㈠ 【山外筆記-計算機網路·第7版】第02章:物理層
[學習筆記]第02章_物理層-列印版.pdf
本章最重要的內容是:
(1)物理層的任務。
(2)幾種常用的信道復用技術。
(3)幾種常用的寬頻接入技術,主要是ADSL和FTTx。
1、物理層簡介
(1)物理層在連接各種計算機的傳輸媒體上傳輸數據比特流,而不是指具體的傳輸媒體。
(2)物理層的作用是盡可能地屏蔽掉傳輸媒體和通信手段的差異。
(3)用於物理層的協議常稱為物理層規程(procere),其實物理層規程就是物理層協議。
2、物理層的主要任務 :確定與傳輸媒體的介面有關的一些特性。
(1)機械特性:指明介面所用接線器的形狀和尺寸、引腳數目和排列、固定和鎖定裝置等。
(2)電氣特性:指明在介面電纜的各條線上出現的電壓的范圍。
(3)功能特性:指明某條線上出現的某一電平的電壓的意義。
(4)過程特性:指明對於不同功能的各種可能事件的出現順序。
3、物理層要完成傳輸方式的轉換。
(1)數據在計算機內部多採用並行傳輸方式。
(2)數據在通信線路(傳輸媒體)上的傳輸方式一般都是串列傳輸,即逐個比特按照時間順序傳輸。
(3)物理連接的方式:點對點、多點連接或廣播連接。
(4)傳輸媒體的種類:架空明線、雙絞線、對稱電纜、同軸電纜、光纜,以及各種波段的無線信道等。
1、數據通信系統的組成
一個數據通信系統可劃分為源系統(或發送端、發送方)、傳輸系統(或傳輸網路)和目的系統(或接收端、接收方)三大部分。
(1)源系統:一般包括以下兩個部分:
(2)目的系統:一般也包括以下兩個部分:
(3)傳輸系統:可以是簡單的傳輸線,也可以是連接在源系統和目的系統之間的復雜網路系統。
2、通信常用術語
(1)通信的目的是傳送消息(message),數據(data)是運送消息的實體。
(2)數據是使用特定方式表示的信息,通常是有意義的符號序列。
(3)信息的表示可用計算機或其他機器(或人)處理或產生。
(4)信號(signal)則是數據的電氣或電磁的表現。
3、信號的分類 :根據信號中代表消息的參數的取值方式不同
(1)模擬信號/連續信號:代表消息的參數的取值是連續的。
(2)數字信號/離散信號:代表消息的參數的取值是離散的。
1、信道
(1)信道一般都是用來表示向某一個方向傳送信息的媒體。
(2)一條通信電路往往包含一條發送信道和一條接收信道。
(3)單向通信只需要一條信道,而雙向交替通信或雙向同時通信則都需要兩條信道(每個方向各一條)。
2、通信的基本方式 :
(1)單向通信又稱為單工通信,只能有一個方向的通信而沒有反方向的交互。如無線電廣播、有線電廣播、電視廣播。
(2)雙向交替通信又稱為半雙工通信,即通信的雙方都可以發送信息,但不能雙方同時發送/接收。
(3)雙向同時通信又稱為全雙工通信,即通信的雙方可以同時發送和接收信息。
3、調制 (molation)
(1)基帶信號:來自信源的信號,即基本頻帶信號。許多信道不能傳輸基帶信號,必須對其進行調制。
(2)調制的分類
4、基帶調制常用的編碼方式 (如圖2-2)
(1)不歸零制:正電平代表1,負電平代表0。
(2)歸零制:正脈沖代表1,負脈沖代表0。
(3)曼徹斯特:編碼位周期中心的向上跳變代表0,位周期中心的向下跳變代表1。也可反過來定義。
(4)差分曼徹斯特:編碼在每一位的中心處始終都有跳變。位開始邊界有跳變代表0,而位開始邊界沒有跳變代表1。
5、帶通調制的基本方法
(1)調幅(AM)即載波的振幅隨基帶數字信號而變化。例如,0或1分別對應於無載波或有載波輸出。
(2)調頻(FM)即載波的頻率隨基帶數字信號而變化。例如,0或1分別對應於頻率f1或f2。
(3)調相(PM)即載波的初始相位隨基帶數字信號而變化。例如,0或1分別對應於相位0度或180度。
(4)多元制的振幅相位混合調制方法:正交振幅調制QAM(Quadrature Amplitude Molation)。
1、信號失真
(1)信號在信道上傳輸時會不可避免地產生失真,但在接收端只要從失真的波形中能夠識別並恢復出原來的碼元信號,那麼這種失真對通信質量就沒有影響。
(2)碼元傳輸的速率越高,或信號傳輸的距離越遠,或雜訊干擾越大,或傳輸媒體質量越差,在接收端的波形的失真就越嚴重。
2、限制碼元在信道上的傳輸速率的因素
(1)信道能夠通過的頻率范圍
(2)信噪比
3、香農公式 (Shannon)
(1)香農公式(Shannon):C = W*log2(1+S/N) (bit/s)
(2)香農公式表明:信道的帶寬或信道中的信噪比越大,信息的極限傳輸速率就越高。
(3)香農公式指出了信息傳輸速率的上限。
(4)香農公式的意義:只要信息傳輸速率低於信道的極限信息傳輸速率,就一定存在某種辦法來實現無差錯的傳輸。
(5)在實際信道上能夠達到的信息傳輸速率要比香農的極限傳輸速率低不少,是因為香農公式的推導過程中並未考慮如各種脈沖干擾和在傳輸中產生的失真等信號損傷。
1、傳輸媒體
傳輸媒體也稱為傳輸介質或傳輸媒介,是數據傳輸系統中在發送器和接收器之間的物理通路。
2、傳輸媒體的分類
(1)導引型傳輸媒體:電磁波被導引沿著固體媒體(雙絞線、同軸電纜或光纖)傳播。
(2)非導引型傳輸媒體:是指自由空間,電磁波的傳輸常稱為無線傳輸。
1、雙絞線
(1)雙絞線也稱為雙扭線, 即把兩根互相絕緣的銅導線並排放在一起,然後用規則的方法絞合(twist)起來。絞合可減少對相鄰導線的電磁干擾。
(2)電纜:通常由一定數量的雙絞線捆成,在其外麵包上護套。
(3)屏蔽雙絞線STP(Shielded Twisted Pair):在雙絞線的外面再加上一層用金屬絲編織成的屏蔽層,提高了雙絞線抗電磁干擾的能力。價格比無屏蔽雙絞線UTP(Unshielded Twisted Pair)要貴一些。
