㈠ 請問什麼是網路體系結構為什麼要定義網路體系結構
計算機網路7層開放系統互聯(open systems interconnection, OSI)標准.其核心內容包含高,中,低三大部分,高層是面向網路應用,低層是面向網路通信的各種功能劃分,而中間層是起信息轉換,信息交換(或轉接)和傳輸路徑選擇等作用,即路由選擇核心.
為進行網路中的數據交換而建立的規則,標准或約定稱為網路協議.網路協議主要由下列三個要素組成: 語法,語義和同步(指事件實現中順序的詳細說明).
網路的體系結構定義:指計算機網路的各層及其協議的集合(architecture).或精確定義為這個計算機網路及其部件所應完成的功能.計算機網路的體系結構綜合了OSI和TCP/IP的優點,本身由5層組成:應用層,運輸層,網路層,物理層和數據鏈路層.
為的就是安全和有個全世界公用的標准來限制。
㈡ 計算機網路體系結構是通過什麼形成
計算機網路是個非常復雜的系統。為了說明這一點,可以設想一種最簡單的情況:連接在網路上的兩台計算機要互相傳送文件。
顯然,在這兩台計算機之間必須有一條傳送數據的通路。但這還遠遠不夠。至少還有以下幾項工作需要去完成:
(1)發起通信的計算機必須將數據通信的通路進行激活(activate)。所謂「激活」就是要發出一些信令,保證要傳送的計算機數據能在這條通路上正確發送和接收。
(2)要告訴網路如何識別接收數據的計算機。
(3)發起通信的計算機必須查明對方計算機是否已開機,並且與網路連接正常。
(4)發起通信的計算機中的應用程序必須弄清楚,在對方計算機中的文件管理程序是否已做好接收文件和存儲文件的准備工作。
(5)若計算機的文件格式不兼容,則至少其中一台計算機應完成格式轉換功能。
(6)對出現的各種差老漏錯和意外事故,如數據傳送錯誤、重復或丟失,網路中某個結點交換機出現故障等,應當有可靠的措施保證對方計算機最終能夠收到正確的文件。
還可以列舉出一些要做的其他工作。由此可見,相互通信的兩個計算機系統必須高度協調工作才行,而這種「協調」是相當復雜的。為了設計這樣復雜的計算機網路,早在最初的ARPANET設計時即提出了分層的高含敬方法。「分層」可將龐大而復雜的問題,轉化為若干較小的局部問題,而這些較小的局部問題就比較易於研究和處理。
1974年,美國的IBM公司宣布了系統網路體系結構SNA(System Network Architecture)。這個著名的網路標准就是按照分層的方法制定的。現在用IBM大型機構建的專用網路仍在使用SNA。不久後,其他一些公司也相繼推出自己公司的具有不同名稱的體系結構。
不同的網路體系結構出現後,使用同一個公司生產的各種設備都能夠很容易地互連成網。這種情況顯然有利於一個公司戚慎壟斷市場。但由於網路體系結構的不同,不同公司的設備很難互相連通。
然而,全球經濟的發展使得不同網路體系結構的用戶迫切要求能夠互相交換信息。為了使不同體系結構的計算機網路都能互連,國際標准化組織ISO於1977年成立了專門機構研究該問題。他們提出了一個試圖使各種計算機在世界范圍內互連成網的標准框架,即著名的開放系統互連基本參考模型OSIRM (Open Systems Interconnection Reference Model),簡稱為OSI。「開放」是指非獨家壟斷的。因此只要遵循OSI標准,一個系統就可以和位於世界上任何地方的、也遵循這同一標準的其他任何系統進行通信。這一點很像世界范圍的有線電話和郵政系統,這兩個系統都是開放系統。「系統」是指在現實的系統中與互連有關的各部分(我們知道,並不是一個系統中的所有部分都與互連有關。
㈢ 簡述計算機網路的形成與發展過程
