導航:首頁 > 網路連接 > 計算機網路課堂作業三

計算機網路課堂作業三

發布時間:2023-08-12 18:56:55

『壹』 計算機網路(三)——網路層

網路層的 目的 是實現在任意結點間進行數據報傳輸,它的目的與鏈路層、物理層不是一樣的嗎?但是通過它數據可以在更大的網路中傳輸。

為了能使數據更好地在更大的網路中傳輸,網路層主要實現三個功能: 異構網路互聯 路由與轉發 擁塞控制

我們知道,在物理層、鏈路層,可以使用不同的傳輸介質和拓撲結構將幾台、十幾台主機連接在一起形成一個小型的區域網,把這些組成結構不完全相同的區域網稱為異構網,因此將它們連接擴大成更大的網路,需要一個類似轉接頭的設備——路由器,路由器不僅僅可以連接異構網,還能隔離沖突域和廣播域,依照IP地址轉發。

下圖對集線器、網橋、交換機和路由器能否隔離沖突域和廣播域進行比較:

路由器作為連接多個網路的結點,不僅需要完成對數據的分組轉發,還要選擇傳輸路徑,因此路由器主要由 路由選擇 分組轉發 組成。

網路層最重要的功能是 路由與轉發 功能。路由也就是選擇一條合適的路,轉發則是在這條路上遵守協議。這有點像從某個多個國家的交界城市自駕,選其中一條路,那麼就遵守這個國家的交通協議。

數據通過一個又一個路由器到達目的地址,路由器怎麼知道數據應該從哪個埠出發才能到達目的地呢?這就需要構造路由表。
路由表有兩種構造方式: 靜態 動態

一個個小網路可以構成一個區域,足夠多的區域互連成一個網路,多個網路又形成巨大的互聯網。要想讓數據高效在網路中傳輸,採用「分而治之」的理念。
將互聯網分為許多較小的自治系統,系統有權決定自己內部採用什麼路由協議,這便是層次路由。通過層次路由便可以採用靈活的協議傳輸數據。數據在自治系統內傳輸採用 內部網關協議 而自治系統之間則採用 外部網關協議

內部網關協議有兩種協議: 路由信息協議(RIP) 開放最短路徑優先協議(OSPF)

外部網關協議則是邊界網關協議(BGP)。內部網關協議服務某個自治系統,范圍較小,所以盡可能有效地從源站送到目的站,也就是找到一條最佳路徑。而外部網關協議需要面對更大的網路范圍和網路環境,因此更關注的找到比較好的路徑,也就是不能兜圈子。

BGP工作原理:

將三種路由協議進行比較:

構建大規模、異構網路的互聯網除了硬體的支持外,還需要建立協議以實現數據報傳輸服務——IP協議。
目前IP協議有兩個版本:IPv4和IPv6。

現在主流的IP協議版本還是IPv4。

IP數據報主要由首部和數據部分組成,由TCP報文段封裝到數據部分,再在前端加上一些描述信息的首部,其格式如下圖:

IP協議使用分組轉發,當報文過大時需要分片。分片的思路如下:

如果把IP數據報看作是信,那麼首部中的源地址與目的地址則分別是發信地址和郵件地址。為了方便路由計算這些地址,並且使IP地址足夠使用,因此將IP地址進行分類。

IP地址的格式 : {<網路號>,<主機號>},網路號標志主機所連接的網路,主機號標志該主機,每個IP地址都是唯一的。

IP地址分類 如下:

通過分類,可以計算每個網路中最大的主機數:

網路地址轉換(NAT)是一種轉換機制,將專用網路地址轉換為公用地址,目的是為了對外隱藏內部管理的IP地址,這樣不僅可以保證網路安全,還可以解決IP地址不足問題。
當路由器接收到的目的地址是私有地址則一律不進行轉發,而如果是公用地址,則是用NAT轉換表將源IP及埠號映射成全球IP號,然後從WAN埠發送到網際網路上。

IP地址有A、B、C類網路號,如果把A類網路號分給一個廣播域,那麼這個廣播域可以接入16,777,212台主機,然而一個廣播域不可能融入這么多台主機,因為這樣會導致廣播域過飽和而癱瘓,而只給其分配一定數量的網路號,則會浪費大量的IP地址。因此在IP地址中增加一個「子網號欄位」,將IP地址劃分為三級,即IP地址={<網路號>,<子網號>,<主機號>},也就是從主機號中借用幾個比特號作為子網號,這個子網號是對內劃分的,對外仍舊表現為二級IP地址。

主機或路由器如何判斷一個網路是否進行子網劃分了呢?——利用子網掩碼。

CIDR是 無分類 域間路由器選擇,目的是消除A、B、C類網路劃分,這樣可以大幅度提高IP地址空間利用率。相比較子網掩碼劃分,它更加靈活。

上圖中,如果R1收到前綴為206.1的IP地址,它只需要轉發給R2,具體發往網路1還是網路2,則由R2計算得出。

通過IP地址,可以將數據從某個網路傳輸到目的網路,但是把信息發送給哪台主機呢?由於路由器的隔離,IP網路沒辦法使用廣播方式查找MAC地址,只有通過鏈路層的MAC地址以廣播方式定址。
因此,IP協議還包括三個協議—— ARP、DHCP和ICMP ,共同配合完成數據轉發。

IPv6是解決IP地址耗盡的根本手段。它與IPv4的報文形式差別如下圖:

IPv6與IPv4地址通信示意圖:

在通信過程中,如果分組過量而導致網路性能下降,會產生擁塞。

擁塞的控制方式:

『貳』 計算機網路技術題目3

1\TCP/IP協議族中包括上百個互為關聯的協議,不同功能的協議分布在不同的協議層, 3個常用協議如下:
1、Telnet(Remote Login):提供遠程登錄功能,一台計算機用戶可以登錄到遠程的另一台計算機上,如同在遠程主機上直接操作一樣。
2、FTP(File Transfer Protocol):遠程文件傳輸協議,允許用戶將遠程主機上的文件拷貝到自己的計算機上。
3、SMTP(Simple Mail transfer Protocol):簡單郵政傳輸協議,用於傳輸電子郵件。
協議(protocol)是指兩個或兩個以上實體為了開展某項活動,經過協商後達成的一致意見。協議總是指某一層的協議。准確地說,它是在同等層之間的實體通信時,有關通信規則和約定的集合就是該層協議,例如物理層協議、傳輸層協議、應用層協議。
面向連接的服務和無連接服務

網路提供的服務分兩種: 面向連接的服務和無連接的服務.

對於無連接的服務(郵寄), 發送信息的計算機把數據以一定的格式封裝在幀中, 把目的地址和源地址加在信息頭上, 然後把幀交給網路進行發送. 無連接服務是不可靠的.

對於面向連接的服務(電話), 發送信息的源計算機必須首先與接收信息的目的計算機建立連接. 這種連接是通過三次握手(three hand shaking)的方式建立起來的. 一旦連接建立起來, 相互連接的計算機就可以進行數據交換. 與無連接服務不同, 面向連接的服務是以連接標識符來表示源地址和目的地址的. 面向連接的服務是可靠的, 當通信過程中出現問題時, 進行通信的計算機可以得到及時通知
英文原義:NetBIOS Extend User Interface 中文釋義:NetBIOS用戶擴展介面協議 NetBEUI即NetBios Enhanced User Interface ,或NetBios增強用戶介面。它是NetBIOS協議的增強版本,曾被許多操作系統採用,例如Windows for Workgroup、Win 9x系列、Windows NT等。NETBEUI協議在許多情形下很有用,是WINDOWS98之前的操作系統的預設協議。總之NetBEUI協議是一種短小精悍、通信效率高的廣播型協議,安裝後不需要進行設置,特別適合於在「網路鄰居」傳送數據。所以建議除了TCP/IP協議之外,區域網的計算機最好也安上NetBEUI協議。 NETBEUI是為IBM開發的非路由協議,用於攜帶NETBIOS通信。NETBEUI缺乏路由和網路層定址功能,既是其最大的優點,也是其最大的缺點。因為它不需要附加的網路地址和網路層頭尾,所以很快並很有效且適用於只有單個網路或整個環境都橋接起來的小工作組環境。 因為不支持路由,所以NETBEUI永遠不會成為企業網路的主要協議。NETBEUI幀中唯一的地址是數據鏈路層媒體訪問控制(MAC)地址,該地址標識了網卡但沒有標識網路。路由器靠網路地址將幀轉發到最終目的地,而NETBEUI幀完全缺乏該信息。 網橋負責按照數據鏈路層地址在網路之間轉發通信,但是有很多缺點。因為所有的廣播通信都必須轉發到每個網路中,所以網橋的擴展性不好。NETBEUI特別包括了廣播通信的記數並依賴它解決命名沖突。一般而言,橋接NETBEUI網路很少超過100台主機。 近年來依賴於第二層交換器的網路變得更為普遍。完全的轉換環境降低了網路的利用率,盡管廣播仍然轉發到網路中的每台主機。事實上,聯合使用100-BASE-T Ethernet,允許轉換NetBIOS網路擴展到350台主機,才能避免廣播通信成為嚴重的問題。
[編輯本段]IPX/SPX協議概述
現在解釋一下這種應用很廣的網路協議。 IPX(Internet work Packet Exchange,互聯網路數據包交換)是一個專用的協議簇,它主要由Novell NetWare操作系統使用。IPX是IPX協議簇中的第三層協議。 以下我們列出IPX協議的要點,作為IPX相關實驗前的准備。
[編輯本段]1.IPX的協議構成
IPX協議簇包括如下主要協議: ●IPX:第三層協議,用來對通過互聯網路的數據包進行路由選擇和轉發,它指定一個無連接的數據報,相當於TCP/IP協議簇中的IP協議; ●SPX:順序包交換 (Sequenced Packet Exchange)協議。是IPX協議簇中的第四層的面向連接的協議,相當於TCP/IP協議簇中的TCP協議; ●NCP:NetWare核心協議(NetWare Core Protocol),提供從客戶到伺服器的連接和應用; ●SAP:服務通告協議 (Service Advertising Protocol),用來在IPX網路上通告網路服務; ●IPX RIP:Novell路由選擇信息協議(Routing Information Protocol),完成路由器之間路由信息的交換並形成路由表。
[編輯本段]2.IPX編址
IPX網路的地址長度為80位 (bit,由兩部分構成,第一部分是32位的網路號,第二部分是48位的節點號。IPX地址通常用十六進制數來表示。 IPX網路號是由網管人員分配的,可以根據需要來定義網路號。 IPX節點號通常是網路介面本身的MAC地址。
[編輯本段]3.IPX協議在乙太網上的封裝
IPX協議在乙太網上支持以下4種封裝格式,也稱為幀格式,它們是: ●乙太網802.3:也叫原始乙太網,Cisco設備中稱為"novell-ether",它是NetWare版本2到版本3.1中預設的幀格式; ●乙太網802.2,也稱sap,是標準的IEEE幀格式,它是NetWare版本3.12到4.x中的標准幀格式; ●乙太網II,也稱arpa,採用標准乙太網版本II的頭格式; ●乙太網SNAP(子網訪問協議),或snap,通過增加一個於網接入協議(SNAP)擴展了IEEE 802.2的頭格式。 採用不同IPX封裝格式的設備之間不能進行通信。
[編輯本段]4.IPX服務通告
SAP是IPX服務通告協議,它可以通告諸如網路伺服器和列印伺服器等網路資源設備的地址和所能提供的服務。 路由器可以監聽SAP更新消息,建立一個已知服務和相應網路地址的對應表。客戶機可以利用路由器上的SAP表得到網上服務和地址的信息,從而直接訪問相應服務。

『叄』 解決下10道網路信息安全課的在線作業

1、物理安全

物理安全是指防止意外事件或人為破壞具體的物理設備,如伺服器、交換機、路由器、機櫃、線路等。機房和機櫃的鑰匙一定要管理好,不要讓無關人員隨意進入機房,尤其是網路中心機房,防止人為的蓄意破壞。

2、設置安全

設置安全是指在設備上進行必要的設置(如伺服器、交換機的密碼等),防止黑客取得硬體設備的遠程式控制制權。比如許多網管往往沒有在伺服器或可網管的交換機上設置必要的密碼,懂網路設備管理技術的人可以通過網路來取得伺服器或交換機的控制權,這是非常危險的。因為路由器屬於接入設備,必然要暴露在互聯網黑客攻擊的視野之中,因此需要採取更為嚴格的安全管理措施,比如口令加密、載入嚴格的訪問列表等。

軟體系統的安全防護

同硬體系統相比,軟體系統的安全問題是最多的,也是最復雜的。

現在TCP/IP協議廣泛用於各種網路。但是TCP/IP協議起源於Internet,而Internet在其早期是一個開放的為研究人員服務的網際網,是完全非贏利性的信息共享載體,所以幾乎所有的Internet協議都沒有考慮安全機制。網路不安全的另一個因素是因為人們很容易從Internet上獲得相關的核心技術資料,特別是有關Internet自身的技術資料及各類黑客軟體,很容易造成網路安全問題。