(4)模擬傳輸和數字傳輸都可以使用雙絞線,其通信距離一般為幾到十幾公里。
(5)雙絞線布線標准
(6)雙絞線的使用
2、同軸電纜
(1)同軸電纜由內導體銅質芯線(單股實心線或多股絞合線)、絕緣層、網狀編織的外導體屏蔽層(也可以是單股的)以及保護塑料外層所組成。
(2)由於外導體屏蔽層的作用,同軸電纜具有很好的抗干擾特性,被廣泛用於傳輸較高速率的數據。
(3)同軸電纜主要用在有線電視網的居民小區中。
(4)同軸電纜的帶寬取決於電纜的質量。目前高質量的同軸電纜的帶寬已接近1GHz。
3、光纜
(1)光纖通信就是利用光導纖維(簡稱光纖)傳遞光脈沖來進行通信。有光脈沖為1,沒有光脈沖為0。
(2)光纖是光纖通信的傳輸媒體。
(3)多模光纖:可以存在多條不同角度入射的光線在一條光纖中傳輸。光脈沖在多模光纖中傳輸時會逐漸展寬,造成失真,多模光纖只適合於近距離傳輸。
(4)單模光纖:若光纖的直徑減小到只有一個光的波長,則光纖就像一根波導那樣,可使光線一直向前傳播,而不會產生多次反射。單模光纖的纖芯很細,其直徑只有幾個微米,製造起來成本較高。
(5)光纖通信中常用的三個波段中心:850nm,1300nm和1550nm。
(6)光纜:一根光纜少則只有一根光纖,多則可包括數十至數百根光纖,再加上加強芯和填充物,必要時還可放入遠供電源線,最後加上包帶層和外護套。
(7)光纖的優點
1、無線傳輸
(1)無線傳輸是利用無線信道進行信息的傳輸,可使用的頻段很廣。
(2)LF,MF和HF分別是低頻(30kHz-300kHz)、中頻(300kHz-3MH z)和高頻(3MHz-30MHz)。
(3)V,U,S和E分別是甚高頻(30MHz-300MHz)、特高頻(300MHz-3GHz)、超高頻(3GHz-30GHz)和極高頻(30GHz-300GHz),最高的一個頻段中的T是Tremendously。
2、短波通信: 即高頻通信,主要是靠電離層的反射傳播到地面上很遠的地方,通信質量較差。
3、無線電微波通信
(1)微波的頻率范圍為300M Hz-300GHz(波長1m-1mm),但主要使用2~40GHz的頻率范圍。
(2)微波在空間中直線傳播,會穿透電離層而進入宇宙空間,傳播距離受到限制,一般只有50km左右。
(3)傳統的微波通信主要有兩種方式,即地面微波接力通信和衛星通信。
(4)微波接力通信:在一條微波通信信道的兩個終端之間建立若干個中繼站,中繼站把前一站送來的信號經過放大後再發送到下一站,故稱為「接力」,可傳輸電話、電報、圖像、數據等信息。
(5)衛星通信:利用高空的人造同步地球衛星作為中繼器的一種微波接力通信。
(6)無線區域網使用ISM無線電頻段中的2.4GHz和5.8GHz頻段。
(7)紅外通信、激光通信也使用非導引型媒體,可用於近距離的筆記本電腦相互傳送數據。
1、復用(multiplexing)技術原理
(1)在發送端使用一個復用器,就可以使用一個共享信道進行通信。
(2)在接收端再使用分用器,把合起來傳輸的信息分別送到相應的終點。
(3)復用器和分用器總是成對使用,在復用器和分用器之間是用戶共享的高速信道。
(4)分用器(demultiplexer)的作用:把高速信道傳送過來的數據進行分用,分別送交到相應的用戶。
2、最基本的復用
(1)頻分復用FDM(Frequency Division Multiplexing)
(2)時分復用TDM(Time Division Multiplexing):
3、統計時分復用STDM (Statistic TDM)
(1)統計時分復用STDM是一種改進的時分復用,能明顯地提高信道的利用率。
(2)集中器(concentrator):將多個用戶的數據集中起來通過高速線路發送到一個遠地計算機。
(3)統計時分復用使用STDM幀來傳送數據,每一個STDM幀中的時隙數小於連接在集中器上的用戶數。
(4)STDM幀不是固定分配時隙,而是按需動態地分配時隙,提高了線路的利用率。
(5)統計復用又稱為非同步時分復用,而普通的時分復用稱為同步時分復用。
(6)STDM幀中每個時隙必須有用戶的地址信息,這是統計時分復用必須要有的和不可避免的一些開銷。
(7)TDM幀和STDM幀都是在物理層傳送的比特流中所劃分的幀。和數據鏈路層的幀是完全不同的概念。
(8)使用統計時分復用的集中器也叫做智能復用器,能提供對整個報文的存儲轉發能力,通過排隊方式使各用戶更合理地共享信道。此外,許多集中器還可能具有路由選擇、數據壓縮、前向糾錯等功能。
1、波分復用WDM (Wavelength Division Multiplexing)
波分復用WDM是光的頻分復用,在一根光纖上用波長來復用兩路光載波信號。
2、密集波分復用DWDM (Dense Wavelength Division Multiplexing)
密集波分復用DWDM是在一根光纖上復用幾十路或更多路數的光載波信號。
1、碼分復用CDM (Code Division Multiplexing)
(1)每一個用戶可以在同樣的時間使用同樣的頻帶進行通信。
(2)各用戶使用經過特殊挑選的不同碼型,因此各用戶之間不會造成干擾。
(3)碼分復用最初用於軍事通信,現已廣泛用於民用的移動通信中,特別是在無線區域網中。
2、碼分多址CDMA (Code Division Multiple Access)。
(1)在CDMA中,每一個比特時間再劃分為m個短的間隔,稱為碼片(chip)。通常m的值是64或128。
(2)使用CDMA的每一個站被指派一個唯一的m bit碼片序列(chip sequence)。
