導航:首頁 > 網路連接 > 計算機網路數據來迴路徑

計算機網路數據來迴路徑

發布時間:2023-04-18 00:57:47

計算機網路中,數據是如何到達指定主機的

我們電腦上的數據,是如何「走」到遠端的另一台電腦的呢?這是個最基礎的問題,可能很多人回答不上來,盡管我們每天都在使用網路。

這里我們以一個最簡單的「ping」命令,來解釋一個數據包「旅程」。

假設:我的電腦A,向遠在外地的朋友電腦B傳輸數據,最簡單的就是「ping」一下,看看這個傢伙的那一端網路通不通。A與B之間只有一台路由器。(路由器可能放在學校,社區或者電信機房,無所謂,基本原理是一樣的)

具體過程如下------

1.「ping」命令所產生的數據包,我們歸類為ICMP協議。說白了就是向目的地發送一個數據包,然後等待回應,如果回應正常則目的地的網路就是通的。當我們輸入了「ping」命令之後,我們的機器(電腦A)就生成了一個包含ICMP協議域的數據包,姑且稱之為「小德」吧~~~~

2.「小德」已經將ICMP協議打包到數據段里了,可是還不能發送,因為一個數據要想向外面傳送,還得經過「有關部門」的批准------IP協議。IP要將你的「寫信人地址」和「收信人地址」寫到數據段上面,即:將數據的源IP地址和目的IP地址分別打包在「小德」的頭部和尾部,這樣一來,大家才知道你的數據是要送到哪裡

3.准備工作還沒有完。接下來還有部門要審核------ARP。ARP屬於數據鏈路層協議,主要負責把IP地址對應到硬體地址。直接說吧,都怪交換機太「傻」,不能根據IP地址直接找到相應的計算機,只能根據硬體地址來找。於是,交換機就經常保留一張IP地址與硬體地址的對應表以便其查找目的地。而ARP就是用來生成這張表的。比如:當「小德」被送到ARP手裡之後,ARP就要在表裡面查找,看看「小德」的IP地址與交換機的哪個埠對應,然後轉發過去。如果沒找到,則發一個廣播給所有其他的交換機埠,問這是誰的IP地址,如果有人回答,就轉發給它。

4.經過一番折騰,「小德」終於要走出這個倒霉的區域網了。可在此之前,它們還沒忘給「小德」屁股後面蓋個「戳」,說是什麼CRC校驗值,怕「小德」在旅行途中缺胳膊少腿,還得麻煩它們重新發送。。。。。我靠~~~~註:很多人弄不清FCS和CRC。所謂的CRC是一種校驗方法,用來確保數據在傳輸過程中不會丟包,損壞等等,FCS是數據包(准確的說是frame)里的一個區域,用來存放CRC的計算結果的。到了目的地之後,目的計算機要檢查FCS里的CRC值,如果與原來的相同,則說明數據在途中沒有損壞。

5.在走出去之前,那些傢伙最後折磨了一次「小德」------把小德身上眾多的0和1,弄成了什麼「高電壓」「低電壓」,在雙絞線上傳送了出去。暈~~出趟門就這么麻煩嗎?

6.坐著雙絞線旅遊,爽!可當看到很多人坐著同軸電纜,還有坐光纖的時候,小德又感覺不是那麼爽了。就在這時,來到了旅途的中轉站------路由器。這地方可是高級場所,人家直接查看IP地址!剩下的一概不管,交給下面的人去做。夠牛吧?路由器的內部也有一張表,叫做路由表,裡面標識著哪一個網路的IP對應著路由器的哪一個埠。這個表也不是天生就有的,而是靠路由器之間互相「學習」之後生成的,當然也可以由管理員手工設定。這個「學習」的過程是依靠路由協議來完成的,比如RIP,EIGRP,OSPF等等。

7.當路由器查看了「小德」的IP地址以後,根據路由表知道了小德要去的網路,接著就把小德轉到了相應的埠了。至此,路由器的主要工作完成,下面又是打包,封裝成frame,轉換成電壓信號等一系列「折騰」的活,就由數據鏈路層和物理層的模塊去干吧。

8.小德從路由器的出口出來,便來到了目的地----電腦B----所屬的網路的默認網關。默認網關可以是路由器的一個埠,也可以是區域網里的各種伺服器。不管怎樣,下面的過程還是一樣的:到交換機里的ARP表查詢「小德」的IP地址,看看屬於哪個區域網段或埠,然後就轉發到B了。

9.進了B的網卡之後,還要層層「剝皮」,基本上和從A出來的程序是一樣的------電腦B先校驗一下CRC值,看看數據是否完整;然後檢查一下frame的封裝,看到是IP協議之後,就把「小德」交給IP「部門」了;IP協議一看目的地址,正確,再看看應用協議,是ICMP。於是知道了該怎麼做了------產生一個回應數據包,(可以命名為「回應小德」),並准備以同樣的順序向遠端的A發送。。至於剛剛收到的那個數據包就丟棄了。

10.「回應小德」這個數據包又開始了上述同樣的循環,只不過這次發送者是B而接收者是A了。

以上是一個最簡單的路由過程,任何復雜的網路都是在次基礎之上實現的。

⑵ 計算機網路知識點

一、計算機網路概述

1.1 計算機網路的分類

按照網路的作用范圍:廣域網(WAN)、城域網(MAN)、區域網(LAN);