安全防護的措施

面對層出不窮的網路安全問題我們也並非無計可施,可從以下幾個方面著手,就能夠做到防患於未然。

1、安裝補丁程序

任何操作系統都有漏洞,作為網路系統管理員就有責任及時地將「補丁」(Patch)打上。大部分中小企業伺服器使用的是微軟的Windows NT/2000/2003操作系統,因為使用的人特別多,所以發現的Bug也特別多,同時,蓄意攻擊它們的人也特別多。微軟公司為了彌補操作系統的安全漏洞,在其網站上提供了許多補丁,可以到網上下載並安裝相關升級包。對於Windows2003,至少要升級到SP1,對於Windows 2000,至少要升級至Service Pack 2,對於Windows NT 4.0,至少要升級至Service Pack 6。

2、安裝和設置防火牆

現在有許多基於硬體或軟體的防火牆,如華為、神州數碼、聯想、瑞星等廠商的產品。對於企業內部網來說,安裝防火牆是非常必要的。防火牆對於非法訪問具有很好的預防作用,但是並不是安裝了防火牆之後就萬事大吉了,而是需要進行適當的設置才能起作用。如果對防火牆的設置不了解,需要請技術支持人員協助設置。

3、安裝網路殺毒軟體

現在網路上的病毒非常猖獗,想必大家都嘗到了「尼姆達」病毒的厲害。這就需要在網路伺服器上安裝網路版的殺毒軟體來控制病毒的傳播,目前,大多數反病毒廠商(如瑞星、冠群金辰、趨勢、賽門鐵克、熊貓等)都已經推出了網路版的殺毒軟體;同時,在網路版的殺毒軟體使用中,必須要定期或及時升級殺毒軟體。

4、賬號和密碼保護

賬號和密碼保護可以說是系統的第一道防線,目前網上的大部分對系統的攻擊都是從截獲或猜測密碼開始的。一旦黑客進入了系統,那麼前面的防衛措施幾乎就沒有作用,所以對伺服器系統管理員的賬號和密碼進行管理是保證系統安全非常重要的措施。

系統管理員密碼的位數一定要多,至少應該在8位以上,而且不要設置成容易猜測的密碼,如自己的名字、出生日期等。對於普通用戶,設置一定的賬號管理策略,如強制用戶每個月更改一次密碼。對於一些不常用的賬戶要關閉,比如匿名登錄賬號。

5、監測系統日誌

通過運行系統日誌程序,系統會記錄下所有用戶使用系統的情形,包括最近登錄時間、使用的賬號、進行的活動等。日誌程序會定期生成報表,通過對報表進行分析,你可以知道是否有異常現象。

6、關閉不需要的服務和埠

伺服器操作系統在安裝的時候,會啟動一些不需要的服務,這樣會佔用系統的資源,而且也增加了系統的安全隱患。對於假期期間完全不用的伺服器,可以完全關閉;對於假期期間要使用的伺服器,應關閉不需要的服務,如Telnet等。另外,還要關掉沒有必要開的TCP埠。

7、定期對伺服器進行備份

為防止不能預料的系統故障或用戶不小心的非法操作,必須對系統進行安全備份。除了對全系統進行每月一次的備份外,還應對修改過的數據進行每周一次的備份。同時,應該將修改過的重要系統文件存放在不同的伺服器上,以便出現系統崩潰時(通常是硬碟出錯),可及時地將系統恢復到正常狀態。

『肆』 計算機網路簡答題(3題)

1、什麼是計算機網路?計算機網路的主要功能是什麼?
2、TCP/IP協議模型分為幾層?每層包含什麼協議?
3、網路協議的三要素是什麼?

1 計算機網路,是指將地理位置不同的具有獨立功能的多台計算機及其外部設備,通過通信線路連接起來,在網路操作系統,網路管理軟體及網路通信協議的管理和協調下,實現資源共享和信息傳遞的計算機系統。

2 TCP/IP整體構架概述

TCP/IP協議並不完全符合OSI的七層參考模型。傳統的開放式系統互連參考模型,是一種通信協議的7層抽象的參考模型,其中每一層執行某一特定任務。該模型的目的是使各種硬體在相同的層次上相互通信。這7層是:物理層、數據鏈路層、網路層、傳輸層、話路層、表示層和應用層。而TCP/IP通訊協議採用了4層的層級結構,每一層都呼叫它的下一層所提供的網路來完成自己的需求。這4層分別為:

應用層:應用程序間溝通的層,如簡單電子郵件傳輸(SMTP)、文件傳輸協議(FTP)、網路遠程訪問協議(Telnet)等。

傳輸層:在此層中,它提供了節點間的數據傳送服務,如傳輸控制協議(TCP)、用戶數據報協議(UDP)等,TCP和UDP給數據包加入傳輸數據並把它傳輸到下一層中,這一層負責傳送數據,並且確定數據已被送達並接收。

互連網路層:負責提供基本的數據封包傳送功能,讓每一塊數據包都能夠到達目的主機(但不檢查是否被正確接收),如網際協議(IP)。

網路介面層:對實際的網路媒體的管理,定義如何使用實際網路(如Ethernet、Serial Line等)來傳送數據。

TCP/IP中的協議

以下簡單介紹TCP/IP中的協議都具備什麼樣的功能,都是如何工作的:

1. IP

網際協議IP是TCP/IP的心臟,也是網路層中最重要的協議。

IP層接收由更低層(網路介面層例如乙太網設備驅動程序)發來的數據包,並把該數據包發送到更高層---TCP或UDP層;相反,IP層也把從TCP或UDP層接收來的數據包傳送到更低層。IP數據包是不可靠的,因為IP並沒有做任何事情來確認數據包是按順序發送的或者沒有被破壞。IP數據包中含有發送它的主機的地址(源地址)和接收它的主機的地址(目的地址)。

高層的TCP和UDP服務在接收數據包時,通常假設包中的源地址是有效的。也可以這樣說,IP地址形成了許多服務的認證基礎,這些服務相信數據包是從一個有效的主機發送來的。IP確認包含一個選項,叫作IP source routing,可以用來指定一條源地址和目的地址之間的直接路徑。對於一些TCP和UDP的服務來說,使用了該選項的IP包好像是從路徑上的最後一個系統傳遞過來的,而不是來自於它的真實地點。這個選項是為了測試而存在的,說明了它可以被用來欺騙系統來進行平常是被禁止的連接。那麼,許多依靠IP源地址做確認的服務將產生問題並且會被非法入侵。

2. TCP

如果IP數據包中有已經封好的TCP數據包,那麼IP將把它們向『上』傳送到TCP層。TCP將包排序並進行錯誤檢查,同時實現虛電路間的連接。TCP數據包中包括序號和確認,所以未按照順序收到的包可以被排序,而損壞的包可以被重傳。

TCP將它的信息送到更高層的應用程序,例如Telnet的服務程序和客戶程序。應用程序輪流將信息送回TCP層,TCP層便將它們向下傳送到IP層,設備驅動程序和物理介質,最後到接收方。

面向連接的服務(例如Telnet、FTP、rlogin、X Windows和SMTP)需要高度的可靠性,所以它們使用了TCP。DNS在某些情況下使用TCP(發送和接收域名資料庫),但使用UDP傳送有關單個主機的信息。

3.UDP

UDP與TCP位於同一層,但對於數據包的順序錯誤或重發。因此,UDP不被應用於那些使用虛電路的面向連接的服務,UDP主要用於那些面向查詢---應答的服務,例如NFS。相對於FTP或Telnet,這些服務需要交換的信息量較小。使用UDP的服務包括NTP(網路時間協議)和DNS(DNS也使用TCP)。

欺騙UDP包比欺騙TCP包更容易,因為UDP沒有建立初始化連接(也可以稱為握手)(因為在兩個系統間沒有虛電路),也就是說,與UDP相關的服務面臨著更大的危險。

4.ICMP

ICMP與IP位於同一層,它被用來傳送IP的的控制信息。它主要是用來提供有關通向目的地址的路徑信息。ICMP的『Redirect』信息通知主機通向其他系統的更准確的路徑,而『Unreachable』信息則指出路徑有問題。另外,如果路徑不可用了,ICMP可以使TCP連接『體面地』終止。PING是最常用的基於ICMP的服務。

5. TCP和UDP的埠結構

TCP和UDP服務通常有一個客戶/伺服器的關系,例如,一個Telnet服務進程開始在系統上處於空閑狀態,等待著連接。用戶使用Telnet客戶程序與服務進程建立一個連接。客戶程序向服務進程寫入信息,服務進程讀出信息並發出響應,客戶程序讀出響應並向用戶報告。因而,這個連接是雙工的,可以用來進行讀寫。

兩個系統間的多重Telnet連接是如何相互確認並協調一致呢?TCP或UDP連接唯一地使用每個信息中的如下四項進行確認:

源IP地址 發送包的IP地址。

目的IP地址 接收包的IP地址。

源埠 源系統上的連接的埠。

目的埠 目的系統上的連接的埠。

埠是一個軟體結構,被客戶程序或服務進程用來發送和接收信息。一個埠對應一個16比特的數。服務進程通常使用一個固定的埠,例如,SMTP使用25、Xwindows使用6000。這些埠號是『廣為人知』的,因為在建立與特定的主機或服務的連接時,需要這些地址和目的地址進行通訊。

相信大家都聽說過TCP/IP這個詞,這個詞好像無處不在,時時都會在你面前跳出來。那TCP/IP到底是什麼意思呢?

TCP/IP其實是兩個網路基礎協議:IP協議、TCP協議名稱的組合。下面我們分別來看看這兩個無處不在的協議。

IP協議

IP(Internet Protocol)協議的英文名直譯就是:網際網路協議。從這個名稱我們就可以知道IP協議的重要性。在現實生活中,我們進行貨物運輸時都是把貨物包裝成一個個的紙箱或者是集裝箱之後才進行運輸,在網路世界中各種信息也是通過類似的方式進行傳輸的。IP協議規定了數據傳輸時的基本單元和格式。如果比作貨物運輸,IP協議規定了貨物打包時的包裝箱尺寸和包裝的程序。 除了這些以外,IP協議還定義了數據包的遞交辦法和路由選擇。同樣用貨物運輸做比喻,IP協議規定了貨物的運輸方法和運輸路線。

TCP協議

我們已經知道了IP協議很重要,IP協議已經規定了數據傳輸的主要內容,那TCP(Transmission Control Protocol)協議是做什麼的呢?不知大家發現沒有,在IP協議中定義的傳輸是單向的,也就是說發出去的貨物對方有沒有收到我們是不知道的。就好像8毛錢一份的平信一樣。那對於重要的信件我們要寄掛號信怎麼辦呢?TCP協議就是幫我們寄「掛號信」的。TCP協議提供了可靠的面向對象的數據流傳輸服務的規則和約定。簡單的說在TCP模式中,對方發一個數據包給你,你要發一個確認數據包給對方。通過這種確認來提供可靠性。

TCP/IP(Transmission Control Protocol/Internet Protocol的簡寫,中文譯名為傳輸控制協議/互聯網路協議)協議是Internet最基本的協議,簡單地說,就是由底層的IP協議和TCP協議組成的。TCP/IP協議的開發工作始於70年代,是用於互聯網的第一套協議。

3 網路協議三要素:語法 語義 同步

『伍』 計算機網路(3)| 數據鏈路層

數據鏈路層屬於計算機網路的低層。數據鏈路層使用的信道主要是兩種類型:
(1)點對點信道 。即信道使用的是一對一點對點通信方式。
(2)廣播信道 。這種信道使用的是一對多的光播通信方式,相對復雜。在廣播信道上連接的主機很多,因此必須使用專用的共享信道協議來協調這些主機的數據發送。

首先我們應該了解一些有關點對點信道的一點基本概念。
(1)數據鏈路 。值得是當我們需要在一條線路上傳送數據時,除了有一條物理線路外(鏈路),還必須有一些必要的通信協議來控制這些數據的傳輸,若把實現這些協議的硬體和軟體加到鏈路上就構成了數據鏈路。
(2)幀 。幀指的是點對點信道的數據鏈路層的協議數據單元,即數據鏈路層把網路層交下來的數據構成幀發送到鏈路上以及把接收到的幀中的數據取出並上交給網路層。

點對點信道的數據鏈路層在進行通信時的主要步驟如下:
(1)結點A的數據鏈路層把網路層交下來的IP數據報添加首部和尾部封裝成幀。
(2)結點A把封裝好的幀發送給結點B的數據鏈路層。
(3)若B接收的幀無差錯,則從接收的幀中提取出IP數據報上交給上面的網路層;否則丟棄這個幀。