(3)一個站如果發送比特1,則發送m bit碼片序列。如果發送比特0,則發送該碼片序列的二進制反碼。
(4)發送信息的每一個比特要轉換成m個比特的碼片,這種通信方式是擴頻通信中的直接序列擴頻DSSS。
(5)CDMA系統給每一個站分配的碼片序列必須各不相同,並且還互相正交(orthogonal)。
(6)CDMA的工作原理:現假定有一個X站要接收S站發送的數據。
(7)擴頻通信(spread spectrum)分為直接序列擴頻DSSS(Direct Sequence Spread Spectrum)和跳頻擴頻FHSS(Frequency Hopping Spread Spectrum)兩大類。
早起電話機用戶使用雙絞線電纜。長途干線採用的是頻分復用FDM的模擬傳輸方式,現在大都採用時分復用PCM的數字傳輸方式。現代電信網,在數字化的同時,光纖開始成為長途干線最主要的傳輸媒體。
1、早期的數字傳輸系統最主要的缺點:
(1)速率標准不統一。互不兼容的國際標准使國際范圍的基於光纖的高速數據傳輸就很難實現。
(2)不是同步傳輸。為了節約經費,各國的數字網主要採用准同步方式。
2、數字傳輸標准
(1)同步光纖網SONET(Synchronous Optical Network)
(2)同步數字系列SDH(Synchronous Digital Hierarchy)
(3)SDH/SONET定義了標准光信號,規定了波長為1310nm和1550nm的激光源。在物理層定義了幀結構。
(4)SDH/SONET標準的制定,使北美、日本和歐洲三種不同的數字傳輸體制在STM-1等級上獲得了統一,第一次真正實現了數字傳輸體制上的世界性標准。
互聯網的發展初期,用戶利用電話的用戶線通過數據機連接到ISP,速率最高只能達到56kbit/s。
從寬頻接入的媒體來看,寬頻接入技術可以分為有線寬頻接入和無線寬頻接入兩大類。
1、非對稱數字用戶線ADSL (Asymmetric Digital Subscriber Line)
(1)ADSL技術是用數字技術對現有的模擬電話用戶線進行改造,使它能夠承載寬頻數字業務。
(2)ADSL技術把0-4kHz低端頻譜留給傳統電話使用,把原來沒有被利用的高端頻譜留給用戶上網使用。
(3)ADSL的ITU的標準是G.992.1(或稱G.dmt,表示它使用DMT技術)。
(4)「非對稱」是指ADSL的下行(從ISP到用戶)帶寬都遠遠大於上行(從用戶到ISP)帶寬。
(5)ADSL的傳輸距離取決於數據率和用戶線的線徑(用戶線越細,信號傳輸時的衰減就越大)。
(6)ADSL所能得到的最高數據傳輸速率還與實際的用戶線上的信噪比密切相關。
2、ADSL數據機的實現方案 :離散多音調DMT(Discrete Multi-Tone)調制技術
(1)ADSL在用戶線(銅線)的兩端各安裝一個ADSL數據機。
(2)「多音調」就是「多載波」或「多子信道」的意思。
(3)DMT調制技術採用頻分復用的方法,把40kHz-1.1MHz的高端頻譜劃分為許多子信道。
(4)當ADSL啟動時,用戶線兩端的ADSL數據機就測試可用的頻率、各子信道受到的干擾情況,以及在每一個頻率上測試信號的傳輸質量。
(5)ADSL能夠選擇合適的調制方案以獲得盡可能高的數據率,但不能保證固定的數據率。
3、數字用戶線接入復用器DSLAM (DSL Access Multiplexer)
(1)數字用戶線接入復用器包括許多ADSL數據機。
(2)ADSL數據機又稱為接入端接單元ATU(Access Termination Unit)。
(3)ADSL數據機必須成對使用,因此把在電話端局記為ATU-C,用戶家中記為ATU-R。
(4)ADSL最大的好處就是可以利用現有電話網中的用戶線(銅線),而不需要重新布線。
(5)ADSL數據機有兩個插口:
(6)一個DSLAM可支持多達500-1000個用戶。
4、第二代ADSL
(1)ITU-T已頒布了G系列標准,被稱為第二代ADSL,ADSL2。
(1)第二代ADSL通過提高調制效率得到了更高的數據率。
(2)第二代ADSL採用了無縫速率自適應技術SRA(Seamless Rate Adaptation),可在運營中不中斷通信和不產生誤碼的情況下,根據線路的實時狀況,自適應地調整數據率。
(3)第二代ADSL改善了線路質量評測和故障定位功能。
5、ADSL技術的變型 :xDSL
ADSL並不適合於企業,為了滿足企業的需要,產生了ADSL技術的變型:xDSL。
(1)對稱DSL(Symmetric DSL,SDSL):把帶寬平均分配到下行和上行兩個方向,每個方向的速度分別為384kbit/s或1.5Mbit/s,距離分別為5.5km或3km。
(2)HDSL(High speed DSL):使用一對線或兩對線的對稱DSL,是用來取代T1線路的高速數字用戶線,數據速率可達768KBit/s或1.5Mbit/s,距離為2.7-3.6km。
(3)VDSL(Very high speed DSL):比ADSL更快的、用於短距離傳送(300-1800m),即甚高速數字用戶線,是ADSL的快速版本。
1、光纖同軸混合網HFC (Hybrid Fiber Coax)
(1)光纖同軸混合網HFC是在有線電視網的基礎上改造開發的一種居民寬頻接入網。
(2)光纖同軸混合網HFC可傳送電視節目,能提供電話、數據和其他寬頻交互型業務。
(3)有線電視網最早是樹形拓撲結構的同軸電纜網路,採用模擬技術的頻分復用進行單向廣播傳輸。
2、光纖同軸混合網HFC的主要特點:
(1)HFC網把原有線電視網中的同軸電纜主幹部分改換為光纖,光纖從頭端連接到光纖結點(fiber node)。
(2)在光纖結點光信號被轉換為電信號,然後通過同軸電纜傳送到每個用戶家庭。