按照網路使用者:公用網路、專用網路。

1.2 計算機網路的層次結構

TCP/IP四層模型與OSI體系結構對比:

1.3 層次結構設計的基本原則

各層之間是相互獨立的;

每一層需要有足夠的靈活性;

各層之間完全解耦。

1.4 計算機網路的性能指標

速率:bps=bit/s 時延:發送時延、傳播時延、排隊時延、處理時延 往返時間RTT:數據報文在端到端通信中的來回一次的時間。

二、物理層

物理層的作用:連接不同的物理設備,傳輸比特流。該層為上層協議提供了一個傳輸數據的可靠的物理媒體。簡單的說,物理層確保原始的數據可在各種物理媒體上傳輸。

物理層設備:

中繼器【Repeater,也叫放大器】:同一區域網的再生信號;兩埠的網段必須同一協議;5-4-3規程:10BASE-5乙太網中,最多串聯4個中繼器,5段中只能有3個連接主機;

集線器:同一區域網的再生、放大信號(多埠的中繼器);半雙工,不能隔離沖突域也不能隔離廣播域。

信道的基本概念:信道是往一個方向傳輸信息的媒體,一條通信電路包含一個發送信道和一個接受信道。

單工通信信道:只能一個方向通信,沒有反方向反饋的信道;

半雙工通信信道:雙方都可以發送和接受信息,但不能同時發送也不能同時接收;

全雙工通信信道:雙方都可以同時發送和接收。

三、數據鏈路層

3.1 數據鏈路層概述

數據鏈路層在物理層提供的服務的基礎上向網路層提供服務,其最基本的服務是將源自網路層來的數據可靠地傳輸到相鄰節點的目標機網路層。數據鏈路層在不可靠的物理介質上提供可靠的傳輸。

該層的作用包括: 物理地址定址、數據的成幀、流量控制、數據的檢錯、重發 等。

有關數據鏈路層的重要知識點:

數據鏈路層為網路層提供可靠的數據傳輸;

基本數據單位為幀;

主要的協議:乙太網協議;

兩個重要設備名稱:網橋和交換機。

封裝成幀:「幀」是 數據鏈路層 數據的基本單位:

透明傳輸:「透明」是指即使控制字元在幀數據中,但是要當做不存在去處理。即在控制字元前加上轉義字元ESC。

3.2 數據鏈路層的差錯監測

差錯檢測:奇偶校驗碼、循環冗餘校驗碼CRC

奇偶校驗碼–局限性:當出錯兩位時,檢測不到錯誤。

循環冗餘檢驗碼:根據傳輸或保存的數據而產生固定位數校驗碼。

3.3 最大傳輸單元MTU

最大傳輸單元MTU(Maximum Transmission Unit),數據鏈路層的數據幀不是無限大的,數據幀長度受MTU限制.

路徑MTU:由鏈路中MTU的最小值決定。

3.4 乙太網協議詳解

MAC地址:每一個設備都擁有唯一的MAC地址,共48位,使用十六進製表示。

乙太網協議:是一種使用廣泛的區域網技術,是一種應用於數據鏈路層的協議,使用乙太網可以完成相鄰設備的數據幀傳輸:

區域網分類:

Ethernet乙太網IEEE802.3:

乙太網第一個廣泛部署的高速區域網

乙太網數據速率快

乙太網硬體價格便宜,網路造價成本低

乙太網幀結構:

類型:標識上層協議(2位元組)

目的地址和源地址:MAC地址(每個6位元組)

數據:封裝的上層協議的分組(46~1500位元組)

CRC:循環冗餘碼(4位元組)

乙太網最短幀:乙太網幀最短64位元組;乙太網幀除了數據部分18位元組;數據最短46位元組;

MAC地址(物理地址、區域網地址)

MAC地址長度為6位元組,48位;

MAC地址具有唯一性,每個網路適配器對應一個MAC地址;

通常採用十六進製表示法,每個位元組表示一個十六進制數,用 - 或 : 連接起來;

MAC廣播地址:FF-FF-FF-FF-FF-FF。

四、網路層

網路層的目的是實現兩個端系統之間的數據透明傳送,具體功能包括定址和路由選擇、連接的建立、保持和終止等。數據交換技術是報文交換(基本上被分組所替代):採用儲存轉發方式,數據交換單位是報文。

網路層中涉及眾多的協議,其中包括最重要的協議,也是TCP/IP的核心協議——IP協議。IP協議非常簡單,僅僅提供不可靠、無連接的傳送服務。IP協議的主要功能有:無連接數據報傳輸、數據報路由選擇和差錯控制。

與IP協議配套使用實現其功能的還有地址解析協議ARP、逆地址解析協議RARP、網際網路報文協議ICMP、網際網路組管理協議IGMP。具體的協議我們會在接下來的部分進行總結,有關網路層的重點為:

1、網路層負責對子網間的數據包進行路由選擇。此外,網路層還可以實現擁塞控制、網際互連等功能;

2、基本數據單位為IP數據報;

3、包含的主要協議:

IP協議(Internet Protocol,網際網路互聯協議);