計算機網路的形成與發展經歷了四個階段:
1.第1階段:20世紀60年代末到20世紀70年代初為計算機網路發展的萌芽階段。
其主要特徵是:為了增加系統的計算能力和資源共享,把小型計算機連成實驗性的網路。第一個遠程分組交換網叫ARPANET,是由美國國防部於1969年建成的,第一次實現了由通信網路和資源網路復合構成計算機網路系統。
2.第2階段:20世紀70年代中後期是區域網絡(LAN)發展的重要階段。
其主要特徵為:區域網絡作為一種新型的計算機體系結構開始進入產業部門。區域網技術是從遠程分組交換通信網路和I/O匯流排結構計算機系統派生出來的。
1976年,美國Xerox公司的Palo Alto研究中心推出乙太網(Ethernet),它成功地採用了夏威夷大學ALOHA無線電網路系統的基本原理,使之發展成為第一個匯流排競爭式區域網絡。
3.第3階段:整個20世紀80年代是計算機區域網絡的發展時期。
其主要特徵是:區域網絡完全從硬體上實現了ISO的開放系統互連通信模式協議的能力。
計算機區域網及其互連產品的集成,使得區域網與局域互連、區域網與各類主機互連,以及區域網與廣域網互連的技術越來越成熟。綜合業務數據通信網路(ISDN)和智能化網路(IN)的發展,標志著區域網絡的飛速發展。
4.第4階段:20世紀90年代初至現在是計算機網路飛速發展的階段。
其主要特徵是:計算機網路化,協同計算能力發展以及全球互連網路(Internet)的盛行。計算機的發展已經完全與網路融為一體,體現了「網路就是計算機」的口號。
拓展資料:
計算機網路,是指將地理位置不同的具有獨立功能的多台計算機及其外部設備,通過通信線路連接起來,在網路操作系統,網路管理軟體及網路通信協議的管理和協調下,實現資源共享和信息傳遞的計算機系統。
從整體上來說計算機網路就是把分布在不同地理區域的計算機與專門的外部設備用通信線路互聯成一個規模大、功能強的系統,從而使眾多的計算機可以方便地互相傳遞信息,共享硬體、軟體、數據信息等資源。計算機網路向用戶提供的最重要的功能有兩個,即連通性和共享。
簡單來說,計算機網路就是由通信線路互相連接的許多自主工作的計算機構成的集合體。
㈣ 求助:計算機網路興起的主要原因!急~~~~
計算機網路興起的主要原因是:減輕中央計算機系統的負擔,實現資源共享。
在早期年代,人們開始將彼此獨立發展的計算機技術與通信技術結合起來,完成了數據通信與計算機通信網路的研究,為計算機網路的出現做好了技術准備,奠定了理論基礎。
隨著計算機網路技術的發展,到20世紀60年代中期,計算機網路不再局限於單計算機網路,許多單計算機網路相互連接形成了有多個單主機系統相連接的計算機網路。
隨著計算機網路技術的飛速發展,計算機網路的逐漸普,為了使各種計算機網路更好的連接,網路體系結構標准化就顯得相當重要,在這樣的背景下形成了體系結構標准化的計算機網路。
形成原因有兩個:
第一、為了使不同設備之間的兼容性和互操作性更加緊密;
第二、體系結構標准化是為了更好的實現計算機網路的資源共享。
(4)計算機網路體系結構產生的原因擴展閱讀:
Internet的最早起源於美國國防部高級研究計劃署DARPA(Defence Advanced Research Projects Agency)的前身ARPAnet,該網於1969年投入使用。由此,ARPAnet成為現代計算機網路誕生的標志。
從六十年代起,由ARPA提供經費,聯合計算機公司和大學共同研製而發展起來的ARPAnet網路。最初,ARPAnet主要是用於軍事研究目的。
