導航:首頁 > 網路連接 > 全連接網路高斯過程

全連接網路高斯過程

發布時間:2023-11-15 02:49:49

㈠ 【神經網路原理】神經網路結構 & 符號約定

神經元模型的符號約定:輸入: ,權重(weight): ,偏置(bias): ,未激活值: ,激活輸出值:
神經元可用於解決部分二分類問題 ——當有一個類別未知的 輸入感知機,若 輸出值a = 1時,感知機被激活 ,代表 x 屬於第一類;若 輸出值a = 0時,感知機未激活 ,則代表 x 屬於第二類。而對於sigmoid神經元,若輸出值a ≥ 0.5時,代表 x 屬於第一類,否則為第二類。

不難看出,感知機可以輕松實現「與非」邏輯,而與非邏輯可以組合成其他任意的邏輯,但對於一些過於復雜的問題,我們難以寫出其背後地邏輯結構。 這時候神經網路就能大顯身手 :它可以自適應的學習規律,調節網路地權重和偏置等參數,我們只需要用大量的數據對其正確地訓練,即可得到我們想要的效果!
那有一個很有意思的問題:相比於階躍函數,為什麼我們在神經網路中更願意採用sigmoid函數作為激活函數呢?

首先,由於感知機的激活函數為階躍函數(在0處突變),權重的一個小的變化就可能導致輸出值的突變,而如果將激活函數替換為sigmoid函數,輸出值的變化就能發生相應的小的變化,有利於網路學習;另外,由於採用二次代價函數作為損失函數時,利用BP演算法求梯度值需要對沖激函數求導,sigmoid函數正好時連續可導的,而且導數很好求。

為了便於理解,先畫一個三層的全連接神經網路示意圖,激活函數都選用sigmoid函數。 全連接神經網路 指除輸出層外,每一個神經元都與下一層中的各神經元相連接。網路的第一層為 輸入層 ,最後一層為 輸出層 ,中間的所有層統稱為 隱藏層 。其中,輸入層的神經元比較特殊,不含偏置 ,也沒有激活函數 。

神經網路結構的符號約定 : 代表第 層的第 個神經元與第 層的第 個神經元連線上的權重; 代表第 層與第 層之間的所有權重 構成的權重矩陣。 分別代表第 層的第 個神經元對應的偏置、未激活值、激活值; 則分別代表第 層的所有偏置組成的列向量、所有未激活值組成的列向量以及所有激活值組成的列向量。

下面展示了一個手寫體識別的三層全連接神經網路結構:

隱藏層的功能可以看作是各種特徵檢測器的組合:檢測到相應特徵時,相應的隱藏層神經元就會被激活,從而使輸出層相應的神經元也被激活。

㈡ 網路架構搜索

        作為計算智能方法的代表,起源於上個世紀四十年代的人工神經網路經歷了五六十年代的繁榮,七十年代的低潮,八十年代的再次復甦,到近十年的廣泛關注,如今已經成為理論日趨完善,應用逐步發展的前沿方向。Hinton 等人2006 年在《Science》上發表的文章引發了深度神經網路研究的熱潮。面對大數據的諸多挑戰,以深度信念網路、卷積神經網路和遞歸神經網路為代表的深度神經網路模型在很多應用領域展示出明顯的優勢和潛力,特別是隨著數據量和數據維數的增加,深度學習的優勢愈加突出。例如,Google 藉助深度學習開發的AlphaGo 能從海量的對弈中學習正確的決策,微軟語音識別採用深度學習使識別錯誤率顯著降低,網路基於深度學習開發的機器人「小度」在跨年齡人臉識別上超越了人類。

       經過多年的研究和發展,基於人工神經網路的識別方法也逐漸取代傳統的模式識別方法。神經網路已成為當前比較先進的技術,用來解決許多具有挑戰性的識別任務如文字識別、語音識別、指紋識別、遙感圖像識別、人臉識別、手寫體字元的識別等。其中主流的神經網路模型有卷積網路和遞歸神經網路,卷積神經網路由 Yann LeCun 在 1998 年提出,自從 AlexNe 在 2012 年的 ImageNet 比賽中使用了這一架構拔得頭籌,卷積神經網路迅速流行起來並廣泛應用到視覺任務。如今,最先進的卷積神經網路演算法在進行圖像識別時,甚至可以超過人類肉眼識別的准確率。遞歸神經網路網路提出於 1990 年,被視為循環神經網路的推廣,遞歸神經網路可以引入門控機制以學習長距離依賴,適用於包含結構關系的機器學習任務,在序列識別方面有重要應用。

        深度神經網路和深度學習演算法因為在科研工作與工程任務中都取得了顯著的效果從而大受歡迎。它取代了傳統的手動提取特徵方法,夠端到端地自動提取和學習特徵。而其中取得顯著成功的深度神經網路通常是由於它們成功的架構設計,研究的工作重心從提取特徵轉移到了尋找最優架構上。通常來說,模型的容量越大網路的性能就越好,能夠擬合任意函數。因此為了提升網路性能,網路結構被設計的越來越復雜。例如,VGG-16 約有1.4億浮點數參數,整個網路佔用超過500兆存儲空間,需要153億次浮點操作來處理一個$224\times224$大小的圖像。雖然更深的網路層次和復雜的拓撲結構能夠更有效地學習特徵,但是網路規模的增大意味著人工設計網路時需要花費更多時間來反復試驗,即使是專家也需要大量的資源和時間來創建性能良好的模型。