ICMP協議(Internet Control Message Protocol,網際網路控制報文協議);

ARP協議(Address Resolution Protocol,地址解析協議);

RARP協議(Reverse Address Resolution Protocol,逆地址解析協議)。

4、重要的設備:路由器。

路由器相關協議

4.1 IP協議詳解

IP網際協議是 Internet 網路層最核心的協議。虛擬互聯網路的產生:實際的計算機網路錯綜復雜;物理設備通過使用IP協議,屏蔽了物理網路之間的差異;當網路中主機使用IP協議連接時,無需關注網路細節,於是形成了虛擬網路。

IP協議使得復雜的實際網路變為一個虛擬互聯的網路;並且解決了在虛擬網路中數據報傳輸路徑的問題。

其中,版本指IP協議的版本,佔4位,如IPv4和IPv6;首部位長度表示IP首部長度,佔4位,最大數值位15;總長度表示IP數據報總長度,佔16位,最大數值位65535;TTL表示IP數據報文在網路中的壽命,佔8位;協議表明IP數據所攜帶的具體數據是什麼協議的,如TCP、UDP。

4.2 IP協議的轉發流程

4.3 IP地址的子網劃分

A類(8網路號+24主機號)、B類(16網路號+16主機號)、C類(24網路號+8主機號)可以用於標識網路中的主機或路由器,D類地址作為組廣播地址,E類是地址保留。

4.4 網路地址轉換NAT技術

用於多個主機通過一個公有IP訪問訪問互聯網的私有網路中,減緩了IP地址的消耗,但是增加了網路通信的復雜度。

NAT 工作原理:

從內網出去的IP數據報,將其IP地址替換為NAT伺服器擁有的合法的公共IP地址,並將替換關系記錄到NAT轉換表中;

從公共互聯網返回的IP數據報,依據其目的的IP地址檢索NAT轉換表,並利用檢索到的內部私有IP地址替換目的IP地址,然後將IP數據報轉發到內部網路。

4.5 ARP協議與RARP協議

地址解析協議 ARP(Address Resolution Protocol):為網卡(網路適配器)的IP地址到對應的硬體地址提供動態映射。可以把網路層32位地址轉化為數據鏈路層MAC48位地址。

ARP 是即插即用的,一個ARP表是自動建立的,不需要系統管理員來配置。

RARP(Reverse Address Resolution Protocol)協議指逆地址解析協議,可以把數據鏈路層MAC48位地址轉化為網路層32位地址。

4.6 ICMP協議詳解

網際控制報文協議(Internet Control Message Protocol),可以報告錯誤信息或者異常情況,ICMP報文封裝在IP數據報當中。

ICMP協議的應用:

Ping應用:網路故障的排查;

Traceroute應用:可以探測IP數據報在網路中走過的路徑。

4.7網路層的路由概述

關於路由演算法的要求:正確的完整的、在計算上應該盡可能是簡單的、可以適應網路中的變化、穩定的公平的。

自治系統AS: 指處於一個管理機構下的網路設備群,AS內部網路自治管理,對外提供一個或多個出入口,其中自治系統內部的路由協議為內部網關協議,如RIP、OSPF等;自治系統外部的路由協議為外部網關協議,如BGP。

靜態路由: 人工配置,難度和復雜度高;

動態路由:

鏈路狀態路由選擇演算法LS:向所有隔壁路由發送信息收斂快;全局式路由選擇演算法,每個路由器計算路由時,需構建整個網路拓撲圖;利用Dijkstra演算法求源端到目的端網路的最短路徑;Dijkstra(迪傑斯特拉)演算法

距離-向量路由選擇演算法DV:向所有隔壁路由發送信息收斂慢、會存在迴路;基礎是Bellman-Ford方程(簡稱B-F方程);

4.8 內部網關路由協議之RIP協議

路由信息協議 RIP(Routing Information Protocol)【應用層】,基於距離-向量的路由選擇演算法,較小的AS(自治系統),適合小型網路;RIP報文,封裝進UDP數據報。

RIP協議特性:

RIP在度量路徑時採用的是跳數(每個路由器維護自身到其他每個路由器的距離記錄);

RIP的費用定義在源路由器和目的子網之間;

RIP被限制的網路直徑不超過15跳;

和隔壁交換所有的信息,30主動一次(廣播)。

4.9 內部網關路由協議之OSPF協議

開放最短路徑優先協議 OSPF(Open Shortest Path First)【網路層】,基於鏈路狀態的路由選擇演算法(即Dijkstra演算法),較大規模的AS ,適合大型網路,直接封裝在IP數據報傳輸。

OSPF協議優點:

安全;

支持多條相同費用路徑;

支持區別化費用度量;

支持單播路由和多播路由;

分層路由。

RIP與OSPF的對比(路由演算法決定其性質):

4.10外部網關路由協議之BGP協議

BGP(Border Gateway Protocol)邊際網關協議【應用層】:是運行在AS之間的一種協議,尋找一條好路由:首次交換全部信息,以後只交換變化的部分,BGP封裝進TCP報文段.