它主要是基於這樣的指導思想:網路必須經受得住故障的考驗而維持正常的工作,一旦發生戰爭,當網路的某一部分因遭受攻擊而失去工作能力時,網路的其他部分應能維持正常的通信工作。
ARPAnet在技術上的另一個重大貢獻是TCP/IP協議簇的開發和利用。作為Internet的早期骨幹網,ARPAnet的試驗並奠定了Internet存在和發展的基礎,較好地解決了異種機網路互聯的一系列理論和技術問題。
1983年,ARPAnet分裂為兩部分,ARPAnet和純軍事用的MILNET。同時,區域網和廣域網的產生和逢勃發展對Internet的進一步發展起了重要的作用。
其中最引人注目的是美國國家科學基金會ASF(National Science Foundation)建立的NSFnet。NSF在全美國建立了按地區劃分的計算機廣域網並將這些地區網路和超級計算機中心互聯起來。
中國計算機網路設備製造行業是改革開放後成長起來的,早期與世界先進水平存在巨大差距;但受益於計算機網路設備行業生產技術不斷提高以及下游需求市場不斷擴大,我國計算機網路設備製造行業發展十分迅速。
近兩年,隨著我國國民經濟的快速發展以及國際金融危機的逐漸消退,計算機網路設備製造行業獲得良好發展機遇,中國已成為全球計算機網路設備製造行業重點發展市場。
㈤ 什麼是計算機網路的體系結構為什麼要採用分層次的結構
它的目的是為網路硬體、軟體、協議、 存取控制和拓撲提供標准.現在廣泛採用的是開放系統互連OSI(
Open System Interconnection)的參考模型,它是用物理層、
數據鏈路層、網路層、傳送層、對話層、
表示層和應用層七個層次描述網路的結構.你應該注意的 是,網路體系結構的優劣將直接影響匯流排、介面和網路的性能.
而網路體系結構的關鍵要素恰恰就是協議和拓撲.
目前最常見的網路體系結構有FDDI、乙太網、 令牌環網和快速乙太網等.
採用分層次的結構原因:各層功能相對獨立,
各層因技術進步而做的改動不會影響到其他層,從而保持體 系結構的穩定性
㈥ 計算機網路的體系結構
計算機網路的體系結構
計算機網路體系結構關注三方面內容:網路協議如何分層、各層協議、層間介面。下面是我整理的關於計算機網路的體系結構,希望大家認真閱讀!
一、計算機網路體系結構分層思想
首先,你要對計算機網路有一個模糊的認識---計算機網路是一個十分復雜的系統⊙﹏⊙。看看你電腦上有多少服務,那些服務有著各種協議,小白問度娘都不一定能弄懂。可想而知,對於那些計算機科學家(我覺得當年應該有很多玩通信的工程師吧,臆想而已。對這段歷史感興趣可以參考央視《互聯網時代》)來說,設計一種網路體系結構應該可能也是很難的,復雜度不是一般高啊。
可能你學沒學過匯編語言(Assembly Language),那麼請自行查資料。如果你學過匯編語言,不管學沒學好,從一開始接觸匯編語言你就會有感覺---這是什麼鬼。然後隨著歷史的發展,在匯編語言的基礎上出現了結構化程序設計語言,比如Fortran、Basic、C。這些結構化編程語言有別於上一代的是書上說的出現了"函數"的概念,從此寫代碼有了質的改變。自上而下,分而治之便是結構化程序設計的核心思想。
同樣,對於計算機網路來說也是這種思路。計算機網路體系結構可以看成一個很大的面向過程程序。如果將所有的內容都寫在一個main函數中,那麼這個程序就太尷尬了,到最後都不知道在寫些什麼了,大大加劇了程序設計的復雜度,以及後來程序維護的.復雜度...等等問題。也就是說不採用分治思想的計算機網路協調性差,設計復雜度高,網路通信出錯可能性也陡增。基於此原因,計算機網路體系結構的"分層"思想誕生了。