        神經網路架構搜索(NAS)是一種自動化學習網路結構的新方法,用於減少繁重的網路設計成本。目前為止,NAS方法設計的網路在識別任務上的表現已經超過了人工設計的架構。NAS可以視作自動機器學習(AutoML)的子領域,與超參數優化和元學習有明顯的重疊。不同的NAS方法的區別主要在於三個維度:搜索空間、搜索策略和性能評估,我們對此分別進行了調研。

        搜索空間:搜索空間定義了網路的所有可選結構和操作,通常指數級大,甚至無界。在設計搜索空間時結合先驗知識,即參考現有的針對當前任務的先進結構設計知識,能夠有效減小搜索空間並簡化搜索。但這也會引入偏好,從而限制網路學習到超越當前人類知識的結構。

        搜索策略:定義搜索空間後,搜索策略引導尋找高性能的模型架構,其中的難點是保證探索和利用的平衡。一方面,希望快速找到性能良好的架構,另一方面,需要避免過早收斂到次優的架構。

        性能評估:NSA的目的是找到一個在未知數據上具有良好泛化性能的架構,一旦模型生成,就需要對其性能進行評估。直觀的方法是在訓練集上訓練收斂,並在驗證集上得到其性能,但是這種方法會耗費巨大的算力,從而限制了可探索的網路結構。一些先進的方法關注於減小性能評估時的計算代價,但會引入誤差。因此,平衡評價的效率和效果是一個需要研究的問題。

       從計算的角度來看,神經網路代表了一個通過一系列操作將輸入變數 x 轉換為輸出變數 y 的函數。基於計算圖語言,神經網路可以表示為一個有向無環圖(DAG),其中每個節點表示一個張量 z ,通過邊連接其父節點 I(k),每條邊表示從候選操作集O中選擇的一個操作 o 。節點 k 的計算公式為:

        其中候選操作集合$O$主要包括卷積、池化、激活函數、跳躍連接、拼接、加法等基本操作。此外,為了進一步提高模型的性能,一些先進的人工設計模塊也可以作為候選操作,如深度可分離卷積、膨脹卷積、組卷積。基於操作的類型可以選擇不同的超參數,例如輸入節點選取、卷積核數量、尺寸、步長等。不同的搜索空間設計,選擇和組合操作的方法也不同所以參數化的形式也不一樣。一般來說,一個好的搜索空間應該能夠排除人類的偏見,並且足夠靈活,能夠覆蓋更廣泛的模型架構。

        全局搜索空間搜索一個完整的網路結構,具有很高的自由度。最簡單的例子是鏈式搜索空間,見圖1左。固定的數量的節點按順序堆疊,只有前一個節點的輸出提供給後一個節點作為輸入,每個節點代表一個層,並具有指定的操作。右圖引入更復雜的跳躍鏈接和多支路結構,此時當前節點可以結合前面所有節點的輸出作為輸入,使得搜索的自由度顯著增大。許多網路都是多分支網路的特例,比如

1)鏈式網路: ;

2)殘差網路: ;

3)DenseNets:

        雖然整體結構搜索很容易實現,但它也有一些缺點。首先,搜索空間的大小與網路深度是指數級關系,尋找泛化性能好的深度網路計算成本高。此外,生成的架構缺乏可遷移性和靈活性,在小型數據集上生成的模型可能不適合較大的數據集。有研究提出,初始架構的選擇在搜索全局結構時十分重要。在適當的初始條件下,可以獲得與單元搜索空間性能相當的架構,但是初始架構選擇的指導原則仍然不明確。

        基於單元的搜索空間受啟發於人工設計知識,許多有效的網路結構都會重復使用固定結構,例如在RNNs中重復LSTM塊或堆疊殘差模塊。因此可以只搜索這樣的重復單元(cells),整個神經結構的搜索問題被簡化為在單元搜索空間中搜索最優的單元結構,從而極大的減小搜索空間。大多數研究對比了基於全局搜索空間和單元搜索空間的實驗結果,證明在基於單元的搜索空間中可以獲得良好的性能。單元搜索空間的另一個優勢是能方便地在數據集和任務之間進行泛化,因為通過增減卷積核和單元的數量,架構的復雜性幾乎可以任意改變。

        NASNet是最早提出的單元搜索空間之一,也是當前最熱門的選擇,之後的大部分改進只是在此基礎上對操作選擇和單元組合策略進行了少量修改。如圖2所示,它由兩種單元組成,分別為保持輸入特徵維度的標准單元(normal cell),和減小空間維度的簡化單元(rection cell)。每個單元由b個塊組成,每個塊由它的兩個輸入和相應的操作定義。可選的輸入包括前兩個單元的輸出和單元中先前定義的塊的輸出,所以它支持跨單元的跳躍連接。未使用的塊被連接起來並作為單元格的輸出,最終通過預定義好的規則級聯這些單元。

        不同於上面將單元結構按照人工定義的宏結構進行連接,層次結構是將前一步驟生成的單元結構作為下一步單元結構的基本組成部件,通過迭代的思想得到最終的網路結構。Hier提出的層次搜索空間,通過合並低層單元生成高級單元實現單元級別和網路級別的同時優化。此方法具體分為3層。第一層包含一系列的基礎操作;第二層通過有向無環圖連接第一層的基礎操作,構建不同的單元,圖結構用鄰接矩陣編碼;第三層是網路級的編碼,決定如何連接第二層的單元,組合成一個完整的網路。基於單元的搜索空間可以看作是這種層次搜索空間的一個特殊情況。