五、傳輸層

第一個端到端,即主機到主機的層次。傳輸層負責將上層數據分段並提供端到端的、可靠的或不可靠的傳輸。此外,傳輸層還要處理端到端的差錯控制和流量控制問題。

傳輸層的任務是根據通信子網的特性,最佳的利用網路資源,為兩個端系統的會話層之間,提供建立、維護和取消傳輸連接的功能,負責端到端的可靠數據傳輸。在這一層,信息傳送的協議數據單元稱為段或報文。

網路層只是根據網路地址將源結點發出的數據包傳送到目的結點,而傳輸層則負責將數據可靠地傳送到相應的埠。

有關網路層的重點:

傳輸層負責將上層數據分段並提供端到端的、可靠的或不可靠的傳輸以及端到端的差錯控制和流量控制問題;

包含的主要協議:TCP協議(Transmission Control Protocol,傳輸控制協議)、UDP協議(User Datagram Protocol,用戶數據報協議);

重要設備:網關。

5.1 UDP協議詳解

UDP(User Datagram Protocol: 用戶數據報協議),是一個非常簡單的協議。

UDP協議的特點:

UDP是無連接協議;

UDP不能保證可靠的交付數據;

UDP是面向報文傳輸的;

UDP沒有擁塞控制;

UDP首部開銷很小。

UDP數據報結構:

首部:8B,四欄位/2B【源埠 | 目的埠 | UDP長度 | 校驗和】 數據欄位:應用數據

5.2 TCP協議詳解

TCP(Transmission Control Protocol: 傳輸控制協議),是計算機網路中非常復雜的一個協議。

TCP協議的功能:

對應用層報文進行分段和重組;

面向應用層實現復用與分解;

實現端到端的流量控制;

擁塞控制;

傳輸層定址;

對收到的報文進行差錯檢測(首部和數據部分都檢錯);

實現進程間的端到端可靠數據傳輸控制。

TCP協議的特點:

TCP是面向連接的協議;

TCP是面向位元組流的協議;

TCP的一個連接有兩端,即點對點通信;

TCP提供可靠的傳輸服務;

TCP協議提供全雙工通信(每條TCP連接只能一對一);

5.2.1 TCP報文段結構:

最大報文段長度:報文段中封裝的應用層數據的最大長度。

TCP首部:

序號欄位:TCP的序號是對每個應用層數據的每個位元組進行編號

確認序號欄位:期望從對方接收數據的位元組序號,即該序號對應的位元組尚未收到。用ack_seq標識;

TCP段的首部長度最短是20B ,最長為60位元組。但是長度必須為4B的整數倍

TCP標記的作用:

5.3 可靠傳輸的基本原理

基本原理:

不可靠傳輸信道在數據傳輸中可能發生的情況:比特差錯、亂序、重傳、丟失

基於不可靠信道實現可靠數據傳輸採取的措施:

差錯檢測:利用編碼實現數據包傳輸過程中的比特差錯檢測 確認:接收方向發送方反饋接收狀態 重傳:發送方重新發送接收方沒有正確接收的數據 序號:確保數據按序提交 計時器:解決數據丟失問題;

停止等待協議:是最簡單的可靠傳輸協議,但是該協議對信道的利用率不高。

連續ARQ(Automatic Repeat reQuest:自動重傳請求)協議:滑動窗口+累計確認,大幅提高了信道的利用率。

5.3.1TCP協議的可靠傳輸

基於連續ARQ協議,在某些情況下,重傳的效率並不高,會重復傳輸部分已經成功接收的位元組。

5.3.2 TCP協議的流量控制

流量控制:讓發送方發送速率不要太快,TCP協議使用滑動窗口實現流量控制。

5.4 TCP協議的擁塞控制

擁塞控制與流量控制的區別:流量控制考慮點對點的通信量的控制,而擁塞控制考慮整個網路,是全局性的考慮。擁塞控制的方法:慢啟動演算法+擁塞避免演算法。

慢開始和擁塞避免:

【慢開始】擁塞窗口從1指數增長;

到達閾值時進入【擁塞避免】,變成+1增長;

【超時】,閾值變為當前cwnd的一半(不能<2);

再從【慢開始】,擁塞窗口從1指數增長。

快重傳和快恢復:

發送方連續收到3個冗餘ACK,執行【快重傳】,不必等計時器超時;

執行【快恢復】,閾值變為當前cwnd的一半(不能<2),並從此新的ssthresh點進入【擁塞避免】。

5.5 TCP連接的三次握手(重要)

TCP三次握手使用指令:

面試常客:為什麼需要三次握手?

第一次握手:客戶發送請求,此時伺服器知道客戶能發;

第二次握手:伺服器發送確認,此時客戶知道伺服器能發能收;

第三次握手:客戶發送確認,此時伺服器知道客戶能收。

建立連接(三次握手):

第一次: 客戶向伺服器發送連接請求段,建立連接請求控制段(SYN=1),表示傳輸的報文段的第一個數據位元組的序列號是x,此序列號代表整個報文段的序號(seq=x);客戶端進入 SYN_SEND (同步發送狀態);

第二次: 伺服器發回確認報文段,同意建立新連接的確認段(SYN=1),確認序號欄位有效(ACK=1),伺服器告訴客戶端報文段序號是y(seq=y),表示伺服器已經收到客戶端序號為x的報文段,准備接受客戶端序列號為x+1的報文段(ack_seq=x+1);伺服器由LISTEN進入SYN_RCVD (同步收到狀態);

