯流排故障將影響整個網路。匯流排型結構是使用最普遍的一種網路。
星型櫻如結構
星型結構由中央結點集線器與各個結點連接組成。這種網路各結點必須通過中央結點才能實現通信空頌銷。星型結構斗游的特點是結構簡單、建網容易,便於控制和管理。其缺點是中央結點負擔較重,容易形成系統的「瓶頸」,線路的利用率也不高。
環型結構
環型結構由各結點首尾相連形成一個閉合環型線路。環型網路中的信息傳送是單向的,即沿一個方向從一個結點傳到另一個結點;每個結點需安裝中繼器,以接收、放大、發送信號。這種結構的特點是結構簡單,建網容易,便於管理。其缺點是當結點過多時,將影響傳輸效率,不利於擴充。
樹型結構
樹型結構是一種分級結構。在樹型結構的網路中,任意兩個結點之間不產生迴路,每條通路都支持雙向傳輸。這種結構的特點是擴充方便、靈活,成本低,易推廣,適合於分主次或分等級的層次型管理系統。
混合型結構
混合型結構可以是不規則型的網路,也可以是點-點相連結構的網路。
區域網中常見的結構為匯流排型或星型。
❺ 計算機網路拓撲結構有哪些
計算機網路的拓撲結構主要有:匯流排型拓撲、星型拓撲、環型拓撲、樹型拓撲和混合型拓撲。
匯流排型拓撲
匯流排型結構由一條高速公用主幹電纜即匯流排連接若干個結點構成網路。網路中所有的結點通過匯流排進行信息的傳輸。這種結構的特點是結構簡單靈活,建網容易,使用方便,性能好。其缺點是主幹匯流排對網路起決定性作用,匯流排運穗故障將影響整個網路。 匯流排型拓撲是使用最普遍的一種網路。
星型拓撲
星型拓撲由中央結點集線器與各個結點連接組成。這種網路各結點必須通過中央結點才能實現通信。星型結構的特點是結構簡單、建網容易,便於控制和管理。其缺點是中央結點負擔較重,容易形成系統的「瓶頸」,線路的利用率也不高。
環型拓撲
環型拓撲由各結點首尾相連形成一個閉合環型線路。環型網路中的信息傳送是單向的,即沿一個方向從一個結點傳到另一個結點;每個結點需安裝中繼器,以接收、放大、發送信號。這種結構的特點是結構簡單,建網容易,便於管理。其缺點是當結點過多時,將影響傳輸效率,不利於擴充。
樹型拓撲
樹型拓撲是一種分級結構。在樹型結構的雹謹網路中,任意兩個結點之間不產生迴路,每條通路都支持雙向傳輸。這種結構的特點是擴充方便、靈活,成本低,易推廣,適合於分主次或分等級的層次型管理系統。
網型拓撲
主要用於廣域網,由於結點之間有多條線路相連,所以網路的可靠性較搞高。由於結構比較復雜,建設成本較高。
混合型拓撲
混合型拓撲可以是不規則型的網路,也可以是點-點相連結構的網路。
蜂窩拓撲結構
蜂窩拓撲結構是無線區域網中常用的結構。它以無線傳輸介質(微波源悄基、衛星、紅外等)點到點和多點傳輸為特徵,是一種無線網,適用於城市網、校園網、企業網。
編輯本段區域網的結構
區域網中常見的結構為匯流排型或星型。
❻ 計算機網路的拓撲結構是什麼
是指由計算機組成的網路之間設備的分布情況以及連接狀態。把它兩畫在圖上就成了拓撲圖。一般在圖上要標明設備所處的位置,設備的名稱類型,以及設備間的連接介質類型。它分為物理拓撲和邏輯拓撲兩種。
計算機網路的拓撲結構主要有:匯流排型拓撲、星型拓撲、環型拓撲、樹型拓撲、網狀拓撲和混合型拓撲。
(6)計算機網路技術基礎的拓撲結構擴展閱讀:
當計算機數量日趨增多,並通過線路、伺服器、路由器等連接起來,且具有一定拓撲結構的時候,網路開始形成。
1969年,美軍阿帕網率先誕生。70年代,以阿帕網為基礎的乙太網開始應用於大學校園。到了90年代,特別是90年代後半期,互聯網得到了異常迅速的發展,已逐步把全球聯結成了一個巨大的網路。
雖然主流計算機網路拓撲結構好像用不上這些技術,但新興技術的成熟總需要時間來驗證,也許不是現在,但作為次世代的技術,在未來有很大的發展空間。
還有一些其他已經成型的新型計算機網路拓撲結構,這些新興的計算機網路拓撲結構已經超越了傳統基於第三層網路leaf-spine的計算機網路拓撲結構。
網路—計算機網路拓撲結構
中國新聞網—關註:網路戰悄然崛起