接下來是來介紹數據鏈路層的三個基本問題,而這三個問題對於各種數據鏈路層的協議都是通用的。

(1)封裝成幀 。指的是在一段數據的前後分別添加首部和尾部,這樣就構成了一個幀,從而能夠作為數據鏈路層的基本單位進行數據傳輸。在發送幀時,是從幀的首部開始發送的。各種數據鏈路層協議都對幀首部和幀尾部的格式有著明確的規定,且都規定了所能傳送的 幀的數據部分 長度上限—— 最大傳送單元MTU 。首部和尾部的作用是進行幀定界,幀定界可以使用特殊的 幀定界符 ,當數據在傳輸中出現差錯時,通過幀的幀定界符就可以知道收到的數據是一個不完整的幀(即只有首部開始符而沒有結束符)。

(2)透明傳輸 。從上面的介紹中知道幀的開始和結束標記使用了專門的控制字元,因此所傳輸的數據中任何與幀定界符相同的比特編碼是不允許出現的,否則就會出現幀定界錯誤。當傳送的幀是用文本文件組成的幀時,它的數據部分一定不會出現和幀定界符相同的字元,這樣的傳輸就叫做 透明傳輸 。為了解決其他類型文件傳輸時產生的透明傳輸問題,就將幀定界符的前面插入一個 轉義字元ESC ,這種方法稱為 位元組填充 。如果轉義字元也出現在數據中,就在轉義字元前面加上一個轉義字元,當接收端收到兩個轉義字元時,就刪除前面的那一個。

(3)差錯檢測 。在現實中,通信鏈路都不會是完美的,在傳輸比特的過程當中都是會產生差錯的,1變成0或者0變成1都是可能發生的,我們把這樣的錯誤叫做差錯檢測。在數據鏈路層中,為了保證數據傳輸的可靠性,減少差錯出現的數量,就會採用各種差錯檢測措施,目前最常使用的檢錯技術是 循環冗餘校驗 。它的原理簡單來說就是在被傳輸的數據M後面添加供錯檢測用的n為冗餘碼,構成一個幀數據發送出去。關於n位冗餘碼的得出方式與檢驗方式,可以 點擊這里進一步了解 。

對於點對點鏈路,點對點協議PPP是目前使用得最廣泛的數據鏈路層協議。由於網際網路的用戶通常都要連接到某個ISP才能接入到網際網路,PPP協議就是用戶計算機和ISP進行通信所使用的數據鏈路層協議。

在設計PPP協議時必須要考慮以下多方面的需求:
(1)簡單 。簡單的設計可使協議在實現時不容易出錯,這樣使得不同廠商對協議的不同實現的互操作性提高了。
(2)封裝成幀 。PPP協議必須規定特殊的字元作為幀定界符(即標志一個幀的開始和結束的字元),以便使接收端從收到的比特流中能准確的找出幀的開始和結束的位置。
(3)透明性 。PPP協議必須保證數據傳輸的透明性。如果說是數據中碰巧出現和幀定界符一樣的比特組合時,就要採用必要的措施來解決。
(4)多種網路層協議 。PPP協議必須能夠在同一條物理鏈路上同時支持多種網路層協議(IP和IPX等)的運行。
(5)多種類型鏈路 。除了要支持多種網路層的協議外,PPP還必須能夠在多種鏈路上運行(串列與並行鏈路)。
(6)差錯檢測 。PPP協議必須能夠對接收端收到的幀進行檢測,並舍棄有差錯的幀。
(7)檢測連接狀態 。必須具有一種機制能夠及時(不超過幾分鍾)自動檢測出鏈路是否處於正常工作狀態。
(8)最大傳送單元 。協議對每一種類型的點對點鏈路設置最大傳送單元MTU。
(9)網路層地址協商 。協議必須提供一種機制使通信的兩個網路層(如兩個IP層)的實體能夠通過協商知道或能夠配置彼此的網路層地址。
(10)數據壓縮協商 。協議必須能夠提供方法來協商使用數據壓縮演算法。但PPP協議不要求將數據壓縮演算法進行標准化。

PPP協議主要是由三個方面組成的:
(1) 一個將IP數據報封裝到串列鏈路的方法。
(2) 一個用來建立、配置和測試數據鏈路連接的鏈路控制協議LCP(Link Control Protocol)。
(3) 一套網路控制協議NCP(Network Control Protocol),其中的每一個協議支持不同的網路層協議,如IP、OSI的網路層、DECnet,以及AppleTalk等。

最後來介紹PPP協議幀的格式:

首先是各個欄位的意義。首部中的地址欄位A規定為0xFF,控制欄位C規定為0x03,這兩個欄位並沒有攜帶PPP幀的信息。首部的第一個欄位和尾部的第二個欄位都是標識欄位F(Flag)。首部的第四個欄位是2位元組的協議欄位。當協議欄位為0x0021時,PPP幀的信息部分欄位就是IP數據報。若為0xC021,則信息欄位是PPP鏈路控制協議LCP的數據,而 0x8021表示這是網路層的控制數據。尾部中的第一個欄位(2位元組)是使用CRC的幀檢驗序列FCS。

接著是關於PPP協議的差錯檢測的方法,主要分為位元組填充和零比特填充。當是PPP非同步傳輸時,採用的是位元組填充的方法。位元組填充是指當信息欄位中出現和標志欄位一樣的比特(0x7E)組合時,就必須採取一些措施使這種形式上和標志欄位一樣的比特組合不出現在信息欄位中。而當PPP協議使用的是同步傳輸時,就會採用零比特填充方法來實現透明傳輸,即只要發現有5個連續1,則立即填入一個0的方法。

廣播信道可以進行一對多的通信。由於區域網採用的就是廣播通信,因此下面有關廣播通信的討論就是基於區域網來進行的。

首先我們要知道區域網的主要 特點 ,即網路為一個單位所擁有,且地理范圍和站點數目均有限。在區域網才出現時,區域網比廣域網有著較高的數據率、較低的時延和較小的誤碼率。

區域網的 優點 主要有一下幾個方面:
(1) 具有廣播功能,從一個站點可方便地訪問全網。
(2) 便於系統的擴展和逐漸地演變,各設備的位置可靈活地調整和改變。
(3) 提高了系統的可靠性(reliability)、可用性(availibility)、生存性(survivability)。

關於區域網的分類,我們一般是對區域網按照網路拓撲進行分類:
1.星狀網: 由於集線器的出現和雙絞線大量用於區域網中,星形乙太網和多級星形結構的乙太網獲得了非常廣泛的應用。
2.環形網: 顧名思義,就是將各個主機像環一樣串起來的拓撲結構,最典型的就是令牌環形網。
3.匯流排網: 各站直接連在匯流排上。匯流排兩端的匹配電阻吸收在匯流排上傳播的電磁波信號的能量,避免在匯流排上產生有害的電磁波反射。

乙太網主要有兩個標准,即DIX Ethernet V2和IEEE 802.3標准,這兩種標準的差別很小,可以不是很嚴格的區分它們。

但是由於有關廠商的商業上的激烈競爭,導致IEEE 802委員會未能形成一個最佳的區域網標准而制定了幾個不同的區域網標准,所以為了數據鏈路層能夠更好的適應各種不同的標准,委員會就把區域網的數據鏈路層拆成兩個子層: 邏輯鏈路控制LLC子層 媒體接入控制MAC子層

計算機與外界區域網的連接是通過通信適配器(adapter)來進行的。適配器本來是在電腦主機箱內插入的一塊網路介面板(或者是在筆記本電腦中插入一塊PCMCIA卡),這種介面板又稱為網路介面卡NIC(Network Interface Card)或簡稱為網卡。適配器和區域網之間的通信是通過電纜或雙絞線以串列傳輸方式進行的,而適配器和計算機之間的通信則是通過計算機主板上的I/O匯流排以並行傳輸方式進行的,因此適配器的一個重要功能就是要進行數據串列傳輸和並行傳輸的轉換。由於網路上的數據率和計算機匯流排上的數據率並不相同,所以在適配器中必須裝有對數據進行緩存的存儲晶元。若在主板上插入適配器時,還必須把管理該適配器的設備驅動程序安裝在計算機的操作系統中。這個驅動程序以後就會告訴適配器,應當從存儲器的什麼位置上把多長的數據塊發送到區域網,或應當在存儲器的什麼位置上把區域網傳送過來的數據塊存儲下來。適配器還要能夠實現乙太網協議。

要注意的是,適配器在接收和發送各種幀時是不使用計算機的CPU的,所以這時計算機中的CPU可以處理其他的任務。當適配器收到有差錯的幀時,就把這個幀丟棄而不必通知計算機,而當適配器收到正確的幀時,它就使用中斷來通知該計算機並交付給協議棧中的網路層。當計算機要發送IP數據報時,就由協議棧把IP數據報向下交給適配器,組裝成幀後發送到區域網。特別注意: 計算機的硬體地址—MAC地址,就在適配器的ROM中。計算機的軟體地址—IP地址,就在計算機的存儲器中。

CSMA/CD協議主要有以下3個要點:
1.多點接入 :指的是這是匯流排型網路,許多計算機以多點接入的方式連接在一根匯流排上。
2.載波監聽 :就是用電子技術檢測匯流排上有沒有其他的計算機也在發送。載波監聽也稱為檢測信道,也就是說,為了獲得發送權,不管在發送前,還是在發送中,每一個站都必須不停的檢測信道。如果檢測出已經有其他站在發送,則自己就暫時不發送數據,等到信道空閑時才發送數據。而在發送中檢測信道是為了及時發現有沒有其他站的發送和本站發送的碰撞。
3.碰撞檢測 :也就是邊發送邊監聽。適配器一邊發送數據一邊檢測信道上的信號電壓的變化情況,以便判斷自己在發送數據時其他站是否也在發送數據。所謂碰撞就是信號之間產生了沖突,這時匯流排上傳輸的信號嚴重失真,無法從中恢復出有用的信息來。

集線器的一些特點如下:
(1)使用集線器的乙太網在邏輯上仍然是一個匯流排網,各個站點共享邏輯上的匯流排,使用的還是CSMA/CD協議。
(2)一個集線器是有多個介面。一個集線器就像一個多介面的轉發器。
(3)集線器工作在物理層,所以它的每一個介面僅僅是簡單的轉發比特。它不會進行碰撞檢測,所以當兩個介面同時有信號的輸入,那麼所有的介面都將收不到正確的幀。
(4)集線器自身採用了專門的晶元來進行自適應串音回波抵消。這樣可使介面轉發出去的較強的信號不致對該介面收到的較弱信號產生干擾。
(5)集線器一般都有少量的容錯能力和網路管理能力,也就是說如果在乙太網中有一個適配器出現了故障,不停地發送乙太網幀,這是集線器可以檢測到這個問題從而斷開與故障適配器的連線。

在區域網中,硬體地址又稱為物理地址或者MAC地址,這種地址是用在MAC幀中的。由於6位元組的地址欄位可以使全世界所有的區域網適配器具有不同的地址,所以現在的區域網適配器都是使用6位元組MAC地址。

主要負責分配地址欄位的6個位元組中的前3個位元組。世界上凡事要生產局域適配器的廠家都必須向IEEE購買這3個位元組構成的地址號,這個地址號我們通常叫做 公司標識符 ,而地址欄位的後3個位元組則由廠家自行指派,稱為 擴展標識符

IEEE規定地址欄位的第一位元組的最低位為I/G位。當I/G位為0時,地址欄位表示一個單個站地址,而當I/G位為1時表示組地址,用來進行多播。所以IEEE只分配地址欄位前三個位元組中的23位,當I/G位分別為0和1時,一個地址塊可分別生 2^24 個單個站地址和2^24個組地址。IEEE還把地址欄位第1個位元組的最低第二位規定為G/L位。當G/L位為0時是全球管理,來保證在全球沒有相同的地址,廠商向IEEE購買的都屬於全球管理。當地址段G/L位為1時是本地管理,這時用戶可以任意分配網路上的地址,但是乙太網幾乎不會理會這個G/L位的。

適配器對MAC幀是具有的過濾功能的,當適配器從網路上每收到一個MAC幀就先用硬體檢查MAC幀中的目的地址。如果是發往本站的幀則收下,然後再進行其他的處理,否則就將此幀丟棄。這樣做就可以不浪費主機的處理機和內存資源這里發往本站的幀包括以下三種幀:
(1)單播幀:即收到的幀的MAC地址與本站的硬體地址相同。
(2)廣播幀:即發送給本區域網上所有站點的幀。
(3)多播幀:即發送給本區域網上一部分站點的幀。

常用的乙太網MAC幀格式是乙太網V2的MAC幀格式。如下圖:

可以看到乙太網V2的MAC幀比較的簡單,有五個欄位組成。前兩個欄位分別為6位元組長的目的地址和源地址欄位。第三個欄位是2位元組的類型欄位,用來標志上一層使用的是什麼協議,以便把收到的MAC幀的數據上交給上一層的這個協議。下一個欄位是數據欄位,其長度在46到1500位元組之間。最後一個欄位是4位元組的幀檢驗序列FCS(使用CRC檢驗)。