第三次: 客戶對伺服器的同一連接進行確認.確認序號欄位有效(ACK=1),客戶此次的報文段的序列號是x+1(seq=x+1),客戶期望接受伺服器序列號為y+1的報文段(ack_seq=y+1);當客戶發送ack時,客戶端進入ESTABLISHED 狀態;當服務收到客戶發送的ack後,也進入ESTABLISHED狀態;第三次握手可攜帶數據;

5.6 TCP連接的四次揮手(重要)

釋放連接(四次揮手)

第一次: 客戶向伺服器發送釋放連接報文段,發送端數據發送完畢,請求釋放連接(FIN=1),傳輸的第一個數據位元組的序號是x(seq=x);客戶端狀態由ESTABLISHED進入FIN_WAIT_1(終止等待1狀態);

第二次: 伺服器向客戶發送確認段,確認字型大小段有效(ACK=1),伺服器傳輸的數據序號是y(seq=y),伺服器期望接收客戶數據序號為x+1(ack_seq=x+1);伺服器狀態由ESTABLISHED進入CLOSE_WAIT(關閉等待);客戶端收到ACK段後,由FIN_WAIT_1進入FIN_WAIT_2;

第三次: 伺服器向客戶發送釋放連接報文段,請求釋放連接(FIN=1),確認字型大小段有效(ACK=1),表示伺服器期望接收客戶數據序號為x+1(ack_seq=x+1);表示自己傳輸的第一個位元組序號是y+1(seq=y+1);伺服器狀態由CLOSE_WAIT 進入 LAST_ACK (最後確認狀態);

第四次: 客戶向伺服器發送確認段,確認字型大小段有效(ACK=1),表示客戶傳輸的數據序號是x+1(seq=x+1),表示客戶期望接收伺服器數據序號為y+1+1(ack_seq=y+1+1);客戶端狀態由FIN_WAIT_2進入TIME_WAIT,等待2MSL時間,進入CLOSED狀態;伺服器在收到最後一次ACK後,由LAST_ACK進入CLOSED;

為什麼需要等待2MSL?

最後一個報文沒有確認;

確保發送方的ACK可以到達接收方;

2MSL時間內沒有收到,則接收方會重發;

確保當前連接的所有報文都已經過期。

六、應用層

為操作系統或網路應用程序提供訪問網路服務的介面。應用層重點:

數據傳輸基本單位為報文;

包含的主要協議:FTP(文件傳送協議)、Telnet(遠程登錄協議)、DNS(域名解析協議)、SMTP(郵件傳送協議),POP3協議(郵局協議),HTTP協議(Hyper Text Transfer Protocol)。

6.1 DNS詳解

DNS(Domain Name System:域名系統)【C/S,UDP,埠53】:解決IP地址復雜難以記憶的問題,存儲並完成自己所管轄范圍內主機的 域名 到 IP 地址的映射。

域名解析的順序:

【1】瀏覽器緩存,

【2】找本機的hosts文件,

【3】路由緩存,

【4】找DNS伺服器(本地域名、頂級域名、根域名)->迭代解析、遞歸查詢。

IP—>DNS服務—>便於記憶的域名

域名由點、字母和數字組成,分為頂級域(com,cn,net,gov,org)、二級域(,taobao,qq,alibaba)、三級域(www)(12-2-0852)

6.2 DHCP協議詳解

DHCP(Dynamic Configuration Protocol:動態主機設置協議):是一個區域網協議,是應用UDP協議的應用層協議。作用:為臨時接入區域網的用戶自動分配IP地址。

6.3 HTTP協議詳解

文件傳輸協議(FTP):控制連接(埠21):傳輸控制信息(連接、傳輸請求),以7位ASCII碼的格式。整個會話期間一直打開。

HTTP(HyperText Transfer Protocol:超文本傳輸協議)【TCP,埠80】:是可靠的數據傳輸協議,瀏覽器向伺服器發收報文前,先建立TCP連接,HTTP使用TCP連接方式(HTTP自身無連接)。

HTTP請求報文方式:

GET:請求指定的頁面信息,並返回實體主體;

POST:向指定資源提交數據進行處理請求;

DELETE:請求伺服器刪除指定的頁面;

HEAD:請求讀取URL標識的信息的首部,只返回報文頭;

OPETION:請求一些選項的信息;

PUT:在指明的URL下存儲一個文檔。

6.3.1 HTTP工作的結構

6.3.2 HTTPS協議詳解

HTTPS(Secure)是安全的HTTP協議,埠號443。基於HTTP協議,通過SSL或TLS提供加密處理數據、驗證對方身份以及數據完整性保護

原文地址:https://blog.csdn.net/Royalic/article/details/119985591

⑶ TCP/IP是什麼意思

TCP/IP是一個互聯網通信協議。互聯網協議是一個網路通信模型,以及一整個網路傳輸協議家族,為互聯網的基礎通信架構。它常被通稱為TCP/IP協議族(英語:TCP/IP Protocol Suite,或TCP/IP Protocols),簡稱TCP/IP。