        強化學習方法(RL)能夠有效建模一個順序決策的過程,其中代理與環境相互作用,代理學會改善其行為從而使目標回報最大化。(圖3)給出了一個基於強化的NAS演算法的概述。代理通常是一個遞歸神經網路(RNN),它在每一步t執行一個動作 來從搜索空間采樣一個新的樣本,同時接收狀態 的觀察值和環境中的獎勵 ,以更新代理的采樣策略。這種方法非常適合於神經結構搜索,代理的行為是生成神經結構,行為空間是搜索空間,環境是指對代理生成的網路進行訓練和評估,獎勵是訓練後的網路結構對未知數據的預測性能,在最後一個行為之後獲得。

4.2進化演算法

        進化演算法(EA)是一種成熟的全局優化方法,具有較高的魯棒性和廣泛的適用性。許多研究使用進化演算法來優化神經網路結構。進化演算法演化了一組模型,即一組網路;在每個世代中,至少從這組模型中選擇一個模型,作為親本在突變後作為生成子代。在對子代進行訓練之後,評估它們的適應度並將它們添加到種群中。

        典型的進化演算法包括選擇、交叉、變異和更新等步驟。選擇時一般使用聯賽選擇演算法對父類進行采樣,其中適應性最好的一個作為親本。Lemonade對適應度使用核密度估計,使網路被選擇的概率與密度成反比。交叉方式因編碼方案的不同而不同。突變針對的是親本的部分操作,例如添加或移除層,改變層的超參數,添加跳躍連接,以及改變訓練超參數。對於產生的後代,大多數方法隨機初始化子網路權重,而Lemonade把父網路學習到的權重通過使用網路態射傳遞給其子網路。Real等人讓後代繼承其父母的所有不受突變影響的參數,雖然這種繼承不是嚴格意義上的功能保留,它可以加速學習。生成新的網路的同時需要從種群中移除一些個體。Real等人從群體中移除最差的個體,AmoebaNet移除最老的個體。也有一些方法定期丟棄所有個體,或者完全不移除個體。EENA通過一個變數調節最壞模型和最老模型的刪除概率。

        基於代理模型的優化方法(SMBO)用一個代理模型來近似目標函數。即不需要訓練采樣到的網路結構,只需要訓練一個代理模型,使用代理模型預測網路的性能。通常在實踐中只需要得到架構的性能排序,而不一定要計算出具體的損失值,因此代理模型只需要預測相對得分並選出有前途的候選架構。然後只對預測性能好的架構進行評估,用它們的驗證精度更新代理模型,這樣只需要完全訓練少量候選架構,大大減少搜索時間。代理模型通常訓練為最小化平方誤差:

        貝葉斯優化(BO)是用於超參數優化的最流行的方法之一。最經典的是基於高斯過程的BO,生成的神經結構的驗證結果可以建模為高斯過程,然而,基於高斯的BO方法在觀察次數上的推理時間尺度是立方的,並且不擅長處理變長神經網路。有些工作使用基於樹或者隨機森林的方法來在非常高維的空間中高效的搜索,並且在很多問題上取得了優異的效果。Negrinho利用其搜索空間的樹形結構,並使用蒙特卡洛樹搜索。雖然沒有完整的比較,但初步的證據表明這些方法可以超越進化演算法。

        上面的搜索策略搜是從一個離散的搜索空間提取神經結構樣本。DARTS提出搜索空間的連續鬆弛,在連續可微的搜索空間上搜索神經架構如圖4所示,並使用如下softmax函數來鬆弛離散空間:

 

鬆弛後,架構搜索的任務轉化為網路架構與神經權值的聯合優化。這兩類參數分別在訓練集和驗證集上交替優化,表示為一個雙層優化問題。

        為了對搜索過程進行引導,必須對產生的神經網路性能進行評估。一種直觀的方法是訓練網路至收斂,然後評估其性能。但是,這種方法需要大量的時間和計算資源。因此提出了幾種加速模型評估的方法。

        為了減少計算負擔,可以用實際性能的低質近似來估測性能。實現方法包括: 縮短訓練時間、選擇數據集的子集、在低解析度的圖像上訓練、每層使用更少的通道數、堆疊更少的單元結構。在低質條件下搜索到的最優網路或單元,構建出最終結構在數據集上重新訓練,得到目標網路。雖然這些低精度的近似能夠減少訓練花費,但性能被低估的同時不可避免地引入了誤差。最近的研究表明,當這種低質評價與完全評價之間的差異較大時,網路性能的相對排名可能變化很大,並強調這種誤差會逐漸增加。

        早停技術最初用於防止過擬合。一些研究通過在訓練初期預測網路性能,在驗證集上預計表現不佳的模型被強制停止訓練,以此來加速模型評估。一種在早期估計網路性能的方法是學習曲線外推法。Domhan 等提出訓練初期對學習曲線進行插值,並終止那些預測性能不好的網路結構的訓練。Swersky等在評估學習曲線的好壞時,把網路架構的超參數作為參考因素。另一種方法根據梯度的局部統計信息實現早期停止,它不再依賴驗證集,允許優化器充分利用所有的訓練數據。

        代理模型可以被訓練用預測網路性能。PNAS提出訓練一個代理網路(LSTM)來預測網路結構的性能,他不考慮學習曲線而是基於結構的特點來預測性能,並在訓練時推斷更大的網路結構。SemiNAS是一種半監督NAS方法,利用大量的未標記架構進一步提高搜索效率。不需要在對模型進行訓練,只使用代理模型來預測模型精度。預測網路性能的主要難點是:為加快搜索過程,需要在對較大的搜索空間進行較少的評估的基礎上進行良好的預測。當優化空間過大且難以量化,且對每個結構的評估成本極高時,基於代理的方法就不適用。

