導航:首頁 > 網路連接 > 計算機網路原理及協議

計算機網路原理及協議

發布時間:2022-01-15 15:42:06

A. 計算機網路原理與計算機網路基本原理

《計算機網路原理》是一本採用全新體系結構的計算機網路基礎教材。全書共分為3篇,分別從3個角度觀察計算機網路,理解計算機網路的工作原理:第1篇是在平面上觀察計算機網路,把計算機網路看做由節點、鏈路和協議三個元素組成的系統,並介紹了鏈路和節點上的基本通信技術;第2篇是立體地觀察計算機網路,認識計算機網路體系結構,介紹了ISO/OSI參考模型和IEEE 802、TCP/IP兩種計算機網路主流體系結構;第3篇介紹計算機網路應用程序的C/S工作模式和基於C/S模式的計算機網路應用程序的開發方法。

這3篇將計算機網路的基本原理分解成相對獨立的3個層次。每完成一個層次內容的學習,對計算機網路工作原理的認識就會上升到一個新的高度,並最後歸結到計算機網路應用層的實現上來。

B. 計算機網路協議的概念.內容

未進行網路中的數據交換而建立的規則,標准或約定成為網路協議。有語法,語義,同步三要素構成。

C. 什麼叫計算機網路協議解釋他的組成.

網路協議的定義:為計算機網路中進行數據交換而建立的規則、標准或約定的集合。例如,網路中一個微機用戶和一個大型主機的操作員進行通信,

D. 計算機網路的協議是什麼

計算機協議,也叫作網路協議,是通信計算機雙方必須共同遵從的一組約定。

為了使數據在網路上從源到達目的,網路通信的參與方必須遵循相同的規則,這套規則稱為協議,它最終體現為在網路上傳輸的數據包的格式。最常見的計算機協議是OSI/RM協議。

國際標准化組織(ISO)在1978年提出了「開放系統互聯參考模型」,即著名的OSI/RM模型。它將計算機網路體系結構的通信協議劃分為七層,自下而上依次為:物理層、數據鏈路層、網路層、傳輸層、會話層、表示層、應用層。其中第四層完成數據傳送服務,上面三層面向用戶。

(4)計算機網路原理及協議擴展閱讀

常見的計算機協議還有:

1、IPX/SPX協議

是Novell開發的專用於NetWare網路中的協議,但是也非常常用。大部分可以聯機的游戲都支持IPX/SPX協議,比如星際爭霸,反恐精英等等。

2、ARP/RARP協議

地址解析協議,原理是主機發送信息時將包含目標IP地址的ARP請求廣播到網路上的所有主機,並接收返回消息,以此確定目標的物理地址;收到返回消息後將該IP地址和物理地址存入本機ARP緩存中並保留一定時間,下次請求時直接查詢ARP緩存以節約資源。

3、TCP/IP協議

是Internet最基本的協議、Internet國際互聯網路的基礎,由網路層的IP協議和傳輸層的TCP協議組成。通俗而言:TCP負責發現傳輸的問題,一有問題就發出信號,要求重新傳輸,直到所有數據安全正確地傳輸到目的地。而IP是給網際網路的每一台聯網設備規定一個地址。