TCP / IP(傳輸控制協議/互聯網協議),也稱為互聯網協議套件,是萬維網的核心通信系統,它使每個連接互聯網的設備能夠同時與其他所有此類設備進行通信。

實質上,它是安裝在每台計算機上的計算機化語法(語言),用於公共(Internet)和專用(內部網和外部網)網路。該協議的發展使互聯網以及在線商務迅速發展。

因為該協議家族的兩個核心協議:TCP(傳輸控制協議)和IP(網際協議),為該家族中最早通過的標准。由於在網路通訊協議普遍採用分層的結構,當多個層次的協議共同工作時,類似計算機科學中的堆棧,因此又被稱為TCP/IP協議棧(英語:TCP/IP Protocol Stack) 。

這些協議最早發源於美國國防部(縮寫為DoD)的ARPA網項目,因此也被稱作DoD模型(DoD Model)。這個協議族由互聯網工程任務組負責維護。

(3)計算機網路數據來迴路徑擴展閱讀:

TCP/IP的運作:

TCP / IP是一個雙層程序:較高層(TCP)將消息內容反匯編成小的「數據包」,然後通過網際網路傳輸,由接收計算機的TCP重新組裝回消息的原始形式。

較低層(IP)扮演「地址管理器」的角色,並將每個數據包發送到正確的目的地。IP地址由網路中的每台計算機檢查,以確保根據需要轉發消息。

TCP / IP在客戶端,伺服器通信模型上運行,這意味著第一計算機(客戶端)的用戶向第二網路計算機(伺服器)發出服務請求,例如轉發網頁。

TCP / IP還依賴於點對點通信,這意味著通信在預定義的網路邊界內從一台主機移動到另一台主機。最後,TCP / IP被認為是無狀態的,因為每個請求都是新的,與之前的所有請求無關,使得所有人都可以自由地使用網路路徑。

電子商務企業需要熟悉的許多更高級別的應用程序利用和/或構建在TCP / IP上。這些應用程序構成了更高層的協議語言,並且通常與TCP / IP一起打包為單個「套件」。例子包括:

HTTP(Internet的超文本傳輸協議)。

FTP(互聯網的文件傳輸協議)。

Telnet,可以從遠程位置登錄計算機。

SMTP(簡單郵件傳輸協議)。

通過模擬電話數據機訪問互聯網將涉及使用兩種特殊協議之一:SLIP(串列線路互聯網協議)或PPP(點對點協議)。這些協議的功能是以一種形式「封裝」數據包,允許它們通過撥號電話連接發送到接入提供商的數據機。

UDP(用戶數據報協議)是TCP的替代方案,有時用於非常專業的目的。它使用超簡單的「無連接」傳輸,只需要最少量的協議。它主要用於在線應用程序之間的低延遲,容忍損失的連接。

用於交換路由器數據的TCP / IP相關協議包括:

ICMP(Internet控制消息協議)。

IGP(內部網關協議)。

EGP(外部網關協議)。

BGP(邊界網關協議)。

參考資料來源:網路-TCP/IP協議



⑷ 計算機網路的最短路徑演算法有哪些對應哪些協議

用於解決最短路徑問題的演算法被稱做「最短路徑演算法」,有時被簡稱作「路徑演算法」。最常用的路徑演算法有:
Dijkstra演算法、A*演算法、SPFA演算法、Bellman-Ford演算法和Floyd-Warshall演算法,本文主要介紹其中的三種。

最短路徑問題是圖論研究中的一個經典演算法問題,旨在尋找圖(由結點和路徑組成的)中兩結點之間的最短路徑。
演算法具體的形式包括:

確定起點的最短路徑問題:即已知起始結點,求最短路徑的問題。

確定終點的最短路徑問題:與確定起點的問題相反,該問題是已知終結結點,求最短路徑的問題。在無向圖中該問題與確定起點的問題完全等同,在有向圖中該問題等同於把所有路徑方向反轉的確定起點的問題。
確定起點終點的最短路徑問題:即已知起點和終點,求兩結點之間的最短路徑。

全局最短路徑問題:求圖中所有的最短路徑。
Floyd

求多源、無負權邊的最短路。用矩陣記錄圖。時效性較差,時間復雜度O(V^3)。

Floyd-Warshall演算法(Floyd-Warshall algorithm)是解決任意兩點間的最短路徑的一種演算法,可以正確處理有向圖或負權的最短路徑問題。
Floyd-Warshall演算法的時間復雜度為O(N^3),空間復雜度為O(N^2)。

Floyd-Warshall的原理是動態規劃:

設Di,j,k為從i到j的只以(1..k)集合中的節點為中間節點的最短路徑的長度。

若最短路徑經過點k,則Di,j,k = Di,k,k-1 + Dk,j,k-1;

若最短路徑不經過點k,則Di,j,k = Di,j,k-1。

因此,Di,j,k = min(Di,k,k-1 + Dk,j,k-1 , Di,j,k-1)。

在實際演算法中,為了節約空間,可以直接在原來空間上進行迭代,這樣空間可降至二維。

Floyd-Warshall演算法的描述如下:

for k ← 1 to n do

for i ← 1 to n do

for j ← 1 to n do

if (Di,k + Dk,j < Di,j) then

Di,j ← Di,k + Dk,j;