從圖中可以看出,採用乙太網V2的MAC幀並沒有一個結構來存儲一個數據的幀長度。這是由於在曼徹斯特編碼中每一個碼元的正中間一定有一次電壓的轉換,如果當發送方在發送完一個MAC幀後就不再發送了,則發送方適配器的電壓一定是不會在變化的。這樣接收方就可以知道乙太網幀結束的位置,在這個位置減去FCS序列的4個位元組,就可以知道幀的長度了。

當數據欄位的長度小於42位元組時,MAC子層就會在MAC幀後面加入一個整數位元組來填充欄位,來保證乙太網的MAC幀的長度不小於64位元組。當MAC幀傳送給上層協議後,上層協議必須具有能夠識別填充欄位的功能。當上層使用的是IP協議時,其首部就有一個總長度欄位,因此總長度加上填充欄位的長度,就是MAC幀的數據欄位的長度。

從圖中還可以看出,在傳輸MAC幀時傳輸媒體上實際是多發送了8個位元組,這是因為當MAC幀開始接收時,由於適配器的時鍾尚未與比特流達成同步,因此MAC幀的最開始的部分是無法接收的,結果就是會使整個MAC成為無用幀。所以為了接收端能夠迅速的與比特流形成同步,就需要在前面插入這8個位元組。這8個位元組是由兩個部分組成的,第一個部分是由前7個位元組構成的前同步碼,它的主要作用就是就是實現同步。第二個部分是幀開始界定符,它的作用就是告訴接收方MAC幀馬上就要來了。需要注意的是,幀與幀之間的傳輸是需要一定的間隔的,否則接收端在收到了幀開始界定符後就會認為後面的都是MAC幀而會造成錯誤。

乙太網上的主機之間的距離不能太遠,否則主機發送的信號經過銅線的傳輸就會衰減到使CSMA/CD協議無法正常工作,所以在過去常常使用工作在物理層的轉發器來拓展乙太網的地理覆蓋范圍。但是現在隨著雙絞線乙太網成為乙太網的主流類型,拓展乙太網的覆蓋范圍已經很少使用轉發器,而是使用光纖和一對光纖數據機來拓展主機和集線器之間的距離。

光纖解調器的作用是進行電信號與光信號的轉換。由於光纖帶來的時延很小,並且帶寬很寬,所以才用這種方法可以很容易地使主機和幾公里外的集線器相連接。

如果是使用多個集線器,就可以連接成覆蓋更大范圍的多級星形結構的乙太網:

使用多級星形結構的乙太網不僅能夠讓連接在不同的乙太網的計算機能夠進行通信,還可以擴大乙太網的地理覆蓋范圍。但是這樣的多級結構也帶來了一些缺點,首先這樣的結構會增大它們的碰撞域,這樣做會導致圖中的某個系的兩個站在通信時所傳送的數據會通過所有的集線器進行轉發,使得其他系的內部在這時都不能進行通信。其次如果不同的乙太網採用的是不同的技術,那麼就不可能用集線器將它們互相連接起來。

拓展乙太網的更常用的方法是在數據鏈路層中進行的,在開始時人們使用的是網橋。但是現在人們更常用的是 乙太網交換機

乙太網交換機實質上是一個多介面的網橋,通常是有十幾個或者更多的介面,而每一個介面都是直接與一個單台主機或者另一個乙太網交換機相連。同時乙太網交換機還具有並行性,即能同時連通多對介面,使多對主機能同時通信,對於相互通信的主機來說都是獨占傳輸媒體且無碰撞的傳輸數據。

乙太網交換機的介面還有存儲器,能夠在輸出埠繁忙時把到來的幀進行緩存,等到介面不再繁忙時再將緩存的幀發送出去。

乙太網交換機還是一種即插即用的設備,它的內部的地址表是通過自學習演算法自動的建立起來的。乙太網交換機由於使用了專用的交換結構晶元,用硬體轉發,它的轉發速率是要比使用軟體轉發的網橋快很多。

如下圖中帶有4個介面的乙太網交換機,它的4個介面各連接一台計算機,其MAC地址分別為A、B、C、D。在開始時,乙太網交換機裡面的交換表是空的。

首先,A先向B發送一幀,從介面1進入到交換機。交換機收到幀後,先查找交換表,但是沒有查到應從哪個介面轉發這個幀,接著交換機把這個幀的源地址A和介面1寫入交換表中,並向除介面1以外的所有介面廣播這個幀。C和D因為目的地址不對會將這個幀丟棄,只有B才收下這個目的地址正確的幀。從新寫入的交換表(A,1)可以得出,以後不管從哪一個介面收到幀,只要其目的地址是A,就應當把收到的幀從介面1轉發出去。以此類推,只要主機A、B、C也向其他主機發送幀,乙太網交換機中的交換表就會把轉發到A或B或C應當經過的借口號寫入到交換表中,這樣交換表中的項目就齊全了,以後要轉發給任何一台主機的幀,就都能夠很快的在交換表中找到相應的轉發介面。

考慮到有時可能要在交換機的介面更換主機或者主機要更換其網路適配器,這就需要更改交換表中的項目,所以交換表中每個項目都設有一定的有效時間。

但是這樣的自學習有時也會在某個環路中無限制的兜圈子,如下圖:

假設一開始主機A通過介面交換機#1向主機B發送一幀。交換機#1收到這個幀後就向所有其他介面進行廣播發送。其中一個幀的走向:離開#1的3->交換機#2的介面1->介面2->交換機#1的介面4->介面3->交換機#2的介面1......一直循環下去,白白消耗網路資源。所以為了解決這樣的問題,IEEE制定了一個生成樹協議STP,其要點就是不改變網路的實際拓撲,但在邏輯上切斷某些鏈路,從而防止出現環路。

虛擬區域網VLAN是由一些區域網網段構成的與物理位置無關的邏輯組,而這些網段具有某些共同的需求。每一個VLAN的幀都有一個明確的標識符,指明發送這個幀的計算機屬於VLAN。要注意虛擬區域網其實只是區域網給用戶提供的一種服務,而不是一種新型區域網。

現在已經有標準定義了乙太網的幀格式的擴展,以便支持虛擬區域網。虛擬區域網協議允許在乙太網的幀格式中插入一個4位元組的標識符,稱為VLAN標記,它是用來指明發送該幀的計算機屬於哪一個虛擬區域網。VLAN標記欄位的長度是4位元組,插入在乙太網MAC幀的源地址欄位和類型欄位之間。VLAN標記的前兩個位元組總是設置為0x8100,稱為IEEE802.1Q標記類型。當數據鏈路層檢測到MAC幀的源地址欄位後面的兩個位元組的值是0x8100時,就知道現在插入了4位元組的VLAN標記。於是就接著檢查後面兩個位元組的內容,在後面的兩個位元組中,前3位是用戶優先順序欄位,接著的一位是規范格式指示符CFI,最後的12位是該虛擬區域網VLAN標識符VID,它唯一的標志了這個以台網屬於哪一個VLAN。

高速乙太網主要是分為三種,即100BASE-T乙太網、吉比特乙太網和10吉比特乙太網:

『陸』 計算機網路(三)數據鏈路層

結點:主機、路由器

鏈路:網路中兩個結點之間的物理通道,鏈路的傳輸介質主要有雙絞線、光纖和微波。分為有線鏈路、無線鏈路。

數據鏈路:網路中兩個結點之間的邏輯通道,把實現控制數據傳輸協議的硬體和軟體加到鏈路上就構成數據鏈路。

幀:鏈路層的協議數據單元,封裝網路層數據報。

數據鏈路層負責通過一條鏈路從一個結點向另一個物理鏈路直接相連的相鄰結點傳送數據報。

數據鏈路層在物理層提供服務的基礎上向網路層提供服務,其最基本的服務是將源自網路層來的數據可靠地傳輸到相鄰節點的目標機網路層。其主要作用是加強物理層傳輸原始比特流的功能,將物理層提供的可能出錯的物理連接改造成為 邏輯上無差錯的數據鏈路 ,使之對網路層表現為一條無差錯的鏈路。

封裝成幀就是在一段數據的前後部分添加首部和尾部,這樣就構成了一個幀。接收端在收到物理層上交的比特流後,就能根據首部和尾部的標記,從收到的比特流中識別幀的開始和結束。首部和尾部包含許多的控制信息,他們的一個重要作用:幀定界(確定幀的界限)。

幀同步:接收方應當能從接收到的二進制比特流中區分出幀的起始和終止。

組幀的四種方法:

透明傳輸是指不管所傳數據是什麼樣的比特組合,都應當能夠在鏈路上傳送。因此,鏈路層就「看不見」有什麼妨礙數據傳輸的東西。

當所傳數據中的比特組合恰巧與某一個控制信息完全一樣時,就必須採取適當的措施,使收方不會將這樣的數據誤認為是某種控制信息。這樣才能保證數據鏈路層的傳輸是透明的。

概括來說,傳輸中的差錯都是由於雜訊引起的。

數據鏈路層編碼和物理層的數據編碼與調制不同。物理層編碼針對的是單個比特,解決傳輸過程中比特的同步等問題,如曼徹斯特編碼。而數據鏈路層的編碼針對的是一組比特,它通過冗餘碼的技術實現一組二進制比特串在傳輸過程是否出現了差錯。

較高的發送速度和較低的接收能力的不匹配,會造成傳輸出錯,因此流量控制也是數據鏈路層的一項重要工作。數據鏈路層的流量控制是點對點的,而傳輸層的流量控制是端到端的。

滑動窗口有以下重要特性:

若採用n個比特對幀編號,那麼發送窗口的尺寸W T 應滿足: 。因為發送窗口尺寸過大,就會使得接收方無法區別新幀和舊幀。

每發送完一個幀就停止發送,等待對方的確認,在收到確認後再發送下一個幀。

除了比特出差錯,底層信道還會出現丟包 [1] 問題

「停止-等待」就是每發送完一個分組就停止發送,等待對方確認,在收到確認後再發送下一個分組。其操作簡單,但信道利用率較低

信道利用率是指發送方在一個發送周期內,有效地發送數據所需要的時間占整個發送周期的比率。即

GBN發送方:

GBN接收方:

因連續發送數據幀而提高了信道利用率,重傳時必須把原來已經正確傳送的數據幀重傳,是傳送效率降低。

設置單個確認,同時加大接收窗口,設置接收緩存,緩存亂序到達的幀。

SR發送方:

SR接收方:

發送窗口最好等於接收窗口。(大了會溢出,小了沒意義),即

傳輸數據使用的兩種鏈路

信道劃分介質訪問控制將使用介質的每個設備與來自同一通信信道上的其他設備的通信隔離開來,把時域和頻域資源合理地分配給網路上的設備。

當傳輸介質的帶寬超過傳輸單個信號所需的帶寬時,人們就通過在一條介質上同時攜帶多個傳輸信號的方法來提高傳輸系統的利用率,這就是所謂的多路復用,也是實現信道劃分介質訪問控制的途徑。多路復用技術把多個信號組合在一條物理信道上進行傳輸,使多個計算機或終端設備共享信道資源,提高了信道的利用率。信道劃分的實質就是通過分時、分頻、分碼等方法把原來的一條廣播信道,邏輯上分為幾條用於兩個結點之間通信的互不幹擾的子信道,實際上就是把廣播信道轉變為點對點信道。

頻分多路復用是一種將多路基帶信號調制到不同頻率載波上,再疊加形成一個復合信號的多路復用技術。在物理信道的可用帶寬超過單個原始信號所需帶寬的情況下,可將該物理信道的總帶寬分割成若千與傳輸單個信號帶寬相同(或略寬)的子信道,每個子信道傳輸一種信號,這就是頻分多路復用。

每個子信道分配的帶寬可不相同,但它們的總和必須不超過信道的總帶寬。在實際應用中,為了防止子信道之間的千擾,相鄰信道之間需要加入「保護頻帶」。頻分多路復用的優點在於充分利用了傳輸介質的帶寬,系統效率較高;由於技術比較成熟,實現也較容易。

時分多路復用是將一條物理信道按時間分成若干時間片,輪流地分配給多個信號使用。每個時間片由復用的一個信號佔用,而不像FDM那樣,同一時間同時發送多路信號。這樣,利用每個信號在時間上的交叉,就可以在一條物理信道上傳輸多個信號。

就某個時刻來看,時分多路復用信道上傳送的僅是某一對設備之間的信號:就某段時間而言,傳送的是按時間分割的多路復用信號。但由於計算機數據的突發性,一個用戶對已經分配到的子信道的利用率一般不高。統計時分多路復用(STDM,又稱非同步時分多路復用)是TDM 的一種改進,它採用STDM幀,STDM幀並不固定分配時隙,面按需動態地分配時隙,當終端有數據要傳送時,才會分配到時間片,因此可以提高線路的利用率。例如,線路傳輸速率為8000b/s,4個用戶的平均速率都為2000b/s,當採用TDM方式時,每個用戶的最高速率為2000b/s.而在STDM方式下,每個用戶的最高速率可達8000b/s.