"分層"思想,通俗將就是常說的"分而治之"。ARPANET設計時提出的"分層"方法可將龐大而復雜的計算機網路問題,轉化為若干個局部的問題,而這些局部問題可以通過研究逐一攻破,那麼計算機之間通信就成為了可能。
二、OSI/RM模型和TCP/IP協議族的較量
1. OSI/RM
OSI/RM是英文Open System Interconnection Reference Model的縮寫,中文翻譯為"開放系統互聯基本參考模型"。在1983年,ISO發布正式文件後,也就有了現在所謂的七層協議的體系。
2. TCP/IP
TCP/IP並不是單一的協議,而是協議族。分為四層:應用層、運輸層、網際層、網路介面層。
OSI/RM和TCP/IP協議的PK中失敗了,究其原因,我認為主要有如下幾點:
1)OSI/RM 模型各層協議之間有重復功能。這就像寫代碼的時候有重復的代碼,上頭就想抽你倆嘴巴子,錢這么好賺么→_→。
2)OSI/RM 模型層數太多。也就是要說要實現網路互聯,你需要的硬體以及軟體就相對會更多。而且數據傳來傳去多了,運行效率也會降低。
3)OSI/RM 那幫人可能是棒通信領域的專家,這玩意比TCP/IP在實現上得多花不少錢。
基於這些事實,TCP/IP成了非法律上國際標準的事實上國際標准。
三、採用分層體系網路原因總結
1)並不是所有的設備都需要這么多層次。計算機網路中不同設備完成的任務不同,需要的功能也不同。除了計算機網路邊緣部分的端系統需要所有層次協議,其餘計算機網路核心部分部分則不需要這么多層次的協議。而且可以想像,多一層次就意味著多了部分硬體和軟體,成本就會增加。
PS:這里兩圖只是為了說明三層交換機比二層交換機價格高,至於高多少還取決於品牌和帶寬等因素。
2)每層設計實現相對獨立的功能,在層次設計(硬體和軟體設計)完成後,只需要提供向上的介面可供上層調用,。這樣做的好處是就像編程中的函數模塊化設計,我們只要知道高手設計的庫函數的API就行了,不需要具體軟體開發再編寫同樣高質量的代碼,從而服務了代碼搬運工。
3)模塊化協議層次大大的好啊。哪好了?雕版印刷術和活字印刷術的區別。如果某一層的技術發生變化後,只要層間介面不變,只要對某層提供的服務進行修改(添加和修改)即可。你想,這可以省多少錢啊。就像你電腦顯示屏壞了,你總不可能去新買個電腦吧,差不多就這意思。
4)降低實現和維護網路難度。如果那種服務不能使用了,那就查提供此種服務對應的那層,而不需再從頭查起。
;㈦ 為什麼需要網路體系結構
將數據中固有的模式進行組織,化復雜繁瑣為簡單明晰;創建信息結構或地圖,以便讓他人獲得自身所需的知識。
計算機網路結構可以從網路體系(Network Architecture)結構,網路組織和網路配置三個方面來描述。
網路體系結構是從功能上來描述,指計算機網路層次結構模型和各層協議的集合;網路組織是從網路的物理結構和網路的實現兩方面來描述;網路配置是從網路應用方面來描述計算機網路的布局、硬體、軟體和通信線路。
網路體系結構具有適用性
在所有的計算機網路的研究中,雖然會在一些具體的需求項目上存在差異性和不適用性,但仍能夠滿足大部分用戶對於網路服務的要求,實現網路資源的共享和網路交流。網路技術基本上都追求的是遠距離的信息傳輸和遠程通信和資源共享的實現。
同時,不同的計算機網路雖然會在其覆蓋范圍、通信媒介、設備種類、拓撲結構等存在著或多或少的差別,但同樣的物體必然存在共性,例如計算機網路的結構搭建思想是不變的,協議標準是規定好的,只是不同計算機網路的復雜程度不同,運用到的標准協議的多少有差異而已。