E. 關於網路協議和工作原理

http://www.cnpaf.net/class/tcpandip/
tcp/ip
TCP/IP協議(Transmission Control Protocol/Internet Protocol)叫做傳輸控制/網際協議,又叫網路通訊協議,這個協議是Internet國際互聯網路的基礎。
TCP/IP是用於計算機通信的一組協議,我們通常稱它為TCP/IP協議族。它是70年代中期美國國防部為其ARPANET廣域網開發的網路體系結構和協議標准,以它為基礎組建的INTERNET是目前國際上規模最大的計算機網路,正因為INTERNET的廣泛使用,使得TCP/IP成了事實上的標准。
TCP/IP是網路中使用的基本的通信協議。雖然從名字上看TCP/IP包括兩個協議,傳輸控制協議(TCP)和網際協議(IP),但TCP/IP實際上是一組協議,它包括TCP、IP、UDP、ICMP、RIP、TELNET、FTP、SMTP、ARP、TFTP等許多協議,這些協議一起稱為TCP/IP協議。
TCP/IP由四個層次組成:數據鏈路層、網路層、傳輸層、應用層。
一數據鏈路層
這是TCP/IP軟體的最低層,負責接收IP數據報並通過網路發送之,或者從網路上接收物理幀,抽出IP數據報,交給IP層。
二網路層
負責相鄰計算機之間的通信。其功能包括三方面:
1、處理來自傳輸層的分組發送請求,收到請求後,將分組裝入IP數據報,填充報頭,選擇去往信宿機的路徑,然後將數據報發往適當的網路介面。
2、處理輸入數據報:首先檢查其合法性,然後進行尋徑--假如該數據報已到達信宿機,則去掉報頭,將剩下部分交給適當的傳輸協議;假如該數據報尚未到達信宿,則轉發該數據報。
3、處理路徑、流控、擁塞等問題。
三傳輸層
提供應用程序間的通信。其功能包括:
1、格式化信息流;
2、提供可靠傳輸。為實現後者,傳輸層協議規定接收端必須發回確認,並且假如分組丟失,必須重新發送。
四應用層
向用戶提供一組常用的應用程序,比如電子郵件、文件傳輸訪問、遠程登錄等。遠程登錄TELNET使用TELNET協議提供在網路其它主機上注冊的介面。TELNET會話提供了基於字元的虛擬終端。文件傳輸訪問FTP使用FTP協議來提供網路內機器間的文件拷貝功能。
OSI七層模型與TCP/IP協議的對應關系。
OSI中的層 功能 TCP/IP協議族
應用層 文件傳輸,電子郵件,文件服務,虛擬終端 TFTP,HTTP,SNMP,FTP,SMTP,DNS,Telnet
表示層 數據格式化,代碼轉換,數據加密 沒有協議
會話層 解除或建立與別的接點的聯系 沒有協議
傳輸層 提供端對端的介面 TCP,UDP
網路層 為數據包選擇路由 IP,ICMP,RIP,OSPF,BGP,IGMP
數據鏈路層 傳輸有地址的幀以及錯誤檢測功能 SLIP,CSLIP,PPP,ARP,RARP,MTU
物理層 以二進制數據形式在物理媒體上傳輸數據 ISO2110,IEEE802。IEEE802.2
TCP/IP協議中一些常用協議英文名:
TCP(Transmission Control Protocol)傳輸控制協議
IP(Internet Protocol)網際協議
UDP(User Datagram Protocol)用戶數據報協議
ICMP(Internet Control Message Protocol)互聯網控制信息協議
SMTP(Simple Mail Transfer Protocol)簡單郵件傳輸協議
SNMP(Simple Network manage Protocol)簡單網路管理協議
FTP(File Transfer Protocol)文件傳輸協議
ARP(Address Resolation Protocol)地址解析協議

F. 計算機網路協議

TCP:傳輸控制協議
傳輸控制協議 TCP 是 TCP/IP 協議棧中的傳輸層協議,它通過序列確認以及包重發機制,提供可靠的數據流發送和到應用程序的虛擬連接服務。與 IP 協議相結合, TCP 組成了網際網路協議的核心。

由於大多數網路應用程序都在同一台機器上運行,計算機上必須能夠確保目的地機器上的軟體程序能從源地址機器處獲得數據包,以及源計算機能收到正確的回復。這是通過使用 TCP 的「埠號」完成的。網路 IP 地址和埠號結合成為唯一的標識 , 我們稱之為「套接字」或「端點」。 TCP 在端點間建立連接或虛擬電路進行可靠通信。

TCP 服務提供了數據流傳輸、可靠性、有效流控制、全雙工操作和多路復用技術等。

關於流數據傳輸 ,TCP 交付一個由序列號定義的無結構的位元組流。 這個服務對應用程序有利,因為在送出到 TCP 之前應用程序不需要將數據劃分成塊, TCP 可以將位元組整合成欄位,然後傳給 IP 進行發送。