(3)HFC網具有雙向傳輸功能,而且擴展了傳輸頻帶。
(4)連接到一個光纖結點的典型用戶數是500左右,但不超過2000。
3、電纜數據機 (cable modem)
(1)模擬電視機接收數字電視信號需要把機頂盒(set-top box)的設備連接在同軸電纜和電視機之間。
(2)電纜數據機:用於用戶接入互聯網,以及在上行信道中傳送交互數字電視所需的一些信息。
(3)電纜數據機可以做成一個單獨的設備,也可以做成內置式的,安裝在電視機的機頂盒裡面。
(4)電纜數據機不需要成對使用,而只需安裝在用戶端。
(5)電纜數據機必須解決共享信道中可能出現的沖突問題,比ADSL數據機復雜得多。
信號在陸地上長距離的傳輸,已經基本實現了光纖化。遠距離的傳輸媒體使用光纜。只是到了臨近用戶家庭的地方,才轉為銅纜(電話的用戶線和同軸電纜)。
1、多種寬頻光纖接入方式FTTx
(1)多種寬頻光纖接入方式FTTx,x可代表不同的光纖接入地點,即光電轉換的地方。
(2)光纖到戶FTTH(Fiber To The Home):把光纖一直鋪設到用戶家庭,在光纖進入用戶後,把光信號轉換為電信號,可以使用戶獲得最高的上網速率。
(3)光纖到路邊FTTC(C表示Curb)
(4)光纖到小區FTTZ(Z表示Zone)
(5)光纖到大樓FTTB(B表示Building)
(6)光纖到樓層FTTF(F表示Floor)
(7)光纖到辦公室FTTO(O表示Office)
(8)光纖到桌面FTTD(D表示Desk)
2、無源光網路PON (Passive Optical Network)
(1)光配線網ODN(Optical Distribution Network):在光纖干線和廣大用戶之間,鋪設的轉換裝置,使得數十個家庭用戶能夠共享一根光纖干線。
(2)無源光網路PON(Passive Optical Network),即無源的光配線網。
(3) 無源:表明在光配線網中無須配備電源,因此基本上不用維護,其長期運營成本和管理成本都很低。
(4)光配線網採用波分復用,上行和下行分別使用不同的波長。
(5)光線路終端OLT( Optical Line Terminal)是連接到光纖干線的終端設備。
(6)無源光網路PON下行數據傳輸
(7)無源光網路PON上行數據傳輸
當ONU發送上行數據時,先把電信號轉換為光信號,光分路器把各ONU發來的上行數據匯總後,以TDMA方式發往OLT,而發送時間和長度都由OLT集中控制,以便有序地共享光纖主幹。
(8)從ONU到用戶的個人電腦一般使用乙太網連接,使用5類線作為傳輸媒體。
(9)從總的趨勢來看,光網路單元ONU越來越靠近用戶的家庭,即「光進銅退」。
3、無源光網路PON的種類
(1)乙太網無源光網路EPON(Ethernet PON)
(2)吉比特無源光網路GPON(Gigabit PON)
㈡ 計算機網路——2.物理層
確定與傳輸媒體的 介面 的一些特性,解決在各種傳輸媒體上傳輸 比特流 的問題
1.機械特性 :介面的形狀尺寸大小。
2.電氣特性 :在介面電纜上的各條線的電壓范圍。
3.功能特性 :在某一條線上出現的某個電平電壓表示的意義。
4.過程特性 :對於不同功能的各種可能事件的出現順序。
傳輸媒體主要可以分為 導引型傳輸媒體 和 非導引型傳輸媒體 :
導引型傳輸媒體 :信號沿著固體媒體(銅線或光纖,雙絞線)進行傳輸, 有線傳輸 。
非導引型傳輸媒體 :信號在自由空間傳輸,常為 無線傳輸 。
數據通信系統:包括 源系統 (發送方), 傳輸系統 (傳輸網路), 目的系統 (接收方)。
一般來說源系統發出的信號(數字比特流)不適合直接在傳輸系統上直接傳輸,需要轉化(模擬信號)。
調制 :數字比特流-模擬信號
解調 :模擬信號-數字比特流
數據 ——運送消息的實體。
信號 ——數據的電氣化或電磁化的表現。
模擬信號 ——代表消息的參數的取值是 連續 的。
數字信號 ——代表消息的參數的取值是 離散 的。
碼元 ——在使用時間域代表不同離散值的基本波形。
信道 :表示向某一個方向傳送信息的媒體。
單向通信(單工通信) :只有一個方向的通信,不能反方向。
雙向交替通信(半雙工通信) :能兩個方向通信,但是不能同時。
雙向同時通信(全雙工通信) :能同時在兩個方向進行通信。
基帶信號 :來自信源的信號(源系統發送的比特流)。
基帶調制 :對基帶信號的波形進行變換,使之適應信道。調制後的信號仍是基帶信號。基帶調制的過程叫做 編碼 。
帶通調制 :使用載波進行調制,把基帶信號的頻率調高,並轉換為模擬信號。調制後的信號是 帶通信號 。
1.歸零制 :兩個相鄰信號中間信號記錄電流要恢復到 零電平 。 正脈沖表示1,負脈沖表示0 。在歸零制中,相鄰兩個信號之間這段磁層未被磁化,因此在寫入信息之前必須去磁。
2.不歸零制 : 正電平代表1,負電平代表0 ,不用恢復到零電平。難以分辨開始和結束,連續記錄0或者1時必須要有時鍾同步,容易出現直流分量出錯。
3.曼徹斯特編碼 :在每一位中間都有一個跳變。 低->高表示0,高->低表示1 。
4.差分曼徹斯特編碼 :在每一位的中心處始終都有跳變。位開始邊界有跳變代表0,沒有跳變代表1。 位中間的跳變代表時鍾,位前跳變代表數據 。
調幅( AM ):載波的 振幅 隨著基帶數字信號而變化。
調頻( FM ):載波的 頻率 隨著基帶數字信號而變化。
調相( PM ):載波的 初始相位 隨著基帶數字信號而變化。
失真 :發送方的數據和接收方的數據並不完全一樣。
限制碼元在信道上的傳輸速率的因素:信道能夠通過的 頻率范圍 ; 信噪比 。
碼間串擾 :由於系統特性,導致前後碼元的波形畸變。