而網路體系結構的研究中,一個重要領域就是對計算機網路中這些具有普遍性的思想和有共性的標准協議進行研究,並由此建立了一整套具有普適性特點的科學的理論研究方法,同時一系列的切實可行的工程技術方法也被開發出來。因此,網路體積結構具有統領所有計算機網路研究的普適性。
㈧ 計算機網路是如何產生的
1969年美國國防部創建了第一個分組交換網ARPAnet只是一個單個的分組交換網。
產生的原因:20世紀60年代,美蘇冷戰期間,美國國防部領導的遠景研究規劃局ARPA提出要研製一種嶄新的網路對付來自前蘇聯的核攻擊威脅。
因為當時,傳統的電路交換的電信網雖已經四通八達,但戰爭期間,一旦正在通信的電路有一個交換機或鏈路被炸,則整個通信電路就要中斷,如要立即改用其他迂迴電路,還必須重新撥號建立連接,這將要延誤一些時間。
(8)計算機網路體系結構產生的原因擴展閱讀
計算機網路的分類與一般的事物分類方法一樣,可以按事物所具有的不同性質特點(即事物的屬性)分類。計算機網路通俗地講就是由多台計算機(或其它計算機網路設備)通過傳輸介質和軟體物理(或邏輯)連接在一起組成的。
總的來說計算機網路的組成基本上包括:計算機、網路操作系統、傳輸介質(可以是有形的,也可以是無形的,如無線網路的傳輸介質就是空間)以及相應的應用軟體四部分。
㈨ 為什麼要有計算機網路體系結構
在ISO的OSI參考模型中,計算機網路分為7層,每一層都有各自的工作,為了網路中的數據可以正確的傳送和接收,所以必須為計算機網路劃分體系結構
㈩ 6什麼是計算機網路的體系結構為什麼要採用分層次的結構
計算機網路體系結構是指計算機網路層次結構模型,它是各層的協議以及層次之間的埠的集合。
目前廣泛採用的是國際標准化組織(ISO)1997年提出的開放系統互聯(Open
System Interconnection,OSI)參考模型,習慣上稱為ISO/OSI參考模型。
在OSI七層參考模型的體系結構中,由低層至高層分別稱為物理層、數據鏈路層、網路層、運輸層、會話層、表示層和應用層
原因:為把在一個網路結構下開發的系統與在另一個網路結構下開發的系統互聯起來,以實現更高一級的應用,使異種機之間的通信成為可能,便於網路結構標准化;
並且由於全球經濟的發展使得處在不同網路體系結構的用戶迫切要求能夠互相交換信息;
為此,國際標准化組織ISO成立了專門的機構研究該問題,並於1977年提出了一個試圖使各種計算機在世界范圍內互聯成網的標准框架,即著名的開放系統互連基本參考模型OSI/RM (Open System Interconnection Reference Model)。
(10)計算機網路體系結構產生的原因擴展閱讀:
OSI模型體系結構:
物理層(Physical,PH)物理層的任務就是為上層提供一個物理的連接,以及該物理連接表現出來的機械、電氣、功能和過程特性,實現透明的比特流傳輸。
數據鏈路層(Data-link,D)實現的主要功能有:幀的同步、差錯控制、流量控制、定址、幀內定界、透明比特組合傳輸等。
網路層(Network,N)網路層的主要任務是為要傳輸的分組選擇一條合適的路徑,使發送分組能夠正確無誤地按照給定的目的地址找到目的主機,交付給目的主機的傳輸層。
傳輸層(Transport,T)傳輸層向上一層提供一個可靠的端到端的服務,使會話層不知道傳輸層以下的數據通信的細節
會話層(Session,S)提供包括訪問驗證和會話管理在內的建立以及維護應用之間的通信機制。如伺服器驗證用戶登錄便是由會話層完成的。
表示層(Presentation,P)數據的壓縮和解壓縮、加密和解密等工作都由表示層負責。
應用層(Application,A)應用層確定進程之間通信的性質以滿足用戶的需求,以及提供網路與用戶軟體之間的介面服務。