TCP 通過面向連接的、端到端的可靠數據報發送來保證可靠性。 TCP 在位元組上加上一個遞進的確認序列號來告訴接收者發送者期望收到的下一個位元組。如果在規定時間內,沒有收到關於這個包的確認響應,重新發送此包。 TCP 的可靠機制允許設備處理丟失、延時、重復及讀錯的包。超時機制允許設備監測丟失包並請求重發。

TCP 提供了有效流控制。當向發送者返回確認響應時,接收 TCP 進程就會說明它能接收並保證緩存不會發生溢出的最高序列號。

全雙工操作: TCP 進程能夠同時發送和接收包。

TCP 中的多路技術:大量同時發生的上層會話能在單個連接上時進行多路復用。

G. 計算機網路體系結構協議

http://211.65.8.110/CourseLib/453/file-4.html 打開左側的第三章通信網協議 查看即可。以下是摘要

一、會話層
為兩個應用層協議實體提供報文交換(即會話)的管理和同步。

會話層功能

提供遠程會話地址

將會話地址轉換為對應的傳輸地址。

會話建立和管理

會話建立

會話雙方必須經過批准。

會話雙方要確定通信方式。

會話管理

管理會話次序。

審查會話用戶資格。

提供把報文分組重新組成報文的功能。

二、表示層

為兩個應用層實體提供抽象語法交換報文的途徑。

表示層功能

數據轉換

格式轉換

語法選擇

三、應用層

由用戶應用進程規定訪問和提供一系列分布信息處理服務的方法。

應用實體組成

公共應用服務元素CASE

特定應用服務元素SASE

FTAM(文件傳送、訪問和管理)

JTM(作業傳送和處理)

VT(虛擬終端)

MHS(報文處理服務)
http://211.65.8.110/CourseLib/453/file-4.html

H. 計算機網路原理的主要內容

摘要 計算機網路基本原理是將地理位置不同的具有獨立功能的多台計算機及其外部設備,通過通信線路連接起來,在網路操作系統,網路管理軟體及網路通信協議的管理和協調下,實現資源共享和信息傳遞。計算機網路工作原理是將地理位置不同的具有獨立功能的多台計算機及其外部設備,通過通信線路連接起來,在網路操作系統,網路管理軟體及網路通信協議的管理和協調下,實現資源共享和信息傳遞