波分多路復用即光的頻分多路復用,它在一根光纖中傳輸多種不同波長(頻率)的光信號,由於波長(頻率)不同,各路光信號互不幹擾,最後再用波長分解復用器將各路波長分解出來。由於光波處於頻譜的高頻段,有很高的帶寬,因而可以實現多路的波分復用

碼分多路復用是採用不同的編碼來區分各路原始信號的一種復用方式。與FDM和 TDM不同,它既共享信道的頻率,又共享時間。下面舉一個直觀的例子來理解碼分復用。

實際上,更常用的名詞是碼分多址(Code Division Multiple Access.CDMA),1個比特分為多個碼片/晶元( chip),每一個站點被指定一個唯一的m位的晶元序列,發送1時發送晶元序列(通常把o寫成-1) 。發送1時站點發送晶元序列,發送o時發送晶元序列反碼。

純ALOHA協議思想:不監聽信道,不按時間槽發送,隨機重發。想發就發

如果發生沖突,接收方在就會檢測出差錯,然後不予確認,發送方在一定時間內收不到就判斷發生沖突。超時後等一隨機時間再重傳。

時隙ALOHA協議的思想:把時間分成若干個相同的時間片,所有用戶在時間片開始時刻同步接入網路信道,若發生沖突,則必須等到下一個時間片開始時刻再發送。

載波監聽多路訪問協議CSMA(carrier sense multiple access)協議思想:發送幀之前,監聽信道。

堅持指的是對於監聽信道忙之後的堅持。

1-堅持CSMA思想:如果一個主機要發送消息,那麼它先監聽信道。

優點:只要媒體空閑,站點就馬上發送,避免了媒體利用率的損失。

缺點:假如有兩個或兩個以上的站點有數據要發送,沖突就不可避免。

非堅持指的是對於監聽信道忙之後就不繼續監聽。

非堅持CSMA思想:如果一個主機要發送消息,那麼它先監聽信道。

優點:採用隨機的重發延遲時間可以減少沖突發生的可能性。

缺點:可能存在大家都在延遲等待過程中,使得媒體仍可能處於空閑狀態,媒體使用率降低。

p-堅持指的是對於監聽信道空閑的處理。

p-堅持CSMA思想:如果一個主機要發送消息,那麼它先監聽信道。

優點:既能像非堅持演算法那樣減少沖突,又能像1-堅持演算法那樣減少媒體空閑時間的這種方案。

缺點:發生沖突後還是要堅持把數據幀發送完,造成了浪費。

載波監聽多點接入/碰撞檢測CSMA/CD(carrier sense multiple access with collision detection)

CSMA/CD的工作流程:

由圖可知,至多在發送幀後經過時間 就能知道所發送的幀有沒有發生碰撞。因此把乙太網端到端往返時間為 稱為爭周期(也稱沖突窗口或碰撞窗口)。

截斷二進制指數規避演算法:

最小幀長問題:幀的傳輸時延至少要兩倍於信號在匯流排中的傳播時延。

載波監聽多點接入/碰撞避免CSMA/CA(carrier sense multiple access with collision avoidance)其工作原理如下

CSMA/CD與CSMA/CA的異同點:

相同點:CSMA/CD與CSMA/CA機制都從屬於CSMA的思路,其核心是先聽再說。換言之,兩個在接入信道之前都須要進行監聽。當發現信道空閑後,才能進行接入。

不同點:

輪詢協議:主結點輪流「邀請」從屬結點發送數據。

令牌:一個特殊格式的MAC控制幀,不含任何信息。控制信道的使用,確保同一時刻只有一個結點獨占信道。每個結點都可以在一定的時間內(令牌持有時間)獲得發送數據的權利,並不是無限制地持有令牌。應用於令牌環網(物理星型拓撲,邏輯環形拓撲)。採用令牌傳送方式的網路常用於負載較重、通信量較大的網路中。

輪詢訪問MAC協議/輪流協議/輪轉訪問MAC協議:基於多路復用技術劃分資源。

隨機訪問MAC協議: 用戶根據意願隨機發送信息,發送信息時可獨占信道帶寬。 會發生沖突

信道劃分介質訪問控制(MAC Multiple Access Control )協議:既要不產生沖突,又要發送時佔全部帶寬。

區域網(Local Area Network):簡稱LAN,是指在某一區域內由多台計算機互聯成的計算機組,使用廣播信道。其特點有

決定區域網的主要要素為:網路拓撲,傳輸介質與介質訪問控制方法。

區域網的分類

IEEE 802標准所描述的區域網參考模型只對應OSI參考模型的數據鏈路層與物理層,它將數據鏈路層劃分為邏輯鏈路層LLC子層和介質訪問控制MAC子層。

乙太網(Ethernet)指的是由Xerox公司創建並由Xerox、Intel和DEC公司聯合開發的基帶匯流排區域網規范,是當今現有區域網採用的最通用的通信協議標准。乙太網絡使用CSMA/CD(載波監聽多路訪問及沖突檢測)技術。 乙太網只實現無差錯接收,不實現可靠傳輸。

乙太網兩個標准:

乙太網提供無連接、不可靠的服務

10BASE-T是傳送基帶信號的雙絞線乙太網,T表示採用雙絞線,現10BASE-T 採用的是無屏蔽雙絞線(UTP),傳輸速率是10Mb/s。

計算機與外界有區域網的連接是通過通信適配器的。

在區域網中,硬體地址又稱為物理地址,或MAC地址。MAC地址:每個適配器有一個全球唯一的48位二進制地址,前24位代表廠家(由IEEE規定),後24位廠家自己指定。常用6個十六進制數表示,如02-60-8c-e4-b1-21。

最常用的MAC幀是乙太網V2的格式。

IEEE 802.11是無線區域網通用的標准,它是由IEEE所定義的無線網路通信的標准。

廣域網(WAN,Wide Area Network),通常跨接很大的物理范圍,所覆蓋的范圍從幾十公里到幾千公里,它能連接多個城市或國家,或橫跨幾個洲並能提供遠距離通信,形成國際性的遠程網路。

廣域網的通信子網主要使用分組交換技術。廣域網的通信子網可以利用公用分組交換網、衛星通信網和無線分組交換網,它將分布在不同地區的區域網或計算機系統互連起來,達到資源共享的目的。如網際網路(Internet)是世界范圍內最大的廣域網。

點對點協議PPP(Point-to-Point Protocol)是目前使用最廣泛的數據鏈路層協議,用戶使用撥號電話接入網際網路時一般都使用PPP協議。 只支持全雙工鏈路。

PPP協議應滿足的要求

PPP協議的三個組成部分

乙太網交換機

沖突域:在同一個沖突域中的每一個節點都能收到所有被發送的幀。簡單的說就是同一時間內只能有一台設備發送信息的范圍。

廣播域:網路中能接收任一設備發出的廣播幀的所有設備的集合。簡單的說如果站點發出一個廣播信號,所有能接收收到這個信號的設備范圍稱為一個廣播域。

乙太網交換機的兩種交換方式:

直通式交換機:查完目的地址(6B)就立刻轉發。延遲小,可靠性低,無法支持具有不同速率的埠的交換。

存儲轉發式交換機:將幀放入高速緩存,並檢查否正確,正確則轉發,錯誤則丟棄。延遲大,可靠性高,可以支持具有不同速率的埠的交換。

『柒』 計算機網路第三章(數據鏈路層)

3.1、數據鏈路層概述

概述

鏈路 是從一個結點到相鄰結點的一段物理線路, 數據鏈路 則是在鏈路的基礎上增加了一些必要的硬體(如網路適配器)和軟體(如協議的實現)

網路中的主機、路由器等都必須實現數據鏈路層

區域網中的主機、交換機等都必須實現數據鏈路層

從層次上來看數據的流動

僅從數據鏈路層觀察幀的流動

主機H1 到主機H2 所經過的網路可以是多種不同類型的

注意:不同的鏈路層可能採用不同的數據鏈路層協議

數據鏈路層使用的信道

數據鏈路層屬於計算機網路的低層。 數據鏈路層使用的信道主要有以下兩種類型:

點對點信道

廣播信道

區域網屬於數據鏈路層

區域網雖然是個網路。但我們並不把區域網放在網路層中討論。這是因為在網路層要討論的是多個網路互連的問題,是討論分組怎麼從一個網路,通過路由器,轉發到另一個網路。

而在同一個區域網中,分組怎麼從一台主機傳送到另一台主機,但並不經過路由器轉發。從整個互聯網來看, 區域網仍屬於數據鏈路層 的范圍

三個重要問題

數據鏈路層傳送的協議數據單元是 幀

封裝成幀

封裝成幀 (framing) 就是在一段數據的前後分別添加首部和尾部,然後就構成了一個幀。

首部和尾部的一個重要作用就是進行 幀定界 。

差錯控制

在傳輸過程中可能會產生 比特差錯 :1 可能會變成 0, 而 0 也可能變成 1。

可靠傳輸

接收方主機收到有誤碼的幀後,是不會接受該幀的,會將它丟棄

如果數據鏈路層向其上層提供的是不可靠服務,那麼丟棄就丟棄了,不會再有更多措施

如果數據鏈路層向其上層提供的是可靠服務,那就還需要其他措施,來確保接收方主機還可以重新收到被丟棄的這個幀的正確副本

以上三個問題都是使用 點對點信道的數據鏈路層 來舉例的

如果使用廣播信道的數據鏈路層除了包含上面三個問題外,還有一些問題要解決

如圖所示,主機A,B,C,D,E通過一根匯流排進行互連,主機A要給主機C發送數據,代表幀的信號會通過匯流排傳輸到匯流排上的其他各主機,那麼主機B,D,E如何知道所收到的幀不是發送給她們的,主機C如何知道發送的幀是發送給自己的

可以用編址(地址)的來解決

將幀的目的地址添加在幀中一起傳輸

還有數據碰撞問題

隨著技術的發展,交換技術的成熟,

在 有線(區域網)領域 使用 點對點鏈路 和 鏈路層交換機 的 交換式區域網 取代了 共享式區域網

在無線區域網中仍然使用的是共享信道技術

3.2、封裝成幀

介紹

封裝成幀是指數據鏈路層給上層交付的協議數據單元添加幀頭和幀尾使之成為幀

幀頭和幀尾中包含有重要的控制信息

發送方的數據鏈路層將上層交付下來的協議數據單元封裝成幀後,還要通過物理層,將構成幀的各比特,轉換成電信號交給傳輸媒體,那麼接收方的數據鏈路層如何從物理層交付的比特流中提取出一個個的幀?

答:需要幀頭和幀尾來做 幀定界

但比不是每一種數據鏈路層協議的幀都包含有幀定界標志,例如下面例子

前導碼

前同步碼:作用是使接收方的時鍾同步

幀開始定界符:表明其後面緊跟著的就是MAC幀

另外乙太網還規定了幀間間隔為96比特時間,因此,MAC幀不需要幀結束定界符

透明傳輸

透明

指某一個實際存在的事物看起來卻好像不存在一樣。

透明傳輸是指 數據鏈路層對上層交付的傳輸數據沒有任何限制 ,好像數據鏈路層不存在一樣

幀界定標志也就是個特定數據值,如果在上層交付的協議數據單元中, 恰好也包含這個特定數值,接收方就不能正確接收

所以數據鏈路層應該對上層交付的數據有限制,其內容不能包含幀定界符的值

解決透明傳輸問題

解決方法 :面向位元組的物理鏈路使用 位元組填充 (byte stuffing) 或 字元填充 (character stuffing),面向比特的物理鏈路使用比特填充的方法實現透明傳輸

發送端的數據鏈路層在數據中出現控制字元「SOH」或「EOT」的前面 插入一個轉義字元「ESC」 (其十六進制編碼是1B)。

接收端的數據鏈路層在將數據送往網路層之前刪除插入的轉義字元。

如果轉義字元也出現在數據當中,那麼應在轉義字元前面插入一個轉義字元 ESC。當接收端收到連續的兩個轉義字元時,就刪除其中前面的一個。

幀的數據部分長度

總結

3.3、差錯檢測

介紹

奇偶校驗

循環冗餘校驗CRC(Cyclic Rendancy Check)

例題

總結

循環冗餘校驗 CRC 是一種檢錯方法,而幀校驗序列 FCS 是添加在數據後面的冗餘碼

3.4、可靠傳輸

基本概念

下面是比特差錯

其他傳輸差錯

分組丟失

路由器輸入隊列快滿了,主動丟棄收到的分組

分組失序

數據並未按照發送順序依次到達接收端

分組重復

由於某些原因,有些分組在網路中滯留了,沒有及時到達接收端,這可能會造成發送端對該分組的重發,重發的分組到達接收端,但一段時間後,滯留在網路的分組也到達了接收端,這就造成 分組重復 的傳輸差錯

三種可靠協議

停止-等待協議SW

回退N幀協議GBN

選擇重傳協議SR

這三種可靠傳輸實現機制的基本原理並不僅限於數據鏈路層,可以應用到計算機網路體系結構的各層協議中

停止-等待協議

停止-等待協議可能遇到的四個問題

確認與否認

超時重傳

確認丟失

既然數據分組需要編號,確認分組是否需要編號?