        代理模型還可以用來預測網路權重。超網路(Hypernetworks)是一種神經網路,被訓練來為各種架構生成網路權值。超網路在搜索過程中節省了候選體系結構的訓練時間,因為它們的權值是通過超網路的預測得到的。Zhang等人提出了一種計算圖表示,並使用圖超網路(GHN)比常規超網路(SMASH)更快更准確地預測所有可能架構的權值。

        權重繼承是讓新網路結構繼承之前訓練完成的其他網路結構的權值。其中一種方法是網路態射,一般的網路設計方法是首先設計出一個網路結構,然後訓練它並在驗證集上查看它的性能表現,如果表現較差,則重新設計一個網路。可以很明顯地發現這種設計方法會做很多無用功,因此耗費大量時間。而基於網路態射結構方法能夠在原有的網路結構基礎上做修改,修改後的網路可以重用之前訓練好的權重。其特殊的變換方式能夠保證新的網路結構還原成原網路,因此子網路的表現至少不會差於原網路,並且能在較短的訓練時間內繼續成長為一個更健壯的網路。具體地,網路射態能夠處理任意非線性激活函數,可以添加跳躍連接,並且支持添加層或通道得到更深或更寬的等效模型。經典的網路態射只能使網路變大,這可能導致網路過於復雜,之後提出的近似網路態射通過知識蒸餾允許網路結構減小。進化演算法經常使用基於網路態射的變異,或者直接讓孩子繼承親本的權重,再執行一般變異操作,這樣產生的網路具有一個更好的初始值,而不用重頭開始訓練。

㈢ 一文看懂四種基本的神經網路架構

原文鏈接:
http://blackblog.tech/2018/02/23/Eight-Neural-Network/

更多干貨就在我的個人博客 http://blackblog.tech 歡迎關注

剛剛入門神經網路,往往會對眾多的神經網路架構感到困惑,神經網路看起來復雜多樣,但是這么多架構無非也就是三類,前饋神經網路,循環網路,對稱連接網路,本文將介紹四種常見的神經網路,分別是CNN,RNN,DBN,GAN。通過這四種基本的神經網路架構,我們來對神經網路進行一定的了解。

神經網路是機器學習中的一種模型,是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
一般來說,神經網路的架構可以分為三類:

前饋神經網路:
這是實際應用中最常見的神經網路類型。第一層是輸入,最後一層是輸出。如果有多個隱藏層,我們稱之為「深度」神經網路。他們計算出一系列改變樣本相似性的變換。各層神經元的活動是前一層活動的非線性函數。

循環網路:
循環網路在他們的連接圖中定向了循環,這意味著你可以按照箭頭回到你開始的地方。他們可以有復雜的動態,使其很難訓練。他們更具有生物真實性。
循環網路的目的使用來處理序列數據。在傳統的神經網路模型中,是從輸入層到隱含層再到輸出層,層與層之間是全連接的,每層之間的節點是無連接的。但是這種普通的神經網路對於很多問題卻無能無力。例如,你要預測句子的下一個單詞是什麼,一般需要用到前面的單詞,因為一個句子中前後單詞並不是獨立的。
循環神經網路,即一個序列當前的輸出與前面的輸出也有關。具體的表現形式為網路會對前面的信息進行記憶並應用於當前輸出的計算中,即隱藏層之間的節點不再無連接而是有連接的,並且隱藏層的輸入不僅包括輸入層的輸出還包括上一時刻隱藏層的輸出。

對稱連接網路:
對稱連接網路有點像循環網路,但是單元之間的連接是對稱的(它們在兩個方向上權重相同)。比起循環網路,對稱連接網路更容易分析。這個網路中有更多的限制,因為它們遵守能量函數定律。沒有隱藏單元的對稱連接網路被稱為「Hopfield 網路」。有隱藏單元的對稱連接的網路被稱為玻爾茲曼機。

其實之前的帖子講過一些關於感知機的內容,這里再復述一下。
首先還是這張圖
這是一個M-P神經元

一個神經元有n個輸入,每一個輸入對應一個權值w,神經元內會對輸入與權重做乘法後求和,求和的結果與偏置做差,最終將結果放入激活函數中,由激活函數給出最後的輸出,輸出往往是二進制的,0 狀態代表抑制,1 狀態代表激活。

可以把感知機看作是 n 維實例空間中的超平面決策面,對於超平面一側的樣本,感知器輸出 1,對於另一側的實例輸出 0,這個決策超平面方程是 w⋅x=0。 那些可以被某一個超平面分割的正反樣例集合稱為線性可分(linearly separable)樣例集合,它們就可以使用圖中的感知機表示。
與、或、非問題都是線性可分的問題,使用一個有兩輸入的感知機能容易地表示,而異或並不是一個線性可分的問題,所以使用單層感知機是不行的,這時候就要使用多層感知機來解決疑惑問題了。

如果我們要訓練一個感知機,應該怎麼辦呢?
我們會從隨機的權值開始,反復地應用這個感知機到每個訓練樣例,只要它誤分類樣例就修改感知機的權值。重復這個過程,直到感知機正確分類所有的樣例。每一步根據感知機訓練法則來修改權值,也就是修改與輸入 xi 對應的權 wi,法則如下:

這里 t 是當前訓練樣例的目標輸出,o 是感知機的輸出,η 是一個正的常數稱為學習速率。學習速率的作用是緩和每一步調整權的程度,它通常被設為一個小的數值(例如 0.1),而且有時會使其隨著權調整次數的增加而衰減。

多層感知機,或者說是多層神經網路無非就是在輸入層與輸出層之間加了多個隱藏層而已,後續的CNN,DBN等神經網路只不過是將重新設計了每一層的類型。感知機可以說是神經網路的基礎,後續更為復雜的神經網路都離不開最簡單的感知機的模型,