I. 計算機網路協議四的特點和原理

ip就是網際互聯協議,支持的有4個協議:ARP,RARP,ICMP,IGMP1.網路互連把自己的網路同其它的網路互連起來,從網路中獲取的信息和向網路發布自己的消息,是網路互連的最主要的動力。網路的互連有多種方式,其中使用最多的是網橋互連和路由器互連。1.1網橋互連的網路網橋工作在OSI模型中的第二層,即鏈路層。完成數據幀(frame)的轉發,主要目的是在連接的網路間提供透明的通信。網橋的轉發是依據數據幀中的源地址和目的地址來判斷一個幀是否應轉發和轉發到哪個埠。幀中的地址稱為「MAC」地址或「硬體」地址,一般就是網卡所帶的地址。網橋的作用是把兩個或多個網路互連起來,提供透明的通信。網路上的設備看不到網橋的存在,設備之間的通信就如同在一個網上一樣方便。由於網橋是在數據幀上進行轉發的,因此只能連接相同或相似的網路(相同或相似結構的數據幀),如乙太網之間、乙太網與令牌環(tokenring)之間的互連,對於不同類型的網路(數據幀結構不同),如乙太網與X.25之間,網橋就無能為力了。網橋擴大了網路的規模,提高了網路的性能,給網路應用帶來了方便,在以前的網路中,網橋的應用較為廣泛。但網橋互連也帶來了不少問題:一個是廣播風暴,網橋不阻擋網路中廣播消息,當網路的規模較大時(幾個網橋,多個乙太網段),有可能引起廣播風暴(broadcastingstorm),導致整個網路全被廣播信息充滿,直至完全癱瘓。第二個問題是,當與外部網路互連時,網橋會把內部和外部網路合二為一,成為一個網,雙方都自動向對方完全開放自己的網路資源。這種互連方式在與外部網路互連時顯然是難以接受的。問題的主要根源是網橋只是最大限度地把網路溝通,而不管傳送的信息是什麼。1.2路由器互連網路路由器互連與網路的協議有關,我們討論限於TCP/IP網路的情況。路由器工作在OSI模型中的第三層,即網路層。路由器利用網路層定義的「邏輯」上的網路地址(即IP地址)來區別不同的網路,實現網路的互連和隔離,保持各個網路的獨立性。路由器不轉發廣播消息,而把廣播消息限制在各自的網路內部。發送到其他網路的數據茵先被送到路由器,再由路由器轉發出去。IP路由器只轉發IP分組,把其餘的部分擋在網內(包括廣播),從而保持各個網路具有相對的獨立性,這樣可以組成具有許多網路(子網)互連的大型的網路。由於是在網路層的互連,路由器可方便地連接不同類型的網路,只要網路層運行的是IP協議,通過路由器就可互連起來。網路中的設備用它們的網路地址(TCP/IP網路中為IP地址)互相通信。IP地址是與硬體地址無關的「邏輯」地址。路由器只根據IP地址來轉發數據。IP地址的結構有兩部分,一部分定義網路號,另一部分定義網路內的主機號。目前,在Internet網路中採用子網掩碼來確定IP地址中網路地址和主機地址。子網掩碼與IP地址一樣也是32bit,並且兩者是一一對應的,並規定,子網掩碼中數字為「1」所對應的IP地址中的部分為網路號,為「0」所對應的則為主機號。網路號和主機號合起來,才構成一個完整的IP地址。同一個網路中的主機IP地址,其網路號必須是相同的,這個網路稱為IP子網。通信只能在具有相同網路號的IP地址之間進行,要與其它IP子網的主機進行通信,則必須經過同一網路上的某個路由器或網關(gateway)出去。不同網路號的IP地址不能直接通信,即使它們接在一起,也不能通信。路由器有多個埠,用於連接多個IP子網。每個埠的IP地址的網路號要求與所連接的IP子網的網路號相同。不同的埠為不同的網路號,對應不同的IP子網,這樣才能使各子網中的主機通過自己子網的IP地址把要求出去的IP分組送到路由器上。2.路由原理當IP子網中的一台主機發送IP分組給同一IP子網的另一台主機時,它將直接把IP分組送到網路上,對方就能收到。而要送給不同IP於網上的主機時,它要選擇一個能到達目的子網上的路由器,把IP分組送給該路由器,由路由器負責把IP分組送到目的地。