要。如下圖所示

確認遲到

注意,圖中最下面那個數據分組與之前序號為0的那個數據分組不是同一個數據分組

注意事項

停止-等待協議的信道利用率

假設收發雙方之間是一條直通的信道

TD :是發送方發送數據分組所耗費的發送時延

RTT :是收發雙方之間的往返時間

TA :是接收方發送確認分組所耗費的發送時延

TA一般都遠小於TD,可以忽略,當RTT遠大於TD時,信道利用率會非常低

像停止-等待協議這樣通過確認和重傳機制實現的可靠傳輸協議,常稱為自動請求重傳協議ARQ( A utomatic R epeat re Q uest),意思是重傳的請求是自動進行,因為不需要接收方顯式地請求,發送方重傳某個發送的分組

回退N幀協議GBN

為什麼用回退N幀協議

在相同的時間內,使用停止-等待協議的發送方只能發送一個數據分組,而採用流水線傳輸的發送方,可以發送多個數據分組

回退N幀協議在流水線傳輸的基礎上,利用發送窗口來限制發送方可連續發送數據分組的個數

無差錯情況流程

發送方將序號落在發送窗口內的0~4號數據分組,依次連續發送出去

他們經過互聯網傳輸正確到達接收方,就是沒有亂序和誤碼,接收方按序接收它們,每接收一個,接收窗口就向前滑動一個位置,並給發送方發送針對所接收分組的確認分組,在通過互聯網的傳輸正確到達了發送方

發送方每接收一個、發送窗口就向前滑動一個位置,這樣就有新的序號落入發送窗口,發送方可以將收到確認的數據分組從緩存中刪除了,而接收方可以擇機將已接收的數據分組交付上層處理

累計確認

累計確認

優點:

即使確認分組丟失,發送方也可能不必重傳

減小接收方的開銷

減小對網路資源的佔用

缺點:

不能向發送方及時反映出接收方已經正確接收的數據分組信息

有差錯情況

例如

在傳輸數據分組時,5號數據分組出現誤碼,接收方通過數據分組中的檢錯碼發現了錯誤

於是丟棄該分組,而後續到達的這剩下四個分組與接收窗口的序號不匹配

接收同樣也不能接收它們,講它們丟棄,並對之前按序接收的最後一個數據分組進行確認,發送ACK4, 每丟棄一個數據分組,就發送一個ACK4

當收到重復的ACK4時,就知道之前所發送的數據分組出現了差錯,於是可以不等超時計時器超時就立刻開始重傳,具體收到幾個重復確認就立刻重傳,根據具體實現決定

如果收到這4個重復的確認並不會觸發發送立刻重傳,一段時間後。超時計時器超時,也會將發送窗口內以發送過的這些數據分組全部重傳

若WT超過取值范圍,例如WT=8,會出現什麼情況?

習題

總結

回退N幀協議在流水線傳輸的基礎上利用發送窗口來限制發送方連續發送數據分組的數量,是一種連續ARQ協議

在協議的工作過程中發送窗口和接收窗口不斷向前滑動,因此這類協議又稱為滑動窗口協議

由於回退N幀協議的特性,當通信線路質量不好時,其信道利用率並不比停止-等待協議高

選擇重傳協議SR

具體流程請看視頻

習題

總結

3.5、點對點協議PPP

點對點協議PPP(Point-to-Point Protocol)是目前使用最廣泛的點對點數據鏈路層協議

PPP協議是網際網路工程任務組IEIF在1992年制定的。經過1993年和1994年的修訂,現在的PPP協議已成為網際網路的正式標准[RFC1661,RFC1662]

數據鏈路層使用的一種協議,它的特點是:簡單;只檢測差錯,而不是糾正差錯;不使用序號,也不進行流量控制;可同時支持多種網路層協議

PPPoE 是為寬頻上網的主機使用的鏈路層協議

幀格式

必須規定特殊的字元作為幀定界符

透明傳輸

必須保證數據傳輸的透明性

實現透明傳輸的方法

面向位元組的非同步鏈路:位元組填充法(插入「轉義字元」)

面向比特的同步鏈路:比特填充法(插入「比特0」)

差錯檢測

能夠對接收端收到的幀進行檢測,並立即丟棄有差錯的幀。

工作狀態

當用戶撥號接入 ISP 時,路由器的數據機對撥號做出確認,並建立一條物理連接。

PC 機向路由器發送一系列的 LCP 分組(封裝成多個 PPP 幀)。

這些分組及其響應選擇一些 PPP 參數,並進行網路層配置,NCP 給新接入的 PC 機

分配一個臨時的 IP 地址,使 PC 機成為網際網路上的一個主機。

通信完畢時,NCP 釋放網路層連接,收回原來分配出去的 IP 地址。接著,LCP 釋放數據鏈路層連接。最後釋放的是物理層的連接。

可見,PPP 協議已不是純粹的數據鏈路層的協議,它還包含了物理層和網路層的內容。

3.6、媒體接入控制(介質訪問控制)——廣播信道

媒體接入控制(介質訪問控制)使用一對多的廣播通信方式

Medium Access Control 翻譯成媒體接入控制,有些翻譯成介質訪問控制

區域網的數據鏈路層

區域網最主要的 特點 是:

網路為一個單位所擁有;

地理范圍和站點數目均有限。

區域網具有如下 主要優點 :

具有廣播功能,從一個站點可很方便地訪問全網。區域網上的主機可共享連接在區域網上的各種硬體和軟體資源。

便於系統的擴展和逐漸地演變,各設備的位置可靈活調整和改變。

提高了系統的可靠性、可用性和殘存性。

數據鏈路層的兩個子層

為了使數據鏈路層能更好地適應多種區域網標准,IEEE 802 委員會就將區域網的數據鏈路層拆成 兩個子層 :

邏輯鏈路控制 LLC (Logical Link Control)子層;

媒體接入控制 MAC (Medium Access Control)子層。

與接入到傳輸媒體有關的內容都放在 MAC子層,而 LLC 子層則與傳輸媒體無關。 不管採用何種協議的區域網,對 LLC 子層來說都是透明的。

基本概念

為什麼要媒體接入控制(介質訪問控制)?

共享信道帶來的問題

若多個設備在共享信道上同時發送數據,則會造成彼此干擾,導致發送失敗。

隨著技術的發展,交換技術的成熟和成本的降低,具有更高性能的使用點對點鏈路和鏈路層交換機的交換式區域網在有線領域已完全取代了共享式區域網,但由於無線信道的廣播天性,無線區域網仍然使用的是共享媒體技術

靜態劃分信道

信道復用

頻分復用FDM (Frequency Division Multiplexing)

將整個帶寬分為多份,用戶在分配到一定的頻帶後,在通信過程中自始至終都佔用這個頻帶。

頻分復用 的所有用戶在同樣的時間 佔用不同的帶寬資源 (請注意,這里的「帶寬」是頻率帶寬而不是數據的發送速率)。

『捌』 計算機網路技術

第一章 計算機網路概述
1.1 計算機網路的定義和發展歷史
1.1.1 計算機網路的定義
計算機網路是現代通信技術與計算機技術相結合的產物,是在地理上分散的通過通信線路連接起來的計算機集合,這些計算機遵守共同的協議,依據協議的規定進行相互通信,實現網路各種資源的共享。
網路資源:所謂的網路資源包括硬體資源(如大容量磁碟、列印機等)、軟體資源(如工具軟體、應用軟體等)和數據資源(如資料庫文件和資料庫等)。
計算機網路也可以簡單地定義為一個互連的、自主的計算機集合。所謂互連是指相互連接在一起,所謂自主是指網路中的每台計算機都是相對獨立的,可以獨立工作。
1.1.2 計算機網路的發展歷史
課後小結:
1. 計算機網路的定義.
2. 網路資源的分類.
課後作業:預習P2-P8.

第二講
教學類型:理論課
教學課題:1.2~1.3
教學目標:1.了解計算機網路的功能和應用;2. 了解計算機網路的系統組成
教學重點、難點:計算機網路的功能和應用;網路的系統組成
教學方法:教師講解、演示、提問;
教學工具:多媒體幻燈片演示

1.2 計算機網路的功能和應用
1. 計算機網路的功能
(1)實現計算機系統的資源共享
(2)實現數據信息的快速傳遞
(3)提高可靠性
(4)提供負載均衡與分布式處理能力
(5)集中管理
(6)綜合信息服務
2.計算機網路的應用
計算機網路由於其強大的功能,已成為現代信息業的重要支柱,被廣泛地應用於現代生活的各個領域,主要有:
(1)辦公自動化
(2)管理信息系統
(3)過程式控制制
(4)互聯網應用(如電子郵件、信息發布、電子商務、遠程音頻與視頻應用)
1.3計算機網路的系統組成
1.3.1 網路節點和通信鏈路
從拓撲結構看,計算機網路就是由若干網路節點和連接這些網路節點的通信鏈路構成的。計算機網路中的節點又稱網路單元,一般可分為三類:訪問節點、轉接節點和混合節點。
通信鏈路是指兩個網路節點之間承載信息和數據的線路。鏈路可用各種傳輸介質實現,如雙絞線、同軸電纜、光纜、衛星、微波等。
通信鏈路又分為物理鏈路和邏輯鏈路。
1.3.2 資源子網和通信子網
從邏輯功能上可把計算機網路分為兩個子網:用戶資源子網和通信子網。
資源子網包括各種計算機和相關的硬體、軟體;
通信子網是連接這些計算機資源並提供通信服務的連接線路。正是在通信子網的支持下,用戶才能利用網路上的各種資源,進行相互間的通信,實現計算機網路的功能。
通信子網有兩種類型:
(1)公用型(如公用計算機互聯網CHINANET)
(2)專用型(如各類銀行網、證券網等)
1.3.3 網路硬體系統和網路軟體系統
計算機網路系統是由計算機網路硬體系統和網路軟體系統組成的。
網路硬體系統是指構成計算機網路的硬設備,包括各種計算機系統、終端及通信設備。
常見的網路硬體有:
(1)主機系統; (2)終端; (3)傳輸介質; (4)網卡;(5)集線器; (6)交換機; (7)路由器
網路軟體主要包括網路通信協議、網路操作系統和各類網路應用系統。
(1)伺服器操作系統
常見的有:Novell公司的NetWare、微軟公司的 Windows NT Server及 Unix系列。
(2)工作站操作系統
常見的有: Windows 95、Windows 98及Windows 2000等。
(3)網路通信協議
(4)設備驅動程序
(5)網路管理系統軟體
(6)網路安全軟體
(7)網路應用軟體
課後小結:
1. 計算機網路的功能和應用
2. 網路的系統組成
課後作業:預習P8-P10

第三講
教學類型:理論課
教學課題:1.4計算機網路的分類
教學目標:1.掌握計算機網路的分類;2. 了解計算機網路的定義和發展;3. 了解計算機網路的功能和應用;4. 了解計算機網路的系統組成
教學重點、難點:掌握計算機網路的分類
教學方法:教師講解、演示、提問;
教學工具:多媒體幻燈片演示
1.4 計算機網路的分類
1.4.1 按計算機網路覆蓋范圍分類
由於網路覆蓋范圍和計算機之間互連距離不同,所採用的網路結構和傳輸技術也不同,因而形成不同的計算機網路。
一般可以分為區域網(LAN)、城域網(MAN)、廣域網(WAN)三類。
1.4.2按計算機網路拓撲結構分類
網路拓撲是指連接的形狀,或者是網路在物理上的連通性。如果不考慮網路的的地理位置,而把連接在網路上的設備看作是一個節點,把連接計算機之間的通信線路看作一條鏈路,這樣就可以抽象出網路的拓撲結構。
按計算機網路的拓撲結構可將網路分為:星型網、環型網、匯流排型網、樹型網、網型網。
1.4.3 按網路的所有權劃分
1.公用網
由電信部門組建,由政府和電信部門管理和控制的網路。
2.專用網
也稱私用網,一般為某一單位或某一系統組建,該網一般不允許系統外的用戶使用。
1.4.4 按照網路中計算機所處的地位劃分
(1)對等區域網
(2)基於伺服器的網路(也稱為客戶機/伺服器網路)。
課後小結:
1. 計算機網路的定義;2. 計算機網路的功能和應用;3. 計算機網路的分類
課後作業:(P10)1 、4、5、6