理想低通信號的最高碼元傳輸速率為 2W ,單位是波特,W是理想低通信道的 帶寬 ,理想帶通特性信道的最高碼元傳輸速率為W。
信噪比 :信號的平均功率與雜訊的平均功率的比值,單位是 dB , 值=10log10(S/N) 。
信噪比對信道的 極限 信息傳輸速率的影響:速率 C=Wlog2(1+S/N)——香農公式 ,單位為 bit/s 。
信噪比越大,極限傳輸速率越高。實際速率比極限速率低不少。還可以用編碼的方式來提高速率(讓一個碼元攜帶更多的比特量)。
所謂 復用 就是一種將若干個彼此獨立的信號合並成一個可以在 同一信道 上同時傳輸的 復合信號 的方法。
比如,傳輸的語音信號的頻譜一般在300~3400Hz內,為了使若干個這種信號能在 同一信道(相當於共享信道,能夠降低成本,提高利用率) 上傳輸,可以把它們的頻譜調制到不同的頻段,合並在一起而不致相互影響,並能在接收端彼此分離開來( 分用 )。
信道復用技術就是將一個物理信道按照一定的機制劃分多個互不幹擾互不影響的邏輯信道。信道復用技術可分為以下幾種: 頻分復用,時分復用和統計時分復用,波分復用,碼分復用 。
1.頻分復用技術FDM(也叫做頻分多路復用技術): 條件是傳送的信號的帶寬是有限的,而 信道的帶寬要遠遠大於信號的帶寬 ,然後採用 不同頻率 進行調制的方法,是各個信號在信道上錯開。頻分復用的各路信號是在 時間 上重疊而在 頻譜 上不重疊的信號。將整個帶寬分為多份,用戶分配一定的帶寬後通信過程 自始至終都佔用 這個頻帶。另外,為保證各個子信道傳輸不受干擾,可以設立 隔離帶 。
2.時分復用技術TDM:採用同一物理連接的不同時段來傳輸不同的信號。 也就是在信道帶寬上劃分出幾個子信道後,A用戶在某一段時間使用子信道1,用完之後將子信道1釋放讓給用戶B使用,以此類推。將整個信道傳輸時間劃分成若干個時間片(時隙),這些時間片叫做 時分復用幀 。每一個時分用戶在每一個TDM幀中佔用 固定時序 的時隙。
4.波分復用技術WDM: 將兩種或多種不同波長的光載波信號在發送端經過 復用器匯合 在一起,並耦合到光線路的 同一根光纖 中進行傳輸,在接收端經過 分波器 將各種波長的光載波分離進行 恢復 。整個過程類似於頻分復用技術的共享信道。波分復用其實就是光的頻分復用。
1.比特時間,碼片
1比特時間就是發送 1比特 需要的時間,如數據率是10Mb/s,則100比特時間就等於10微秒。
每一個比特時間劃分為m個短的間隔,稱為碼片。每個站被指派一個唯一的m bit 的碼片序列(例如S站的8 bit 碼片序列是00011011)。
如果發送 比特1 ,則發送自己的m bit 碼片序列。如果發送 比特0 ,則發送該碼片序列的二進制反碼。
S站的碼片序列:(-1,-1,-1,+1,+1,-1,+1,+1) -1代表0,+1代表1
用戶發送的信號先受 基帶數字信號 的調試,又受 地址碼 的調試。就比如數據發送後受到基帶數字信號的調試之後變為10,然後又受到地址碼的調試後1就變為了00011011(上面的S站碼片序列),0就變成了11100100。
由於每個比特要轉換成m個比特的碼片序列,因此原本S站的數據率b bit/s要提高到mb bit/s,同時S站所佔用的頻帶寬度也提高到原本數值的m倍。這種方式是擴頻通信中的一種。
擴頻通信通常有兩大類:直接序列擴頻DSSS(上述方式);跳頻擴頻FHSS。
2.碼分多址(CDMA)
CDMA的重要特點 :每個站分配的碼片序列不僅必須 各不相同 ,並且還必須 相互正交 。在實用系統中使用的是 偽隨機碼序列 。
碼片的互相 正交 的關系:令向量S表示站S的碼片向量,令T表示其他任何站的碼片向量。兩個不同站的碼片序列正交,就是向量S和T的 規格化內積 等於0。
即S T=(S1 T1+S2 T2+......Sm Tm)/m(其實就相當於 兩個向量垂直 ,/m對結果其實也沒多大關系)
推論 : 1. 一個碼片向量和另一碼片反碼的向量的規格化內積值為0(如果ST=0,那麼ST'也=0)
2. 任何一個碼片向量和該碼片向量自己的規格化內積都是1,即S S=1
3. 一個碼片向量和該碼片向量的規格化內積值是-1,即S S'=-1
CDMA的工作原理:
用一個列子來說明,假設S站的碼片序列為(-1,-1,-1,+1,+1,-1,+1,+1),S站的擴頻信號為Sx,即若數據比特=1那麼S站發送的是碼片序列本身Sx=S,若數據比特=0那麼S站發送的是碼片序列的反碼Sx=S』。T站的碼片序列為(-1,-1,+1,-1,+1,+1,+1,-1),T站的擴頻信號為Tx。因為所有的站都使用相同的頻率,因此每一個站都能夠收到所有的站發送的擴頻信號。所有的站收到的都是疊加的信號 Sx+Tx 。
當接收站打算收S站發送的信號時,就用S站的碼片序列與收到的信號求規格化內積,即S (Sx+Tx)=S Sx+S Tx。前者等於+1或0,後者一定等於0,具體看下面(參考上面的 CDMA的工作原理 ):
當數據比特=1時,Sx=S,那麼S Sx=S S=1;同理 ,當數據比特=0時,Sx=S』,那麼S Sx=S S』=0
當數據比特=1時,Tx=S,那麼S Tx=S T=0(參考上面 碼片序列的正交關系 );同理 ,當數據比特=0時,Sx=S』,那麼S Tx=S*T』=0
㈢ 計算機網路(2)| 物理層
首先要知道的是,物理層考慮的是怎樣才能在連接各種計算機的傳輸媒體上傳輸數據比特流,而不是指具體的傳輸媒體。因為現在的計算機網路中的硬體設備和傳輸媒體的種類非常的多。而物理層的作用就是要盡可能地屏蔽掉這些不同的差異,從而使得物理層上面的數據鏈路層感覺不到這些差異,這樣就可以讓數據鏈路層「安心」的完成自己的本職工作而不必考慮網路的具體傳輸媒體和通信手段是什麼。