如果沒有找到這樣的路由器,主機就把IP分組送給一個稱為「預設網關(defaultgateway)」的路由器上。「預設網關」是每台主機上的一個配置參數,它是接在同一個網路上的某個路由器埠的IP地址。路由器轉發IP分組時,只根據IP分組目的IP地址的網路號部分,選擇合適的埠,把IP分組送出去。同主機一樣,路由器也要判定埠所接的是否是目的子網,如果是,就直接把分組通過埠送到網路上,否則,也要選擇下一個路由器來傳送分組。路由器也有它的預設網關,用來傳送不知道往哪兒送的IP分組。這樣,通過路由器把知道如何傳送的IP分組正確轉發出去,不知道的IP分組送給「預設網關」路由器,這樣一級級地傳送,IP分組最終將送到目的地,送不到目的地的IP分組則被網路丟棄了。目前TCP/IP網路,全部是通過路由器互連起來的,Internet就是成千上萬個IP子網通過路由器互連起來的國際性網路。這種網路稱為以路由器為基礎的網路(routerbasednetwork),形成了以路由器為節點的「網間網」。在「網間網」中,路由器不僅負責對IP分組的轉發,還要負責與別的路由器進行聯絡,共同確定「網間網」的路由選擇和維護路由表。路由動作包括兩項基本內容:尋徑和轉發。尋徑即判定到達目的地的最佳路徑,由路由選擇演算法來實現。由於涉及到不同的路由選擇協議和路由選擇演算法,要相對復雜一些。為了判定最佳路徑,路由選擇演算法必須啟動並維護包含路由信息的路由表,其中路由信息依賴於所用的路由選擇演算法而不盡相同。路由選擇演算法將收集到的不同信息填入路由表中,根據路由表可將目的網路與下一站(nexthop)的關系告訴路由器。路由器間互通信息進行路由更新,更新維護路由表使之正確反映網路的拓撲變化,並由路由器根據量度來決定最佳路徑。這就是路由選擇協議(routingprotocol),例如路由信息協議(RIP)、開放式最短路徑優先協議(OSPF)和邊界網關協議(BGP)等。轉發即沿尋徑好的最佳路徑傳送信息分組。路由器首先在路由表中查找,判明是否知道如何將分組發送到下一個站點(路由器或主機),如果路由器不知道如何發送分組,通常將該分組丟棄;否則就根據路由表的相應表項將分組發送到下一個站點,如果目的網路直接與路由器相連,路由器就把分組直接送到相應的埠上。這就是路由轉發協議(routedprotocol)。路由轉發協議和路由選擇協議是相互配合又相互獨立的概念,前者使用後者維護的路由表,同時後者要利用前者提供的功能來發布路由協議數據分組。下文中提到的路由協議,除非特別說明,都是指路由選擇協議,這也是普遍的習慣。3.路由協議典型的路由選擇方式有兩種:靜態路由和動態路由。靜態路由是在路由器中設置的固定的路由表。除非網路管理員干預,否則靜態路由不會發生變化。由於靜態路由不能對網路的改變作出反映,一般用於網路規模不大、拓撲結構固定的網路中。靜態路由的優點是簡單、高效、可靠。在所有的路由中,靜態路由優先順序最高。當動態路由與靜態路由發生沖突時,以靜態路由為准。動態路由是網路中的路由器之間相互通信,傳遞路由信息,利用收到的路由信息更新路由器表的過程。它能實時地適應網路結構的變化。如果路由更新信息表明發生了網路變化,路由選擇軟體就會重新計算路由,並發出新的路由更新信息。這些信息通過各個網路,引起各路由器重新啟動其路由演算法,並更新各自的路由表以動態地反映網路拓撲變化。動態路由適用於網路規模大、網路拓撲復雜的網路。當然,各種動態路由協議會不同程度地佔用網路帶寬和CPU資源。靜態路由和動態路由有各自的特點和適用范圍,因此在網路中動態路由通常作為靜態路由的補充。當一個分組在路由器中進行尋徑時,路由器首先查找靜態路由,如果查到則根據相應的靜態路由轉發分組;否則再查找動態路由。根據是否在一個自治域內部使用,動態路由協議分為內部網關協議(IGP)和外部網關協議(EGP)。這里的自治域指一個具有統一管理機構、統一路由策略的網路。