第四講
教學類型:理論課
教學課題:1.1計算機網路的定義和發展
教學目標:1. 了解數據通信的基本概念;2. 了解數據傳輸方式
教學重點、難點:數據傳輸方式
教學方法:教師講解、演示、提問;
教學工具:多媒體幻燈片演示
教學內容與過程
導入:由現在的網路通訊中的一些普通關鍵詞引入新課
講授新課:(多媒體幻燈片演示或板書)
第二章 數據通信基礎
2.1 數據通信的基本概念
2.1.1 信息和數據
1.信息
信息是對客觀事物的反映,可以是對物質的形態、大小、結構、性能等全部或部分特性的描述,也可表示物質與外部的聯系。信息有各種存在形式。
2.數據
信息可以用數字的形式來表示,數字化的信息稱為數據。數據可以分成兩類:模擬數據和數字數據。
2.1.2 信道和信道容量
1.信道
信道是傳送信號的一條通道,可以分為物理信道和邏輯信道。
物理信道是指用來傳送信號或數據的物理通路,由傳輸及其附屬設備組成。
邏輯信道也是指傳輸信息的一條通路,但在信號的收、發節點之間並不一定存在與之對應的物理傳輸介質,而是在物理信道基礎上,由節點設備內部的連接來實現。
2.信道的分類
信道按使用許可權可分為專業信道和共用信道。
信道按傳輸介質可分為有線信道、無線信道和衛星信道。
信道按傳輸信號的種類可分為模擬信道和數字信道。
3.信道容量
信道容量是指信道傳輸信息的最大能力,通常用數據傳輸率來表示。即單位時間內傳送的比特數越大,則信息的傳輸能力也就越大,表示信道容量大。
2.1.3 碼元和碼字
在數字傳輸中,有時把一個數字脈沖稱為一個碼元,是構成信息編碼的最小單位。
計算機網路傳送中的每一位二進制數字稱為「碼元」或「碼位」,例如二進制數字10000001是由7個碼元組成的序列,通常稱為「碼字」。
2.1.4 數據通信系統主要技術指標
1.比特率:比特率是一種數字信號的傳輸速率,它表示單位時間內所傳送的二進制代碼的有效位(bit)數,單位用比特每秒(bps)或千比特每秒(Kbps)表示。
2.波特率:波特率是一種調制速率,也稱波形速率。在數據傳輸過程中,線路上每秒鍾傳送的波形個數就是波特率,其單位為波特(baud)。
3.誤碼率:誤碼率指信息傳輸的錯誤率,也稱誤碼率,是數據通信系統在正常工作情況下,衡量傳輸可靠性的指標。
4.吞吐量:吞吐量是單位時間內整個網路能夠處理的信息總量,單位是位元組/秒或位/秒。在單信道匯流排型網路中,吞吐量=信道容量×傳輸效率。
5.通道的傳播延遲:信號在信道中傳播,從信源端到達信宿端需要一定的時間,這個時間叫做傳播延遲(或時延)。
2.1.5 帶寬與數據傳輸率
1.信道帶寬
信道帶寬是指信道所能傳送的信號頻率寬度,它的值為信道上可傳送信號的最高頻率減去最低頻率之差。
帶寬越大,所能達到的傳輸速率就越大,所以通道的帶寬是衡量傳輸系統的一個重要指標。
2.數據傳輸率
數據傳輸率是指單位時間信道內傳輸的信息量,即比特率,單位為比特/秒。
一般來說,數據傳輸率的高低由傳輸每一位數據所佔時間決定,如果每一位所佔時間越小,則速率越高。
2.2 數據傳輸方式
2.2.1 數據通信系統模型
2.2.2 數據線路的通信方式
根據數據信息在傳輸線上的傳送方向,數據通信方式有:
單工通信
半雙工通信
雙工通信
2.2.3 數據傳輸方式
數據傳輸方式依其數據在傳輸線原樣不變地傳輸還是調制變樣後再傳輸,可分為基帶傳輸、頻帶傳輸和寬頻傳輸等方式。
1.基帶傳輸
2.頻帶傳輸
3.寬頻傳輸
課後小結:
1. 什麼是信息、數據?
2. 什麼是信道?常用的信道分類有幾種?
3. 什麼是比特率?什麼是波特率?
4. 什麼是帶寬、數據傳輸率與信道容量?
課後作業:(P20)二1、2、3、4、5、6

第五講
教學類型:理論課
教學課題:2.2~2.4
教學目標:1.理解數據交換技術;2. 理解差錯檢驗與校正技術
教學重點、難點:數據交換技術、差錯檢驗與校正技術
教學方法:教師講解、演示、提問;
教學工具:多媒體幻燈片演示
教學內容與過程:
導入:由現在的網路通訊中的一些普通關鍵詞引入新課
講授新課:(多媒體幻燈片演示或板書)
2.3 數據交換技術
通常使用四種交換技術:
電路交換
報文交換
分組交換
信元交換。
2.3.1 電路交換
電路交換(也稱線路交換)
在電路交換方式中,通過網路節點(交換設備)在工作站之間建立專用的通信通道,即在兩個工作站之間建立實際的物理連接。一旦通信線路建立,這對端點就獨占該條物理通道,直至通信線路被取消。
電路交換的主要優點是實時性好,由於信道專用,通信速率較高;缺點是線路利用率低,不能連接不同類型的線路組成鏈路,通信的雙方必須同時工作。
電路交換必定是面向連接的,電話系統就是這種方式。
電路交換的三個階段:
電路建立階段
數據傳輸階段
拆除電路階段
2.3.2 報文交換
報文是一個帶有目的端信息和控制信息的數據包。報文交換採取的是「存儲—轉發」(Store-and-Forward)方式,不需要在通信的兩個節點之間建立專用的物理線路。
報文交換的主要缺點是網路的延時較長且變化比較大,因而不宜用於實時通信或互動式的應用場合。
在 20 世紀 40 年代,電報通信也採用了基於存儲轉發原理的報文交換(message switching)。
報文交換的時延較長,從幾分鍾到幾小時不等。現在,報文交換已經很少有人使用了。
2.3.3 分組交換
分組交換也稱包交換,它是報文交換的一種改進,也屬於存儲-轉發交換方式,但它不是以報文為單位,而是以長度受到限制的報文分組(Packet)為單位進行傳輸交換的。分組也叫做信息包,分組交換有時也稱為包交換。
分組在網路中傳輸,還可以分為兩種不同的方式:數據報和虛電路。
分組交換的優點
高效 動態分配傳輸帶寬,對通信鏈路是逐段佔用。
靈活 以分組為傳送單位和查找路由。
迅速 必先建立連接就能向其他主機發送分組;充分使用鏈路的帶寬
可靠 完善的網路協議;自適應的路由選擇協議使網路有很好的生存性
2.3.4 信元交換技術
(ATM,Asynchronous Transfer Mode,非同步傳輸模式)
ATM是一種面向連接的交換技術,它採用小的固定長度的信息交換單元(一個53Byte的信元),話音、視頻和數據都可由信元的信息域傳輸。
它綜合吸取了分組交換高效率和電路交換高速率的優點,針對分組交換速率低的弱點,利用電路交換完全與協議處理幾乎無關的特點,通過高性能的硬體設備來提高處理速度,以實現高速化。
ATM是一種廣域網主幹線的較好選擇。
2.4 差錯檢驗與校正
數據傳輸中出現差錯有多種原因,一般分成內部因素和外部因素。
內部因素有噪音脈沖、脈動噪音、衰減、延遲失真等。
外部因素有電磁干擾、太陽噪音、工業噪音等。
為了確保無差錯地傳輸,必須具有檢錯和糾錯的功能。常用的校驗方式有奇偶校驗和循環冗餘碼校驗。
2.4.1 奇偶校驗
採用奇偶校驗時,若其中兩位同時發生錯誤,則會發生沒有檢測出錯誤的情況。
2.4.2 循環冗餘碼校驗。
這種編碼對隨機差錯和突發差錯均能以較低的冗餘充進行嚴格的檢查。
課後小結:
1. 數據通信的的一些基本知識
2. 三種交換方式的基本工作原理
3. 兩種差錯校驗方法:奇偶校驗和循環冗餘校驗
課後作業:(P20)二7、8、9

第六講
教學類型:復習課
教學課題:第一章與第二章
教學目標:通過復習掌握第一、二章的重點
教學重點、難點:第一、二章的重點
教學方法:教師講解、演示、提問;
教學工具:多媒體幻燈片演示
教學內容:第一、二章的內容