談到機器學習,我們往往還會跟上一個詞語,叫做模式識別,但是真實環境中的模式識別往往會出現各種問題。比如:
圖像分割:真實場景中總是摻雜著其它物體。很難判斷哪些部分屬於同一個對象。對象的某些部分可以隱藏在其他對象的後面。
物體光照:像素的強度被光照強烈影響。
圖像變形:物體可以以各種非仿射方式變形。例如,手寫也可以有一個大的圓圈或只是一個尖頭。
情景支持:物體所屬類別通常由它們的使用方式來定義。例如,椅子是為了讓人們坐在上面而設計的,因此它們具有各種各樣的物理形狀。
卷積神經網路與普通神經網路的區別在於,卷積神經網路包含了一個由卷積層和子采樣層構成的特徵抽取器。在卷積神經網路的卷積層中,一個神經元只與部分鄰層神經元連接。在CNN的一個卷積層中,通常包含若干個特徵平面(featureMap),每個特徵平面由一些矩形排列的的神經元組成,同一特徵平面的神經元共享權值,這里共享的權值就是卷積核。卷積核一般以隨機小數矩陣的形式初始化,在網路的訓練過程中卷積核將學習得到合理的權值。共享權值(卷積核)帶來的直接好處是減少網路各層之間的連接,同時又降低了過擬合的風險。子采樣也叫做池化(pooling),通常有均值子采樣(mean pooling)和最大值子采樣(max pooling)兩種形式。子采樣可以看作一種特殊的卷積過程。卷積和子采樣大大簡化了模型復雜度,減少了模型的參數。
卷積神經網路由三部分構成。第一部分是輸入層。第二部分由n個卷積層和池化層的組合組成。第三部分由一個全連結的多層感知機分類器構成。
這里舉AlexNet為例:

·輸入:224×224大小的圖片,3通道
·第一層卷積:11×11大小的卷積核96個,每個GPU上48個。
·第一層max-pooling:2×2的核。
·第二層卷積:5×5卷積核256個,每個GPU上128個。
·第二層max-pooling:2×2的核。
·第三層卷積:與上一層是全連接,3*3的卷積核384個。分到兩個GPU上個192個。
·第四層卷積:3×3的卷積核384個,兩個GPU各192個。該層與上一層連接沒有經過pooling層。
·第五層卷積:3×3的卷積核256個,兩個GPU上個128個。
·第五層max-pooling:2×2的核。
·第一層全連接:4096維,將第五層max-pooling的輸出連接成為一個一維向量,作為該層的輸入。
·第二層全連接:4096維
·Softmax層:輸出為1000,輸出的每一維都是圖片屬於該類別的概率。

卷積神經網路在模式識別領域有著重要應用,當然這里只是對卷積神經網路做了最簡單的講解,卷積神經網路中仍然有很多知識,比如局部感受野,權值共享,多卷積核等內容,後續有機會再進行講解。

傳統的神經網路對於很多問題難以處理,比如你要預測句子的下一個單詞是什麼,一般需要用到前面的單詞,因為一個句子中前後單詞並不是獨立的。RNN之所以稱為循環神經網路,即一個序列當前的輸出與前面的輸出也有關。具體的表現形式為網路會對前面的信息進行記憶並應用於當前輸出的計算中,即隱藏層之間的節點不再無連接而是有連接的,並且隱藏層的輸入不僅包括輸入層的輸出還包括上一時刻隱藏層的輸出。理論上,RNN能夠對任何長度的序列數據進行處理。
這是一個簡單的RNN的結構,可以看到隱藏層自己是可以跟自己進行連接的。

那麼RNN為什麼隱藏層能夠看到上一刻的隱藏層的輸出呢,其實我們把這個網路展開來開就很清晰了。

從上面的公式我們可以看出,循環層和全連接層的區別就是循環層多了一個權重矩陣 W。
如果反復把式2帶入到式1,我們將得到:

在講DBN之前,我們需要對DBN的基本組成單位有一定的了解,那就是RBM,受限玻爾茲曼機。
首先什麼是玻爾茲曼機?
[圖片上傳失敗...(image-d36b31-1519636788074)]
如圖所示為一個玻爾茲曼機,其藍色節點為隱層,白色節點為輸入層。
玻爾茲曼機和遞歸神經網路相比,區別體現在以下幾點:
1、遞歸神經網路本質是學習一個函數,因此有輸入和輸出層的概念,而玻爾茲曼機的用處在於學習一組數據的「內在表示」,因此其沒有輸出層的概念。
2、遞歸神經網路各節點鏈接為有向環,而玻爾茲曼機各節點連接成無向完全圖。

而受限玻爾茲曼機是什麼呢?
最簡單的來說就是加入了限制,這個限制就是將完全圖變成了二分圖。即由一個顯層和一個隱層構成,顯層與隱層的神經元之間為雙向全連接。

h表示隱藏層,v表示顯層
在RBM中,任意兩個相連的神經元之間有一個權值w表示其連接強度,每個神經元自身有一個偏置系數b(對顯層神經元)和c(對隱層神經元)來表示其自身權重。
具體的公式推導在這里就不展示了

DBN是一個概率生成模型,與傳統的判別模型的神經網路相對,生成模型是建立一個觀察數據和標簽之間的聯合分布,對P(Observation|Label)和 P(Label|Observation)都做了評估,而判別模型僅僅而已評估了後者,也就是P(Label|Observation)。
DBN由多個限制玻爾茲曼機(Restricted Boltzmann Machines)層組成,一個典型的神經網路類型如圖所示。這些網路被「限制」為一個可視層和一個隱層,層間存在連接,但層內的單元間不存在連接。隱層單元被訓練去捕捉在可視層表現出來的高階數據的相關性。