自治域內部採用的路由選擇協議稱為內部網關協議,常用的有RIP、OSPF;外部網關協議主要用於多個自治域之間的路由選擇,常用的是BGP和BGP-4。下面分別進行簡要介紹。3.1RIP路由協議RIP協議最初是為Xerox網路系統的Xeroxparc通用協議而設計的,是Internet中常用的路由協議。RIP採用距離向量演算法,即路由器根據距離選擇路由,所以也稱為距離向量協議。路由器收集所有可到達目的地的不同路徑,並且保存有關到達每個目的地的最少站點數的路徑信息,除到達目的地的最佳路徑外,任何其它信息均予以丟棄。同時路由器也把所收集的路由信息用RIP協議通知相鄰的其它路由器。這樣,正確的路由信息逐漸擴散到了全網。RIP使用非常廣泛,它簡單、可靠,便於配置。但是RIP只適用於小型的同構網路,因為它允許的最大站點數為15,任何超過15個站點的目的地均被標記為不可達。而且RIP每隔30s一次的路由信息廣播也是造成網路的廣播風暴的重要原因之一。3.2OSPF路由協議80年代中期,RIP已不能適應大規模異構網路的互連,0SPF隨之產生。它是網間工程任務組織(1ETF)的內部網關協議工作組為IP網路而開發的一種路由協議。0SPF是一種基於鏈路狀態的路由協議,需要每個路由器向其同一管理域的所有其它路由器發送鏈路狀態廣播信息。在OSPF的鏈路狀態廣播中包括所有介面信息、所有的量度和其它一些變數。利用0SPF的路由器首先必須收集有關的鏈路狀態信息,並根據一定的演算法計算出到每個節點的最短路徑。而基於距離向量的路由協議僅向其鄰接路由器發送有關路由更新信息。與RIP不同,OSPF將一個自治域再劃分為區,相應地即有兩種類型的路由選擇方式:當源和目的地在同一區時,採用區內路由選擇;當源和目的地在不同區時,則採用區間路由選擇。這就大大減少了網路開銷,並增加了網路的穩定性。當一個區內的路由器出了故障時並不影響自治域內其它區路由器的正常工作,這也給網路的管理、維護帶來方便。3.3BGP和BGP-4路由協議BGP是為TCP/IP互聯網設計的外部網關協議,用於多個自治域之間。它既不是基於純粹的鏈路狀態演算法,也不是基於純粹的距離向量演算法。它的主要功能是與其它自治域的BGP交換網路可達信息。各個自治域可以運行不同的內部網關協議。BGP更新信息包括網路號/自治域路徑的成對信息。自治域路徑包括到達某個特定網路須經過的自治域串,這些更新信息通過TCP傳送出去,以保證傳輸的可靠性。為了滿足Internet日益擴大的需要,BGP還在不斷地發展。在最新的BGp4中,還可以將相似路由合並為一條路由。3.4路由表項的優先問題在一個路由器中,可同時配置靜態路由和一種或多種動態路由。它們各自維護的路由表都提供給轉發程序,但這些路由表的表項間可能會發生沖突。這種沖突可通過配置各路由表的優先順序來解決。通常靜態路由具有默認的最高優先順序,當其它路由表表項與它矛盾時,均按靜態路由轉發。4.路由演算法路由演算法在路由協議中起著至關重要的作用,採用何種演算法往往決定了最終的尋徑結果,因此選擇路由演算法一定要仔細。通常需要綜合考慮以下幾個設計目標:(1)最優化:指路由演算法選擇最佳路徑的能力。(2)簡潔性:演算法設計簡潔,利用最少的軟體和開銷,提供最有效的功能。(3)堅固性:路由演算法處於非正常或不可預料的環境時,如硬體故障、負載過高或操作失誤時,都能正確運行。由於路由器分布在網路聯接點上,所以在它們出故障時會產生嚴重後果。最好的路由器演算法通常能經受時間的考驗,並在各種網路環境下被證實是可靠的。(4)快速收斂:收斂是在最佳路徑的判斷上所有路由器達到一致的過程。當某個網路事件引起路由可用或不可用時,路由器就發出更新信息。路由更新信息遍及整個網路,引發重新計算最佳路徑,最終達到所有路由器一致公認的最佳路徑。收斂慢的路由演算法會造成路徑循環或網路中斷。(5)靈活性:路由演算法可以快速、准確地適應各種網路環境。例如,某個網段發生故障,路由演算法要能很快發現故障,並為使用該網段的所有路由選擇另一條最佳路徑。