物理層的主要任務描述為確定與傳輸媒體介面有關的一些特性,即以下幾個方面:
(1) 機械特性 :指明介面所用的接線器的形狀與尺寸,引腳數目和排列,固定和鎖定裝置等等
(2) 電氣特性 :指明在介面電纜的各條線上出現的電壓的范圍。
(3) 功能特性 :指明某條線上出現的某一電平的電壓表示何種意義。
(4) 過程特性 :指明對於不同功能的各種可能事件的出現順序。
因為物理連接的方式有很多,所以具體的物理協議的種類也有很多,從而傳輸媒體的種類也是非常之多,所以在介紹物理層時,我們應該先對「介面與通信」有一定的了解。
一個通信系統可以劃分為三大部分,即 源系統 , 傳輸系統 和 目的系統 。
首先介紹源系統,源系統一般包括以下兩個部分:
源點: 源點設備產生要傳輸的數據,例如從計算機的鍵盤輸入漢字,計算機產生輸出的數字比特流。源點又稱為 源站 或者 信源 。
發送器: 通常源點生成的數字比特流要通過發送器編碼後才能夠在傳輸系統中進行傳輸。最典型的發送器就是調制器,現在的很多計算器使用的都是內置的解調器(包括調制器和解調器)。
目的系統一般也包括以下兩個部分:
接收器: 接收傳輸系統傳送過來的信號,並把它轉換為能夠被目的設備處理的信息。典型的接收器就是解調器,
終點: 終點設備從接收器獲取傳送來的數字比特流,然後把信息輸出。終點又稱為 目的站 或者 信宿 。
在源系統和目的系統之間的傳輸系統可以是簡單的傳輸線,也可以是連接在源系統和目的系統之間的復雜網路系統。
然後我們要來辨別一下下面的常用術語:
消息: 指語音,文字,圖像等等。
數據: 指使用特定方式表示的信息,通常是有意義的符號序列。這種信息的表示可用計算機或其他機器處理或者產生。
信號: 指數據的電氣或電磁的表現。
根據信號中代表消息的參數的取值方式不同,信號可以分為以下兩大類:
(1)模擬信號: 代表消息的參數的取值是連續的。
(2)數字信號: 代表消息的參數的取值是離散的。
信道 是用來表示向某一個方向傳送消息的媒體,一條通信電路往往包含一條發送信道和一條接收信道。
從通信的雙方信息交互的方式來看,可以有以下三種基本方式:
(1)單向通信: 又稱為單工通信,即只能有一個方向的通信而沒有反方向的交互。無線電廣播或有線電廣播就是這種類型。
(2)雙向交替通信: 又稱為半雙工通信,即通信雙方都可以發送消息,但不能雙方同時發送(也不能同時接收)。這種通信方式是一方發送另一方接收。
(3)雙向同時通信: 也稱為全雙工通信,即通信雙方都可以同時發送和接收消息。
來自信源的信號稱為 基帶信號 。像計算機輸出的代表各種文字或文件的數據信號都屬於基帶信號。由於基帶信號往往包含有較多的低頻成分和直流成分,但是許多信道並不能傳輸這種低頻分量或是直流分量。所以為了解決這一問題,就必須對基帶信號進行 調制 。
調制主要是分為兩大類。一類是對基帶信號的波形進行變換,使它能夠與信道的特徵相適應,但是變換後的信號仍然是基帶信號,這一類的調制稱為 基帶調制 ,這一過程也被稱為編碼。還有一類調制則是需要使用載波進行調制,將基帶信號的頻率范圍搬移到較高的頻段,並轉換為模擬信號,這樣就能更好的在模擬信道中傳輸,經過載波調制的信號稱為帶通信號,而使用載波的調制稱為 帶通調制 。
不歸零制: 正電平代表1,負電平代表0。
歸零制: 正脈沖代表1,負脈沖代表0。
曼徹斯特編碼: 位周期中心的向上跳變代表0,位周期中心的向下跳變代表1,但是也可以反過來定義。
差分曼徹斯特編碼: 在每一位的中心處始終有跳變。位開始邊界有跳變代表0,而位開始邊界沒有跳變代表1。
調幅(AM): 即載波的振幅隨著基帶數字信號而變化。例如,0或1分別對應於無載波或有載波的輸出。
調頻(FM): 即載波的頻率隨著基帶數字信號而變化。例如,0或1分別對應於頻率的 f1 或 f2 。
調相(PM): 即載波的初始相位隨著基帶數字信號而變化。例如,0或1分別對應於相位0度或180度。
當然,有時為了達到更高的信息傳輸速率,也必須採用技術上更為復雜但傳輸效果更好的混合調制方法,例如正交振幅調制等等。
限制信息在信道上的傳輸速率的因素主要是以下兩個。
(1)信道能夠通過的范圍頻率
具體信道所能通過的頻率范圍總是有限的。信號中的許多高頻分量往往不能通過信道,就是因為它的頻率超過了信道所能承受的最大頻率,因此就會造成失真現象。
(2)信噪比
雜訊存在於所有的電子設備和通信信道中。由於雜訊是隨機產生的,因此它的瞬時值有時會很大,所以雜訊會使接收端對碼元的判決產生錯誤。但是雜訊的影響是相對的,當信號較強時,雜訊的影響就相對較小。所以我們就要了解到 信噪比 的概念。信噪比就是指信號的平均功率和雜訊的平均功率之比,單位是分貝:
W是帶寬,S是信道內所傳信號的平均功率,N為信道內高斯雜訊的功率。香農公式指出:信道的帶寬或者信噪比越大,則信息的極限傳輸速率就越高。
傳輸媒體也稱傳輸介質或傳輸媒介。傳輸媒體大致可以分為兩大類: 導引型傳輸媒體和非導引型傳輸媒體 。下面來具體介紹。
雙絞線就是指將兩根互相絕緣的銅導線並排放在一起,然後用規則的方法絞合起來。絞合可以減少對相鄰導線的電磁干擾。電話系統是使用雙絞線最多的地方,從用戶電話機到交換機的雙絞線稱為 用戶線 。
模擬傳輸和數字傳輸都會用到雙絞線,其通信距離一般是為幾到幾十公里。
為了提高雙絞線的對抗電磁干擾能力,可以在雙絞線外面再加一層用金屬絲編織而成的屏蔽層,這就是屏蔽雙絞線。,簡稱為 STP 。
同軸電纜內由導體銅質芯線、絕緣層、網狀編織的外導體屏蔽層以及保護塑料外層組成。由於其特有的構造,所以同軸電纜有著良好的抗干擾特性,被廣泛用於傳輸較高速率的數據。目前同軸電纜主要用在有線電視網的信號傳輸當中。它的帶寬是取決於它的質量的。