生成對抗網路其實在之前的帖子中做過講解,這里在說明一下。
生成對抗網路的目標在於生成,我們傳統的網路結構往往都是判別模型,即判斷一個樣本的真實性。而生成模型能夠根據所提供的樣本生成類似的新樣本,注意這些樣本是由計算機學習而來的。
GAN一般由兩個網路組成,生成模型網路,判別模型網路。
生成模型 G 捕捉樣本數據的分布,用服從某一分布(均勻分布,高斯分布等)的雜訊 z 生成一個類似真實訓練數據的樣本,追求效果是越像真實樣本越好;判別模型 D 是一個二分類器,估計一個樣本來自於訓練數據(而非生成數據)的概率,如果樣本來自於真實的訓練數據,D 輸出大概率,否則,D 輸出小概率。
舉個例子:生成網路 G 好比假幣製造團伙,專門製造假幣,判別網路 D 好比警察,專門檢測使用的貨幣是真幣還是假幣,G 的目標是想方設法生成和真幣一樣的貨幣,使得 D 判別不出來,D 的目標是想方設法檢測出來 G 生成的假幣。
傳統的判別網路:

生成對抗網路:

下面展示一個cDCGAN的例子(前面帖子中寫過的)
生成網路

判別網路

最終結果,使用MNIST作為初始樣本,通過學習後生成的數字,可以看到學習的效果還是不錯的。

本文非常簡單的介紹了四種神經網路的架構,CNN,RNN,DBN,GAN。當然也僅僅是簡單的介紹,並沒有深層次講解其內涵。這四種神經網路的架構十分常見,應用也十分廣泛。當然關於神經網路的知識,不可能幾篇帖子就講解完,這里知識講解一些基礎知識,幫助大家快速入(zhuang)門(bi)。後面的帖子將對深度自動編碼器,Hopfield 網路長短期記憶網路(LSTM)進行講解。

㈣ 什麼是全連接神經網路,怎麼理解「全連接」

1、全連接神經網路解析:對n-1層和n層而言,n-1層的任意一個節點,都和第n層所有節點有連接。即第n層的每個節點在進行計算的時候,激活函數的輸入是n-1層所有節點的加權。

2、全連接的神經網路示意圖:


3、「全連接」是一種不錯的模式,但是網路很大的時候,訓練速度回很慢。部分連接就是認為的切斷某兩個節點直接的連接,這樣訓練時計算量大大減小。

㈤ 神經網路:卷積神經網路(CNN)

神經網路 最早是由心理學家和神經學家提出的,旨在尋求開發和測試神經的計算模擬。

粗略地說, 神經網路 是一組連接的 輸入/輸出單元 ,其中每個連接都與一個 權 相關聯。在學習階段,通過調整權值,使得神經網路的預測准確性逐步提高。由於單元之間的連接,神經網路學習又稱 連接者學習。

神經網路是以模擬人腦神經元的數學模型為基礎而建立的,它由一系列神經元組成,單元之間彼此連接。從信息處理角度看,神經元可以看作是一個多輸入單輸出的信息處理單元,根據神經元的特性和功能,可以把神經元抽象成一個簡單的數學模型。

神經網路有三個要素: 拓撲結構、連接方式、學習規則

神經網路的拓撲結構 :神經網路的單元通常按照層次排列,根據網路的層次數,可以將神經網路分為單層神經網路、兩層神經網路、三層神經網路等。結構簡單的神經網路,在學習時收斂的速度快,但准確度低。

神經網路的層數和每層的單元數由問題的復雜程度而定。問題越復雜,神經網路的層數就越多。例如,兩層神經網路常用來解決線性問題,而多層網路就可以解決多元非線性問題

神經網路的連接 :包括層次之間的連接和每一層內部的連接,連接的強度用權來表示。

根據層次之間的連接方式,分為:

1)前饋式網路:連接是單向的,上層單元的輸出是下層單元的輸入,如反向傳播網路,Kohonen網路

2)反饋式網路:除了單項的連接外,還把最後一層單元的輸出作為第一層單元的輸入,如Hopfield網路

根據連接的范圍,分為:

1)全連接神經網路:每個單元和相鄰層上的所有單元相連

2)局部連接網路:每個單元只和相鄰層上的部分單元相連

神經網路的學習

根據學習方法分:

感知器:有監督的學習方法,訓練樣本的類別是已知的,並在學習的過程中指導模型的訓練

認知器:無監督的學習方法,訓練樣本類別未知,各單元通過競爭學習。

根據學習時間分:

離線網路:學習過程和使用過程是獨立的

在線網路:學習過程和使用過程是同時進行的

根據學習規則分:

相關學習網路:根據連接間的激活水平改變權系數

糾錯學習網路:根據輸出單元的外部反饋改變權系數

自組織學習網路:對輸入進行自適應地學習

摘自《數學之美》對人工神經網路的通俗理解:

神經網路種類很多,常用的有如下四種:

1)Hopfield網路,典型的反饋網路,結構單層,有相同的單元組成

2)反向傳播網路,前饋網路,結構多層,採用最小均方差的糾錯學習規則,常用於語言識別和分類等問題

3)Kohonen網路:典型的自組織網路,由輸入層和輸出層構成,全連接

4)ART網路:自組織網路

深度神經網路:

Convolutional Neural Networks(CNN)卷積神經網路

Recurrent neural Network(RNN)循環神經網路

Deep Belief Networks(DBN)深度信念網路

深度學習是指多層神經網路上運用各種機器學習演算法解決圖像,文本等各種問題的演算法集合。深度學習從大類上可以歸入神經網路,不過在具體實現上有許多變化。

深度學習的核心是特徵學習,旨在通過分層網路獲取分層次的特徵信息,從而解決以往需要人工設計特徵的重要難題。

Machine Learning vs. Deep Learning 

神經網路(主要是感知器)經常用於 分類

神經網路的分類知識體現在網路連接上,被隱式地存儲在連接的權值中。

神經網路的學習就是通過迭代演算法,對權值逐步修改的優化過程,學習的目標就是通過改變權值使訓練集的樣本都能被正確分類。

神經網路特別適用於下列情況的分類問題:

1) 數據量比較小,缺少足夠的樣本建立模型

2) 數據的結構難以用傳統的統計方法來描述

3) 分類模型難以表示為傳統的統計模型

缺點:

1) 需要很長的訓練時間,因而對於有足夠長訓練時間的應用更合適。

2) 需要大量的參數,這些通常主要靠經驗確定,如網路拓撲或「結構」。

3)  可解釋性差 。該特點使得神經網路在數據挖掘的初期並不看好。

優點:

1) 分類的准確度高

2)並行分布處理能力強

3)分布存儲及學習能力高

4)對噪音數據有很強的魯棒性和容錯能力

最流行的基於神經網路的分類演算法是80年代提出的 後向傳播演算法 。後向傳播演算法在多路前饋神經網路上學習。 

定義網路拓撲

在開始訓練之前,用戶必須說明輸入層的單元數、隱藏層數(如果多於一層)、每一隱藏層的單元數和輸出層的單元數,以確定網路拓撲。

對訓練樣本中每個屬性的值進行規格化將有助於加快學習過程。通常,對輸入值規格化,使得它們落入0.0和1.0之間。

離散值屬性可以重新編碼,使得每個域值一個輸入單元。例如,如果屬性A的定義域為(a0,a1,a2),則可以分配三個輸入單元表示A。即,我們可以用I0 ,I1 ,I2作為輸入單元。每個單元初始化為0。如果A = a0,則I0置為1;如果A = a1,I1置1;如此下去。

一個輸出單元可以用來表示兩個類(值1代表一個類,而值0代表另一個)。如果多於兩個類,則每個類使用一個輸出單元。

隱藏層單元數設多少個「最好」 ,沒有明確的規則。

網路設計是一個實驗過程,並可能影響准確性。權的初值也可能影響准確性。如果某個經過訓練的網路的准確率太低,則通常需要採用不同的網路拓撲或使用不同的初始權值,重復進行訓練。

後向傳播演算法學習過程:

迭代地處理一組訓練樣本,將每個樣本的網路預測與實際的類標號比較。

每次迭代後,修改權值,使得網路預測和實際類之間的均方差最小。

這種修改「後向」進行。即,由輸出層,經由每個隱藏層,到第一個隱藏層(因此稱作後向傳播)。盡管不能保證,一般地,權將最終收斂,學習過程停止。

演算法終止條件:訓練集中被正確分類的樣本達到一定的比例,或者權系數趨近穩定。

後向傳播演算法分為如下幾步:

1) 初始化權

網路的權通常被初始化為很小的隨機數(例如,范圍從-1.0到1.0,或從-0.5到0.5)。

每個單元都設有一個偏置(bias),偏置也被初始化為小隨機數。

2) 向前傳播輸入

對於每一個樣本X,重復下面兩步:

向前傳播輸入,向後傳播誤差

計算各層每個單元的輸入和輸出。輸入層:輸出=輸入=樣本X的屬性;即,對於單元j,Oj = Ij = Xj。隱藏層和輸出層:輸入=前一層的輸出的線性組合,即,對於單元j, Ij =wij Oi + θj,輸出=

3) 向後傳播誤差

計算各層每個單元的誤差。

輸出層單元j,誤差:

Oj是單元j的實際輸出,而Tj是j的真正輸出。

隱藏層單元j,誤差:

wjk是由j到下一層中單元k的連接的權,Errk是單元k的誤差

更新 權 和 偏差 ,以反映傳播的誤差。

權由下式更新:

 其中,△wij是權wij的改變。l是學習率,通常取0和1之間的值。

 偏置由下式更新:

  其中,△θj是偏置θj的改變。

Example

人類視覺原理:

深度學習的許多研究成果,離不開對大腦認知原理的研究,尤其是視覺原理的研究。1981 年的諾貝爾醫學獎,頒發給了 David Hubel(出生於加拿大的美國神經生物學家) 和Torsten Wiesel,以及Roger Sperry。前兩位的主要貢獻,是「發現了視覺系統的信息處理」, 可視皮層是分級的 。

人類的視覺原理如下:從原始信號攝入開始(瞳孔攝入像素Pixels),接著做初步處理(大腦皮層某些細胞發現邊緣和方向),然後抽象(大腦判定,眼前的物體的形狀,是圓形的),然後進一步抽象(大腦進一步判定該物體是只氣球)。

對於不同的物體,人類視覺也是通過這樣逐層分級,來進行認知的:

在最底層特徵基本上是類似的,就是各種邊緣,越往上,越能提取出此類物體的一些特徵(輪子、眼睛、軀乾等),到最上層,不同的高級特徵最終組合成相應的圖像,從而能夠讓人類准確的區分不同的物體。