路由演算法按照種類可分為以下幾種:靜態和動態、單路和多路、平等和分級、源路由和透明路由、域內和域間、鏈路狀態和距離向量。前面幾種的特點與字面意思基本一致,下面著重介紹鏈路狀態和距離向量演算法。鏈路狀態演算法(也稱最短路徑演算法)發送路由信息到互聯網上所有的結點,然而對於每個路由器,僅發送它的路由表中描述了其自身鏈路狀態的那一部分。距離向量演算法(也稱為Bellman-Ford演算法)則要求每個路由器發送其路由表全部或部分信息,但僅發送到鄰近結點上。從本質上來說,鏈路狀態演算法將少量更新信息發送至網路各處,而距離向量演算法發送大量更新信息至鄰接路由器。由於鏈路狀態演算法收斂更快,因此它在一定程度上比距離向量演算法更不易產生路由循環。但另一方面,鏈路狀態演算法要求比距離向量演算法有更強的CPU能力和的內存空間,因此鏈路狀態演算法將會在實現時顯得更昂貴一些。除了這些區別,兩種演算法在大多數環境下都能很好地運行。最後需要指出的是,路由演算法使用了許多種不同的度量標准去決定最佳路徑。復雜的路由演算法可能採用多種度量來選擇路由,通過一定的加權運算,將它們合並為單個的復合度量、再填入路由表中,作為尋徑的標准。通常所使用的度量有:路徑長度、可靠性、時延、帶寬、負載、通信成本等。5.新一代路由器由於多媒體等應用在網路中的發展,以及ATM、快速乙太網等新技術的不斷採用,網路的帶寬與速率飛速提高,傳統的路由器已不能滿足人們對路由器的性能要求。因為傳統路由器的分組轉發的設計與實現均基於軟體,在轉發過程中對分組的處理要經過許多環節,轉發過程復雜,使得分組轉發的速率較慢。另外,由於路由器是網路互連的關鍵設備,是網路與其它網路進行通信的一個「關口」,對其安全性有很高的要求,因此路由器中各種附加的安全措施增加了CPU的負擔,這樣就使得路由器成為整個互聯網上的「瓶頸」。傳統的路由器在轉發每一個分組時,都要進行一系列的復雜操作,包括路由查找、訪問控製表匹配、地址解析、優先順序管理以及其它的附加操作。這一系列的操作大大影響了路由器的性能與效率,降低了分組轉發速率和轉發的吞吐量,增加了CPU的負擔。而經過路由器的前後分組間的相關性很大,具有相同目的地址和源地址的分組往往連續到達,這為分組的快速轉發提供了實現的可能與依據。新一代路由器,如IPSwitch、TagSwitch等,就是採用這一設計思想用硬體來實現快速轉發,大大提高了路由器的性能與效率。新一代路由器使用轉發緩存來簡化分組的轉發操作。在快速轉發過程中,只需對一組具有相同目的地址和源地址的分組的前幾個分組進行傳統的路由轉發處理,並把成功轉發的分組的目的地址、源地址和下一網關地址(下一路由器地址)放人轉發緩存中。當其後的分組要進行轉發時,茵先查看轉發緩存,如果該分組的目的地址和源地址與轉發緩存中的匹配,則直接根據轉發緩存中的下一網關地址進行轉發,而無須經過傳統的復雜操作,大大減輕了路由器的負擔,達到了提高路由器吞吐量的目標。

閱讀全文

與計算機網路原理及協議相關的資料

熱點內容
兩個路由器連接上一個網路 瀏覽:498
三星數據連接網路 瀏覽:875
網路中心多少錢一個月 瀏覽:697
電動車無線網路連接不上 瀏覽:94
外地手機怎麼使用網路 瀏覽:147
信號顯示滿格怎麼網路差 瀏覽:13
吉首學網路營銷在哪裡 瀏覽:710
計算機網路以地域性劃分有 瀏覽:203
車上的網路怎麼連接手機 瀏覽:143
鶴崗無線網路wifi 瀏覽:54
電視顯重新檢測網路設置選擇哪個 瀏覽:934
去哪裡查看網路總是掉線 瀏覽:218
無wifi不提示網路連接 瀏覽:341
網路怎麼知道用戶名和密碼 瀏覽:556
國家反網路詐騙中心電話是多少 瀏覽:317
政治方面的網路用語有哪些 瀏覽:531
蘋果6手機4g網路不穩定 瀏覽:181
安卓不關網路和wifi費電嗎 瀏覽:885
海爾電視換網路設置 瀏覽:611
路由器的網路波動 瀏覽:918

友情鏈接