第七講
教學類型:測驗一

第八講
教學類型:理論課
教學課題:第三章 計算機網路技術基礎
教學目標:1. 掌握幾種常見網路拓撲結構的原理及其特點;2. 掌握ISO/OSI網路參考模型及各層的主要功能
教學重點、難點:1. 掌握幾種常見網路拓撲結構的原理及其特點;2. 掌握ISO/OSI網路參考模型及各層的主要功能
教學方法:教師講解、演示、學生認真學習並思考、記憶;教師講授與學生理解協調並重的教學法
教學工具:多媒體幻燈片演示
教學內容與過程
導入:提問學生對OSI的七層模型和TCP/IP四層模型的理解。
引導學生總結重要原理並認真加以研究。
教師總結歸納本章重要原理的應用,進入教學課題。
講授新課:(多媒體幻燈片演示或板書)
第三章 計算機網路技術基礎
3.1 計算機網路的拓撲結構
3.1.1 什麼是計算機網路的拓撲結構
網路拓撲是指網路連接的形狀,或者是網路在物理上的連通性。
網路拓撲結構能夠反映各類結構的基本特徵,即不考慮網路節點的具體組成,也不管它們之間通信線路的具體類型,把網路節點畫作「點」,把它們之間的通信線路畫作「線」,這樣畫出的圖形就是網路的拓撲結構圖。
不同的拓撲結構其信道訪問技術、網路性能、設備開銷等各不相同,分別適應於不同場合。它影響著整個網路的設計、功能、可靠性和通信費用等方面,是研究計算機網路的主要環節之一。
計算機網路的拓撲結構主要是指通信子網的拓撲結構,常見的一般分為以下幾種:
1.匯流排型;2.星型;3.環型;4.樹型;5.網狀型
3.1.2 匯流排型拓撲結構
匯流排結構中,各節點通過一個或多個通信線路與公共匯流排連接。匯流排型結構簡單、擴展容易。網路中任何節點的故障都不會造成全網的故障,可靠性較高。
匯流排型結構是從多機系統的匯流排互聯結構演變而來的,又可分為單匯流排結構和多匯流排結構,常用CSMA/CD和令牌匯流排訪問控制方式。
匯流排型結構的缺點:
(1)故障診斷困難;(2)故障隔離困難;(3)中繼器等配置;(4)實時性不強
3.1.3 星型拓撲結構
星型的中心節點是主節點,它接收各分散節點的信息再轉發給相應節點,具有中繼交換和數據處理功能。星型網的結構簡單,建網容易,但可靠性差,中心節點是網路的瓶頸,一旦出現故障則全網癱瘓。
星型拓撲結構的訪問採用集中式控制策略,採用星型拓撲的交換方式有電路交換和報文交換。
星型拓撲結構的優點:
(1)方便服務;(2)每個連接只接一個設備;(3)集中控制和便於故障診斷;(4)簡單的訪問協議
星型拓撲結構的缺點:
(1)電纜長度和安裝;(2)擴展困難;(3)依賴於中央節點
3.1.4 環型拓撲結構
網路中節點計算機連成環型就成為環型網路。環路上,信息單向從一個節點傳送到另一個節點,傳送路徑固定,沒有路徑選擇問題。環型網路實現簡單,適應傳輸信息量不大的場合。任何節點的故障均導致環路不能正常工作,可靠性較差。
環型網路常使用令牌環來決定哪個節點可以訪問通信系統。
環型拓撲結構的優點:
(1)電纜長度短;(2)適用於光纖;(3)網路的實時性好
環型拓撲結構的缺點:
(1)網路擴展配置困難;(2)節點故障引起全網故障;(3)故障診斷困難;(4)拓撲結構影響訪問協議
3.1.5 其他類型拓撲結構
1.樹型拓撲結構
樹型網路是分層結構,適用於分級管理和控制系統。網路中,除葉節點及其聯機外,任一節點或聯機的故障均隻影響其所在支路網路的正常工作。
2.星型環型拓撲結構
3.1.6 拓撲結構的選擇原則
拓撲結構的選擇往往和傳輸介質的選擇和介質訪問控制方法的確定緊密相關。選擇拓撲結構時,應該考慮的主要因素有以下幾點:
(1)服務可靠性; (2)網路可擴充性; (3)組網費用高低(或性能價格比)。
3.2 ISO/OSI網路參考模型
建立分層結構的原因和意義:
建立計算機網路的根本目的是實現數據通信和資源共享,而通信則是實現所有網路功能的基礎和關鍵。對於網路的廣泛實施,國際標准化組織ISO(International Standard Organization),經過多年研究,在1983年提出了開放系統互聯參考模型OSI/RM(Reference Model of Open System Interconnection),這是一個定義連接異種計算機的標准主體結構,給網路設計者提供了一個參考規范。
OSI參考模型的層次
OSI參考模型共有七層,由低到高分別是:物理層、數據鏈路層、網路層、傳輸層、會話層、表示層和應用層。
1.OSI參考模型的特性
(1)是一種將異構系統互聯的分層結構;
(2)提供了控制互聯系統交互規則的標准骨架;
(3)定義了一種抽象結構,而並非具體實現的描述;
(4)不同系統上的相同層的實體稱為同等層實體;
(5)同等層實體之間的通信由該層的協議管理;
(6)相鄰層間的介面定義了原語操作和低層向上層提供的服務;
(7)所提供的公共服務是面向連接的或無連接的數據服務;
(8)直接的數據傳送僅在最低層實現;
(9)每層完成所定義的功能,修改本層的功能並不影響其它層。
2.有關OSI參考模型的技術術語
在OSI參考模型中,每一層的真正功能是為其上一層提供服務。在對這些功能或服務過程以及協議的描述中,經常使用如下一些技術術語:
(1)數據單元
服務數據單元SDU(Service Data Unit)
協議數據單元PDU(Protocol Data Unit)
介面數據單元IDU(Interface Data Unit)
服務訪問點SAP(Service Access Point)
服務原語(Primitive)
(2)面向連接和無連接的服務
下層能夠向上層提供的服務有兩種基本形式:面向連接和無連接的服務。
面向連接的服務是在數據傳輸之前先建立連接,主要過程是:建立連接、進行數據傳送,拆除鏈路。面向連接的服務,又稱為虛電路服務。
無連接服務沒有建立和拆除鏈路的過程,一般也不採用可靠方式傳送。不可靠(無確認)的無連接服務又稱為數據報服務。
3.2.1 物理層
物理層是OSI模型的最低層,其任務是實現物理上互連系統間的信息傳輸。
1.物理層必須具備以下功能
(1)物理連接的建立、維持與釋放;2)物理層服務數據單元傳輸;(3)物理層管理。
2.媒體和互聯設備
物理層的媒體包括架空明線、平衡電纜、光纖、無線信道等;
通信用的互聯設備如各種插頭、插座等;區域網中的各種粗、細同軸電纜,T型接/插頭,接收器,發送器,中繼器等都屬物理層的媒體和連接器。
3.2.2 數據鏈路層
數據鏈路可以粗略地理解為數據信道。數據鏈路層的任務是以物理層為基礎,為網路層提供透明的、正確的和有效的傳輸線路,通過數據鏈路協議,實施對二進制數據正確、可靠的傳輸。
數據鏈路的建立、拆除、對數據的檢錯、糾錯是數據鏈路層的基本任務。
1.鏈路層的主要功能
(1)鏈路管理;(2)幀的裝配與分解;(3)幀的同步;(4)流量控制與順序控制;(5)差錯控制;(6)使接收端能區分數據和控制信息;(7)透明傳輸;(8)定址
2.數據鏈路層的主要協議
(1)ISO1745-1975;(2)ISO3309-1984;(3)ISO7776
3.鏈路層產品
獨立的鏈路產品中最常見的是網卡,網橋也是鏈路產品。
數據鏈路層將本質上不可靠的傳輸媒介變成可靠的傳輸通路提供給網路層。在IEEE802.3情況下,數據鏈路層分成兩個子層:一個是邏輯鏈路控制,另一個是媒體訪問控制。
3.2.3 網路層
網路層是通信子網與資源子網之間的介面,也是高、低層協議之間的介面層。網路層的主要功能是路由選擇、流量控制、傳輸確認、中斷、差錯及故障的恢復等。當本地端與目的端不處於同一網路中,網路層將處理這些差異。
1.網路層的主要功能
(1)建立和拆除網路連接;
(2)分段和組塊;
(3)有序傳輸和流量控制;
(4)網路連接多路復用;
(5)路由選擇和中繼;
(6)差錯的檢測和恢復;
(7)服務選擇
2.網路層提供的服務
OSI/RM中規定,網路層中提供無連接和面向連接兩種類型的服務,也稱為數據報服務和虛電路服務。
3.路由選擇
3.2.4 傳輸層
傳輸層是資源子網與通信子網的介面和橋梁。傳輸層下面三層(屬於通信子網)面向數據通信,上面三層(屬於資源子網)面向數據處理。因此,傳輸層位於高層和低層中間,起承上啟下的作用。它屏蔽了通信子網中的細節,實現通信子網中端到端的透明傳輸,完成資源子網中兩節點間的邏輯通信。它是負責數據傳輸的最高一層,也是整個七層協議中最重要和最復雜的一層。
1.傳輸層的特性
(1)連接與傳輸;(2)傳輸層服務
2.傳輸層的主要功能
3.傳輸層協議
3.2.5 會話層
會話層、表示層和應用層一起構成OSI/RM的高層,會話層位於OSI模型面向信息處理的高三層中的最下層,它利用傳輸層提供的端到端數據傳輸服務,具體實施服務請求者與服務提供者之間的通信,屬於進程間通信的范疇。
會話層還對會話活動提供組織和同步所必須的手段,對數據傳輸提供控制和管理。
1.會話層的主要功能;
(1)提供遠程會話地址;
(2)會話建立後的管理;
(3)提供把報文分組重新組成報文的功能
2.會話層提供的服務
(1)會話連接的建立和拆除;
(2)與會話管理有關的服務;
(3)隔離;
(4)出錯和恢復控制
3.2.6 表示層
表示層為應用層服務,該服務層處理的是通信雙方之間的數據表示問題。為使通信的雙方能互相理解所傳送信息的含義,表示層就需要把發送方具有的內部格式編碼為適於傳輸的比特流,接收方再將其解碼為所需要的表示形式。
數據傳送包括語義和語法兩個方面的問題。OSI模型中,有關語義的處理由應用層負責,表示層僅完成語法的處理。
1.表示層的主要功能
(1)語法轉換;(2)傳送語法的選擇;(3)常規功能
2.表示層提供的服務
(1)數據轉換和格式轉換;
(2)語法選擇;
(3)數據加密與解密;
(4)文本壓縮
3.2.7 應用層
OSI的7層協議從功能劃分來看,下面6層主要解決支持網路服務功能所需要的通信和表示問題,應用層則提供完成特定網路功能服務所需要的各種應用協議。
應用層是OSI的最高層,直接面向用戶,是計算機網路與最終用戶的介面。負責兩個應用進程(應用程序或操作員)之間的通信,為網路用戶之間的通信提供專用程序。
課後小結:
1.計算機網路的拓撲結構的分類
2.OSI參考模型的層次
課後作業:預習P37~P39

第九講
教學類型:理論課
教學課題:3.3~3.4
教學目標:
1. 掌握共享介質方式的CSMA/CD和令牌傳遞兩種數據傳輸控制方式的基本原理
2. 了解幾種常見的網路類型
教學重點、難點:理解數據傳輸控制方式
教學方法:教師講解、演示、提問;
教學工具:多媒體幻燈片演示
教學內容與過程
導入:提問學生對OSI的七層模型和TCP/IP四層模型的理解。
引導學生總結重要原理並認真加以研究。
教師總結歸納本章重要原理的應用,進入教學課題。
講授新課:(多媒體幻燈片演示或板書
3.3 數據傳輸控制方式
數據和信息在網路中是通過信道進行傳輸的,由於各計算機共享網路公共信道,因此如何進行信道分配,避免或解決通道爭用就成為重要的問題,就要求網路必須具備網路的訪問控制功能。介質訪問控制(MAC)方法是在區域網中對數據傳輸介質進行訪問管理的方法。
3.3.1 具有沖突檢測的載波偵聽多路訪問
沖突檢測/載波偵聽(CSMA/CD法)
CSMA/CD是基於IEEE802.3標準的乙太網中採用的MAC方法,也稱為「先聽後發、邊發邊聽」。它的工作方式是要傳輸數據的節點先對通道進行偵聽,以確定通道中是否有別的站在傳輸數據,若信道空閑,該節點就可以佔用通道進行傳輸,反之,該節點將按一定演算法等待一段時間後再試,並且在發送過程中進行沖突檢測,一旦有沖突立即停止發送。通常採用的演算法有三種:非堅持CSMA、1-堅持CSMA、P-堅持CSMA。
目前,常見的區域網,一般都是採用CSMA/CD訪問控制方法的邏輯匯流排型網路。用戶只要使用Ethernet網卡,就具備此種功能。

『玖』 計算機網路(3)

課程筆記,筆記主要來源於《計算機網路(第7版)》,侵刪

簡述/引言:
信道是鏈路的一個抽象,並非實際的描述。
數據鏈路層有兩種類型:

鏈路:一個結點到相鄰接待您的一段物理線路(有限或無線),中間沒有其他的交換結點。
數據鏈路:實現協議的硬體和軟體 + 鏈路 = 數據鏈路
網路適配器:一般都包括了數據鏈路層和物理層這兩層的功能
*規程:早期的數據通信協議
幀:點對點信道的數據鏈路層的協議數據單元
IP數據報:網路層協議數據單元(數據報、分組、包)

三個基本問題:封裝成幀、透明傳輸、差錯檢測

目前點對點鏈路中,使用最廣泛的數據鏈路層協議就是PPP協議
PPP協議:用戶計算機和ISP進行通信時所使用的數據鏈路層協議
PPP協議應滿足的需求(主要部分):

PPP協議的三個組成部分:

首部和尾部分別為四個欄位和兩個欄位
首部:

區域網的主要特點:網路為一個單位所擁有,且地理范圍和站點數目均有限
*區域網具有的優點:

區域網按網路拓撲進行分類有:星形網、環線網、匯流排網(現使用最多)

共享信道的方法:

乙太網的兩個標准:DIX Ethernet V2 和 IEEE的802.3標准
802.3標准把區域網的數據鏈路層拆成兩個子層:邏輯鏈路控制LLC子層(偏網路層)、媒體接入控制MAC子層(偏物理層)

適配器(網路介面卡/網卡)的作用:連接計算機與外界區域網

早期的乙太網是多個計算機連接在一條匯流排上的
匯流排的特點:廣播通信方式,實現一對一通信

為了通信的簡便,乙太網採取了兩種措施:

CSMA/CD協議(載波監聽多點接入/碰撞檢測):

CSMA/CD協議特性:

關於碰撞:

集線器:在星型拓撲網路的中心增加的一種可靠性非常高的設備
集線器的特點:

令 , 為單程端到端時延, 為幀的發送時間
則 越小,乙太網的信道利用率就越高
極限信道率
只有當參數 遠小於1才能得到盡可能的信道利用率

MAC地址:48位(IEEE 802標准),是區域網中的硬體地址/物理地址,是每個站的「名字」或標識符(固化在適配器的ROM中的地址,一般不可更改)
IP地址:32位,代表了一台計算機,是終端地址(可更改)

MAC幀之間傳送要有一定的時間間隔
適配器對接收到的MAC幀的處理:先檢查MAC幀中的目的地址,若是本站的則收下再進行其它處理,否則直接丟棄
接收到的MAC幀有三種:

MAC幀的格式
兩種MAC幀格式標准:DIX Ethernet V2標准(乙太網V2標准)、IEEE的802.3標准
MAC幀的類型欄位用來標志上一層用的什麼協議,以便把接收到的MAC幀的數據上交給上一層的這個協議
IEEE 802.3標准規定的無效MAC幀:

(原理不變,擴大距離)

使用光纖和一對光纖調節器

使用多個集線器
好處:

缺點:

最初使用網橋
網橋的傳輸不會改變MAC幀的源地址
網橋的作用:對MAC幀的目的地址進行轉發和過濾

網橋的優點:

網橋的缺點:

後改用乙太網交換機
乙太網交換機 / 交換式集線器:工作在數據鏈路層,實質上就是一個多介面的網橋
乙太網交換機特點:是一種透明網橋(一種即插即用設備),其內部的幀交換表(地址表)是通過自學習演算法自動轉建立起來的

乙太網交換機可實現虛擬區域網(VLAN)
虛擬區域網:由一些區域網網段構成的與物理位置無關的邏輯組

閱讀全文

與計算機網路課堂作業三相關的資料

熱點內容
電腦不能訪問網路設置怎麼辦 瀏覽:274
無線網路電視好用嗎 瀏覽:493
oppo手機如何增強手機網路信號 瀏覽:156
blued網路異常請稍後重試 瀏覽:26
隨身路由器網路卡 瀏覽:160
最大的中國移動網路電視 瀏覽:19
大窪網路營銷 瀏覽:174
降低網路安全事件報告 瀏覽:219
電腦wifi連接後怎麼斷開網路 瀏覽:69
延慶網路貨運業務多少錢 瀏覽:107
移動網路中繼設備 瀏覽:313
網路經濟帶來的影響有哪些 瀏覽:430
這我哪裡肝得動網路梗 瀏覽:98
網路共享設置為什麼啟動不了 瀏覽:720
網路共享蘋果與電腦無線網在哪 瀏覽:411
無線網路注冊需要登錄 瀏覽:941
連接無線網路為什麼要輸id密碼怎麼解 瀏覽:635
花卉網路有限公司電話是多少 瀏覽:894
電腦網路轉接器 瀏覽:347
存在默認網路或路由器無法上網 瀏覽:799

友情鏈接