其中Di,j表示由點i到點j的代價,當Di,j為 ∞ 表示兩點之間沒有任何連接。

Dijkstra

求單源、無負權的最短路。時效性較好,時間復雜度為O(V*V+E),可以用優先隊列進行優化,優化後時間復雜度變為0(v*lgn)。
源點可達的話,O(V*lgV+E*lgV)=>O(E*lgV)。

當是稀疏圖的情況時,此時E=V*V/lgV,所以演算法的時間復雜度可為O(V^2) 。可以用優先隊列進行優化,優化後時間復雜度變為0(v*lgn)。
Bellman-Ford

求單源最短路,可以判斷有無負權迴路(若有,則不存在最短路),時效性較好,時間復雜度O(VE)。

Bellman-Ford演算法是求解單源最短路徑問題的一種演算法。

單源點的最短路徑問題是指:給定一個加權有向圖G和源點s,對於圖G中的任意一點v,求從s到v的最短路徑。

與Dijkstra演算法不同的是,在Bellman-Ford演算法中,邊的權值可以為負數。設想從我們可以從圖中找到一個環

路(即從v出發,經過若干個點之後又回到v)且這個環路中所有邊的權值之和為負。那麼通過這個環路,環路中任意兩點的最短路徑就可以無窮小下去。如果不處理這個負環路,程序就會永遠運行下去。 而Bellman-Ford演算法具有分辨這種負環路的能力。
SPFA

是Bellman-Ford的隊列優化,時效性相對好,時間復雜度O(kE)。(k< 與Bellman-ford演算法類似,SPFA演算法採用一系列的鬆弛操作以得到從某一個節點出發到達圖中其它所有節點的最短路徑。所不同的是,SPFA演算法通過維護一個隊列,使得一個節點的當前最短路徑被更新之後沒有必要立刻去更新其他的節點,從而大大減少了重復的操作次數。
SPFA演算法可以用於存在負數邊權的圖,這與dijkstra演算法是不同的。

與Dijkstra演算法與Bellman-ford演算法都不同,SPFA的演算法時間效率是不穩定的,即它對於不同的圖所需要的時間有很大的差別。
在最好情形下,每一個節點都只入隊一次,則演算法實際上變為廣度優先遍歷,其時間復雜度僅為O(E)。另一方面,存在這樣的例子,使得每一個節點都被入隊(V-1)次,此時演算法退化為Bellman-ford演算法,其時間復雜度為O(VE)。
SPFA演算法在負邊權圖上可以完全取代Bellman-ford演算法,另外在稀疏圖中也表現良好。但是在非負邊權圖中,為了避免最壞情況的出現,通常使用效率更加穩定的Dijkstra演算法,以及它的使用堆優化的版本。通常的SPFA。

⑸ 計算機網路-02-物理層和數據鏈路層

物理層主要功能是為數據端設備提供傳送數據的通路以及傳輸數據。

信道是往一個方向傳送信息的媒體,一條通信電路包含一個接收信道和一個發送信道。

分用-復用技術 允許多個用戶使用一個共享信道進行通信,可以降低成本,提高利用率。

數據鏈路層在物理層提供的服務的基礎上向網路層提供服務,其最基本的功能是向該層用戶提供透明的和可靠的數據傳送基本服務。

數據鏈路層有兩個功能: 幀編碼 和 差錯控制 。

物理層只負責傳輸比特流,為了使傳輸過程發生差錯後只將有限數據進行重發,數據鏈路層將比特流組合成以太幀作為單位傳送。

每個幀除了要傳送的數據外,還包括校驗碼,以使接收方能發現傳輸中的差錯。

假設現在從網路層過來了一個IP數據報,數據鏈路層會將這個數據報作為幀進行傳送。

當然物理層是不管你幀不幀的,它只會將數據鏈路層傳過來的幀以比特流的形式發送給另一台物理設備。

由前面的文章可知: 總時延 = 發送時延 + 排隊時延 + 傳播時延 + 處理時延

數據鏈路層的數據幀不是無限大的,數據幀過大或過小都會影響傳輸的效率,數據鏈路層使用MTU來限制數據幀長度。

乙太網MTU一般為1500位元組, 路徑MTU由鏈路中MTU的最小值決定

一個實用的通信系統必須具備發現(即檢測)這種差錯的能力,並採取某種措施糾正之,使差錯被控制在所能允許的盡可能小的范圍內,這就是差錯控制過程。物理層只管傳輸比特流,無法控制是否出錯,所以差錯檢測成了數據鏈路層的主要功能之一。

一般的檢測方法有 奇偶校驗碼 和 CRC循環冗餘校驗碼 。

網路中需要唯一標識物理設備的地址,用於確定數據傳輸時的發送地址和目的地址。

MAC地址(物理地址、硬體地址)共48位,使用十六進製表示,每一個設備都擁有唯一的MAC地址。

雖然MAC地址是物理硬體地址,但其屬於數據鏈路層的MAC子層。

乙太網(Ethernet)是一種使用廣泛的區域網技術,它是應用於數據鏈路層的協議,使用乙太網可以完成相鄰設備的數據幀傳輸。

乙太網數據報文主要由五個部分組成:

類型主要表示幀數據的類型,例如網路層的IP數據。

定義完數據結構後,就需要進行數據傳輸。由上文可知,MAC地址唯一標識了設備,那麼怎麼獲得目的設備的MAC地址呢?