光纖是光纜通信的傳輸媒體,由於可見光的頻率非常之高,因此一個光纖通信系統的傳輸帶寬遠遠大於目前其他各種傳輸媒體的帶寬。
當光纖從高折射率的傳輸媒體到低折射率的傳輸媒體時,其折射角就會大於入射角。因此如果當入射角足夠大時,就會產生全反射,光也就能沿著光纖傳輸下去。
正是由於上面的原理,所以只要將入射角的角度把握好,就能夠產生全反射來進行傳輸,這也就是光纖傳輸的原理。
光纖不僅具有通信容量大的特點,還有其他的一些特點:
1.傳輸損耗小。
2.抗雷電和電磁干擾性能好。
3.無串音干擾,保密性很高。
4.體積小,重量輕。
我們將自由空間稱為非導引型傳輸媒體,簡單來說就是指無線傳輸。無線傳輸可以使用的頻段很廣,人們已經利用了好幾個波段來進行通信,但是紫外線以及更高的波段現在暫時還是不能用於通信。
短波通信(高頻通信)主要是靠電離層的反射來進行傳輸。但是短波信道的通信質量較差,傳輸速率較低。
無線電微波通信在數據通信中佔有重要的地位。微波在空間中主要是以直線傳播。傳統的微波通信主要有兩種方式,即 地面微波接力通信和衛星通信 。
要使用某一段無線電頻譜進行通信,通常必須得到本國政府有關無線電頻譜管理機構的許可證。但是也有一些無線電頻段是可以自由使用的。例如ISM,各國的ISM標准可能略有差異。
復用是通信中的基本概念,它是指允許用戶使用一個共享信道來進行通信,達到降低成本,提高利用率的效果。
先來介紹 頻分復用FDM ,頻分復用是指將帶寬分為多份,用戶在分到一定的頻帶後,在通信過程中自始至終都佔用著這一條頻帶,也就是說頻分復用的用戶是在同樣的時間佔用不同的帶寬資源。
然後是 時分復用TDM ,它是指將時間劃分為一段段等長的時分復用幀(TDM幀)。每一個時分復用的用戶在每一個TDM幀中佔用固定序號的時隙。而每一個用戶所佔用的時隙是周期性地出現(其周期就是TDM幀的長度)。時分復用的所有用戶是在不同的時間佔用同樣的頻帶寬度。
最後是 統計時分復用STDM ,它是有一點類似於TDM的,只是STDM幀不是固定分配時隙,而是按需動態的分配時隙。因此統計時分復用可以提高線路的利用率。
波分復用WDM 就是光的頻分復用,也就是使用一根光纖來同時傳輸多個光載波信號。
碼分復用CDM 是另一種共享信道的方法。而人們更常使用碼分多址CDMA來稱呼它。這種復用方式的具體做法是可以讓每一個用戶在同樣的時間使用同樣的頻帶進行通信,由於各個用戶使用經過特殊的不同碼型,因此各用戶之間不會造成干擾。而且通過這種方式發送的信號具有很強的抗干擾能力,其頻譜類似於白雜訊,不容易被他人發現。
碼分復用的工作原理是將每一個比特時間再劃分為m個短的間隔,稱之為碼片。一般情況下m的值是64或128。
使用CDMA的每一個站被指派一個唯一的m bit碼片序列。一個站如果要發送比特1,則發送它自己的m bit碼片序列。如果要發送比特0,則發送該碼片序列的二進制反碼。舉例來說:
有時為了方便起見,我們會將碼片中的0寫為-1,1寫為+1。
現假定S站要發送信息的數據率為b bits/s,由於每一個比特要轉換成m個比特的碼片,因此S站實際上發送的數據率提高到mb bit/s,同時S站所佔用的頻帶寬度也提高到原來數值的m倍。這種方式就是 擴頻 的一種。擴頻通信通常有兩大類,一種是直接序列擴頻DSSS,另一種是跳頻擴頻FHSS。
CDMA系統的重要特點是每個站分配的碼片序列不僅必須各不相同,並且還必須互相正交,並且在實用的系統中是使用偽隨機碼序列。
在早期的電話網當中,從電話局到用戶電話機的用戶線採用最廉價的雙絞線電纜,而長途干線採用的是頻分復用FDM的模擬傳輸方式。由於數字通信與模擬通信相比,無論數傳輸質量上還是從經濟上都有明顯的優勢,所以現在長途干線大都採用時分復用PCM的數字傳輸方式。
但是早期的數字傳輸系統有著許多的缺點,其中最主要的是以下兩個:
(1)速率標准不統一: 由於歷史的原因,多路復用的速率體系有兩個互不兼容的國際標准。所以國際范圍的基於光纖高速數據傳輸就很難實現。
(2)不是同步傳輸: 在過去各國的數字網主要是採用准同步的方式,所以當數據傳輸速率很高時,收發雙方的時鍾同步就成為很大的問題。
所以為了解決這些問題,美國推出了一個數字傳輸標准,叫做同步光纖網SONET。整個的同步網路的各級時鍾都來自一個非常精確的主時鍾。同時,SONET為光纖傳輸系統定義了同步傳輸的線路速率等級結構:
寬頻的接入技術主要包括有線寬頻接入和無線寬頻接入。在這里先來介紹有線寬頻接入。
ADSL技術的全稱是非對稱數字用戶線技術,具體指的是用數字技術對現有的模擬電話用戶線進行改造,使它能夠承載寬頻數字業務。具體來說ADSL技術就是把0-4 kHZ這一段低端頻譜留給傳統電話使用,而把原來沒有被利用的高端頻譜留給用戶上網使用。
ADSL的 傳輸距離 取決於數據率和用戶線的線徑(用戶線越細,信號傳輸時的衰減就越大)。而ADSL所能得到的最高數據傳輸速率還與實際的用戶線上的信噪比密切相關。
ADSL在 數據率 方面由於用戶在線的具體條件相差較大,因此ADSL採用自適應調制技術使用戶線能夠傳送盡可能高的數據率。當ADSL啟動時,用戶線兩端的ADSL數據機就測試可用的頻率、各子信道受到干擾的情況以及在每一個頻率上測試信號的傳輸質量。但是ADSL不能保證固定的數據率,所以對於用戶線很差的甚至無法開通ADSL。
基於ADSL的接入網由以下三大部分組成:數字用戶線接入復用器,用戶線和用戶家中的一些設施。
ADSL技術也在發展,現在已經有了更高速率的ADSL標准,稱之為 第二代ADSL ,第二代ADSL改進的地方主要是:
1. 通過提高調制效率得到了更高的數據率。
2. 採用了無縫速率自適應技術SRA,可在運營中不中斷通信和不產生誤碼的情況下,自適應的調整數據率。