可以很自然的想到:可以不可以模仿人類大腦的這個特點,構造多層的神經網路,較低層的識別初級的圖像特徵,若干底層特徵組成更上一層特徵,最終通過多個層級的組合,最終在頂層做出分類呢?答案是肯定的,這也是許多深度學習演算法(包括CNN)的靈感來源。

卷積神經網路是一種多層神經網路,擅長處理圖像特別是大圖像的相關機器學習問題。卷積網路通過一系列方法,成功將數據量龐大的圖像識別問題不斷降維,最終使其能夠被訓練。

CNN最早由Yann LeCun提出並應用在手寫字體識別上。LeCun提出的網路稱為LeNet,其網路結構如下:

這是一個最典型的卷積網路,由 卷積層、池化層、全連接層 組成。其中卷積層與池化層配合,組成多個卷積組,逐層提取特徵,最終通過若干個全連接層完成分類。

CNN通過卷積來模擬特徵區分,並且通過卷積的權值共享及池化,來降低網路參數的數量級,最後通過傳統神經網路完成分類等任務。

降低參數量級:如果使用傳統神經網路方式,對一張圖片進行分類,那麼,把圖片的每個像素都連接到隱藏層節點上,對於一張1000x1000像素的圖片,如果有1M隱藏層單元,一共有10^12個參數,這顯然是不能接受的。

但是在CNN里,可以大大減少參數個數,基於以下兩個假設:

1)最底層特徵都是局部性的,也就是說,用10x10這樣大小的過濾器就能表示邊緣等底層特徵

2)圖像上不同小片段,以及不同圖像上的小片段的特徵是類似的,也就是說,能用同樣的一組分類器來描述各種各樣不同的圖像

基於以上兩個假設,就能把第一層網路結構簡化

用100個10x10的小過濾器,就能夠描述整幅圖片上的底層特徵。

卷積運算的定義如下圖所示:

如上圖所示,一個5x5的圖像,用一個3x3的 卷積核 :

   101

   010

   101

來對圖像進行卷積操作(可以理解為有一個滑動窗口,把卷積核與對應的圖像像素做乘積然後求和),得到了3x3的卷積結果。

這個過程可以理解為使用一個過濾器(卷積核)來過濾圖像的各個小區域,從而得到這些小區域的特徵值。在實際訓練過程中, 卷積核的值是在學習過程中學到的。

在具體應用中,往往有多個卷積核,可以認為, 每個卷積核代表了一種圖像模式 ,如果某個圖像塊與此卷積核卷積出的值大,則認為此圖像塊十分接近於此卷積核。如果設計了6個卷積核,可以理解為這個圖像上有6種底層紋理模式,也就是用6種基礎模式就能描繪出一副圖像。以下就是24種不同的卷積核的示例:

池化 的過程如下圖所示:

可以看到,原始圖片是20x20的,對其進行采樣,采樣窗口為10x10,最終將其采樣成為一個2x2大小的特徵圖。

之所以這么做,是因為即使做完了卷積,圖像仍然很大(因為卷積核比較小),所以為了降低數據維度,就進行采樣。

即使減少了許多數據,特徵的統計屬性仍能夠描述圖像,而且由於降低了數據維度,有效地避免了過擬合。

在實際應用中,分為最大值采樣(Max-Pooling)與平均值采樣(Mean-Pooling)。

LeNet網路結構:

注意,上圖中S2與C3的連接方式並不是全連接,而是部分連接。最後,通過全連接層C5、F6得到10個輸出,對應10個數字的概率。

卷積神經網路的訓練過程與傳統神經網路類似,也是參照了反向傳播演算法

第一階段,向前傳播階段:

a)從樣本集中取一個樣本(X,Yp),將X輸入網路;

b)計算相應的實際輸出Op

第二階段,向後傳播階段

a)計算實際輸出Op與相應的理想輸出Yp的差;

b)按極小化誤差的方法反向傳播調整權矩陣。

㈥ 卷積神經網路中的局部連接是什麼意思

網路的下一層和上一層之間通過卷積核連接,或者說上一層的數據和卷積核卷積之後得到下一層。在全連接網路中,上一層的每個數據和下一層的每個數據都會有關,局部連接的意思就是說下一層只和上一層的局部數據有關。

這張圖就是局部連接,可以看到上一層只有3個單元和下一層連接(這張圖的流程是從下到上,所以我說的上一層是最底層,下一層是按照箭頭方向的上邊那層)。

局部連接的作用是減少計算參數。

閱讀全文

與全連接網路高斯過程相關的資料

熱點內容
注冊網路電話軟體 瀏覽:781
如何通過網路抓取電腦上文件 瀏覽:34
小學校園網路設施有哪些 瀏覽:707
揚州網路營銷公司 瀏覽:707
批發安裝移動網路 瀏覽:824
附近網路基站的wifi 瀏覽:292
東莞衛星計算機網路服務商家 瀏覽:840
網路電話不顯示號碼有哪些 瀏覽:599
網路詞烏雞卷是什麼意思 瀏覽:139
如何網路密碼忘記了怎麼辦手機 瀏覽:614
電腦沒網重置網路怎麼弄 瀏覽:661
網路營銷與整合 瀏覽:822
蘋果手機登陸傳奇為什麼出現網路異常 瀏覽:15
網路監控需不需要路由器 瀏覽:483
違反網路安全法第27條所做的懲罰 瀏覽:449
網路貨運平台哪個沒審查 瀏覽:211
win10沒有網路圖標是禁用了哪個 瀏覽:661
網路慢路由器怎麼辦教程 瀏覽:662
小愛連不上5g網路路由器 瀏覽:313
網路安全和網路工程哪個好 瀏覽:353

友情鏈接