MAC地址表記錄了與本設備相連的設備的MAC地址。

假設主機A發送了一個乙太網數據報文,數據幀到達路由器,路由器取出前6位元組(通過報文數據結構可知前6位位目的地址)。

路由器匹配MAC地址表,找到對應的網路介面,路由器往該網路介面發送數據幀。

當路由器的MAC地址表中沒有目的地址,此時路由器會將此MAC地址進行廣播(發送方A除外),接收區域網中與該路由其相連的其他設備的MAC地址並記錄。

由於MAC地址表只能知道當前設備的下一個設備的MAC地址,簡而言之就是只能進行相鄰物理節點的數據傳輸。

有關跨設備傳輸數據的功能是交由網路層處理的,具體見下一章。

⑹ 在計算機網路中由什麼確定從發送方到接收方的數據轉發路徑

答: 在三種交換方式中,電路交換是建立一條專有的通道,因此其轉發路徑在建立之初就已經確定了。而報文交換的數據轉化路徑是通過路由器確定的。對於分組交換,按照實現方式分為數據報分組交換和虛電路分組交換,前者轉發路徑由路由器確定,後者轉發路徑在虛電路建立之初確定。

⑺ 簡述計算機網路的組成,以及各個組成部分的作用

計算機網路由七層組成:

1、物理層:傳遞信息需要利用一些物理傳輸媒體,如雙絞線、同軸電纜、光纖等。物理層的任務就是為上層提供一個物理的連接,以及該物理連接表現出來的機械、電氣、功能和過程特性,實現透明的比特流傳輸。

2、數據鏈路層:數據鏈路層負責在2個相鄰的結點之間的鏈路上實現無差錯的數據幀傳輸。在接收方接收到數據出錯時要通知發送方重發,直到這一幀無差錯地到達接收結點,數據鏈路層就是把一條有可能出錯的實際鏈路變成讓網路層看起來像不會出錯的數據鏈路。

3、網路層:網路中通信的2個計算機之間可能要經過許多結點和鏈路,還可能經過幾個通信子網。網路層數據傳輸的單位是分組。網路層的主要任務是為要傳輸的分組選擇一條合適的路徑,使發送分組能夠正確無誤地按照給定的目的地址找到目的主機,交付給目的主機的傳輸層。

4、傳輸層:傳輸層的主要任務是通過通信子網的特性,最佳地利用網路資源,並以可靠與經濟的方式為2個端系統的會話層之間建立一條連接通道,以透明地傳輸報文。傳輸層向上一層提供一個可靠的端到端的服務,使會話層不知道傳輸層以下的數據通信的細節。

5、會話層:在會話層以及以上各層中,數據的傳輸都以報文為單位,會話層不參與具體的傳輸,它提供包括訪問驗證和會話管理在內的建立以及維護應用之間的通信機制。如伺服器驗證用戶登錄便是由會話層完成的。

6、表示層:這一層主要解決用戶信息的語法表示問題。它將要交換的數據從適合某一用戶的抽象語法,轉換為適合OSI內部表示使用的傳送語法。即提供格式化的表示和轉換數據服務。數據的壓縮和解壓縮、加密和解密等工作都由表示層負責。

7、應用層:這是OSI參考模型的最高層。應用層確定進程之間通信的性質以滿足用戶的需求,以及提供網路與用戶軟體之間的介面服務。

(7)計算機網路數據來迴路徑擴展閱讀:

傳輸層作為整個計算機網路的核心,是惟一負責總體數據傳輸和控制的一層。因為網路層不一定保證服務的可靠,而用戶也不能直接對通信子網加以控制,因此在網路層之上,加一層即傳輸層以改善傳輸質量。

傳輸層利用網路層提供的服務,並通過傳輸層地址提供給高層用戶傳輸數據的通信埠,使系統間高層資源的共享不必考慮數據通信方面和不可靠的數據傳輸方面的問題。

閱讀全文

與計算機網路數據來迴路徑相關的資料

熱點內容
網路不穩定怎麼搞 瀏覽:74
簡單設置一下就讓網路快10倍 瀏覽:268
wifi網路插座到底好不好 瀏覽:588
隨時隨地連接無線網路下載安裝 瀏覽:425
3g網路如何升級4g網路 瀏覽:59
蘋果怎麼刪除蜂窩網路的蜂窩號碼 瀏覽:418
網路機頂盒和有線機頂盒哪個好用 瀏覽:401
8p手動設置wifi5g網路 瀏覽:107
網路投注哪個安全 瀏覽:687
無線網路提示加密禁用 瀏覽:10
如何強化手機移動網路信號 瀏覽:186
中國移動5g無線網路企業標准概述 瀏覽:120
合肥有哪些大學有網路教育 瀏覽:1000
點了忘記網路後找不到wifi了 瀏覽:119
伺服器怎麼安裝網路 瀏覽:571
網路安全戰爭數據 瀏覽:834
如何快速排查網路 瀏覽:66
計算機網路用途特點 瀏覽:392
小米使用電腦網路上網 瀏覽:534
網路帽紅燈怎麼回事 瀏覽:780

友情鏈接