3. 改善了線路質量評測和故障定位功能。
HFC網是目前覆蓋面很廣的有線電視網CATV的基礎上開發的一種居民寬頻接入網,除了可以傳送CATV外,還能提供電話、數據和其他寬頻交互型業務。
為了提高傳輸的質量,HFC網將原有線電視網中的同軸電纜主幹部分改換為光纖,而光纖從頭端連接到光纖結點,在光纖結點光信號被轉換為電信號,最後信號被送到每一個用戶的家庭。
FTTx是一種實現寬頻居民接入網的方案,代表多種寬頻接入的方式。這里的x代表不同的光纖接入地點,例如FTTH光纖到戶,FTTB光纖到大樓等等。
現在的長距離信號傳輸大都是採用光纖傳輸,只有在到了臨近用戶家中時,才將光纖轉換為銅纜。但是一個用戶是遠用不了一根光纖的通信容量,因此我們在光纖干線和用戶之間安裝一種轉換裝置即 光配線網 ,使得許多用戶能夠共享一根光纖的通信容量。由於光配線網無需使用電源,因此我們將其稱為無源光網路。
㈣ 計算機網路分為幾層
第一層:物理層
解決兩個硬體之間怎麼通信的問題,常見的物理媒介有光纖、電纜、中繼器等。它主要定義物理設備標准,如網線的介面類型、光纖的介面類型、各種傳輸介質的傳輸速消手率等。
第二層:數據鏈路層
數據鏈路層從網路層接收數據包,數據包
包含發送方和接收方的IP地址。數據鏈路層執行兩個基本功能。它允許上層使用成幀之類的各種技術來訪問介質,控制如何放置和接收來自介質的數據。
第三層:網路層
傳輸層將數據段傳遞到網路層。網路層用於將接收到的數據段從一漏敬台計算機傳輸到位於不同網路中的另一台計算機。網路層的數據單元稱為數據包,網路層的功能是邏輯定址、路由和路徑確定。
第四層:傳輸層
OSI下3層的主要任務是數據通信,上3層的任務是數據處理,傳輸層是第四層,因此該層是通信子網和資源子網的介面和橋梁,起到承上啟下的作用。
第五層:會話層
是用戶應用程序和網路之間的介面,主要任務是組織和協調兩個會話進程之間的通信,並對數據交換進行管理。
第六層:表示層
表示層指從應用層接收數據,這些數據是以字元和數字的形式出現的,表示層將這些數據轉換成為機器返橋慎可以理解的二進制格式,也就是封裝數據和格式化數據,例如將ASCII碼轉化為別的編碼,這個功能稱為「翻譯」。
第七層:應用層
是OSI參考模型的最高層,它使計算機用戶以及各種應用程序和網路之間的介面,是網路應用程序所使用的,例如HTTPS協議、HTTP協議,應用層是通過協議為網路提供服務,執行用戶的活動。
㈤ 計算機網路設計主要學什麼
本教程操作環境:windows7系統、Dell G3電腦。
計算機網路技術是培養具備從事程序設計、Web的軟體開發、計算機網路的組建、網路設備配置、網路管理和安全維護能力的網路高技術應用型人才。
計算機網路技術到底學的是什麼
網路技術工程師指的是能夠從事計算機信息系統的設計、建設、運行和維護工作。熟悉主流操作系統,比如windows、linux、unix,掌握常用軟體的安裝調試,TCP/IP知識,掌握常見route的配置和調試,掌握綜合布線和網路集成的有關知識,熟悉設備的激攔選型和網路拓撲的設計,做到組網科學、合理、安全、性能價格比最高,熟悉伺服器的安裝調試,磁碟陣列,能夠及時學習和掌握主流的網路技術。
「計算機網路技術」專業主要學習軟體和網路。
1、從網路來說
首先會學習《計算機基礎知識》,讓你學會用電腦;
然後的課程就有,《綜合布線技術》《通信設備安裝與防護 》這個是通信設備的正確安裝是網路工程的基礎。還有《網路基礎 》《OSI參考模型》《TCP/IP》《乙太網技術》這個就是區域網,《廣域網技術 》《交換機及基本配置》《路由器及基本配置》《網路架構》《大型網路組網方案》《防火牆技術》等,
還要對linux系統進行學習
2、從軟體來說
大一的時候學習C語言,java,然後學資料庫,學HTML,然後學習jsp,javaWEB開發,一直學到了struct 2,對於軟體這一塊,都是一路學下來的。網路原理就是對那七大層的學習/從物理層到應用層,學網路互連技術,就是對交換機和路由器的配置。
計算機網路技術專業介紹
1.核心能力
計算機網路系統構建能力、網路操作系統管理能力。
2.就業方向
計算機系統維護、網路管理、程序設計、網站建設、網路設備調試、網路構架工程師、網路集成工程師、網路安全工程師、數據恢復工程師、安卓開發工程師、網路運維工程師、網路安全分析師等崗位。
1)網路工程
能夠根據企業需求為企業完成網路設計、組建,完成網路設備的選購、安裝和配置,完成伺服器的選購和配置等。掌握網路設計、組建的方法;掌握網路設備的選購、安裝和配置方法;掌握伺服器的配置和選購方法。
包括計算機網路產品的銷售、安裝、維護與用戶培訓工作。熟練掌握各種網路設備的性能特徵;掌握市場營銷的策略。
能夠對企業網路進行安全性分析和設計,並能熟練的解決網路安全事件。掌握企業網路安全性分析方法,掌握常見網路安全事件解決方法。
1)網站建設管理
管理各辯鉛凱種網站的正常工作,包括網頁的內容更新,網站的形象策劃,營銷,以及網站虛擬空間的管理和網站後台伺服器資料庫的管攜喚理。從事該崗位工作需要掌握WEB伺服器的運行管理,資料庫伺服器的運行管理,熟悉網頁製作的相關知識,掌握一定網路安全知識。此外,還要有較快的打字速度,較強的溝通能力,並應掌握一定的營銷策略。
1)網路管理
管理各種企業、事業單位的網路的正常運行,出現各種網路故障能及時診斷及恢復,能支持企業、事業單位網路的正常工作。
該崗位需要有較強的動手能力,掌握各種常用的組網技術,掌握網路系統的管理技能,熟悉常見的網路設備,有一定網路安全知識。另外,由於內地企業網路通常還包含WEB站點,因此,要懂得一些網頁設計知識。
相關推薦: 編程入門